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Abstract

Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range
coordinated motions known as metachronal waves. Pair synchronization is a fundamental require-
ment for these collective dynamics, but it is generally not sufficient for collective phase-locking,
chiefly due to the effect of long-range interactions. Here we explore experimentally and numeri-
cally a minimal model for a ciliated surface; hydrodynamically coupled oscillators rotating above a
no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due
to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling
wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the
transition between these regimes the system displays behavior reminiscent of chimera states.
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The ability of ensembles of oscillators to achieve collective motions is fundamental in
biological processes ranging from the initiation of heartbeats to the motility of microorgan-
isms. The emergent properties of coupled oscillators can vary dramatically depending on
the intrinsic properties of the oscillators and the nature of the coupling between them [1].
Flashing fireflies equally and instantaneously coupled to one another [2] can support very
different behaviors to chemical micro-oscillators, which are coupled only locally, and subject
to time delays [3].

Eukaryotic cilia and flagella are chemo-mechanical oscillators that generate a variety of
collective motions, which can be quantified with high-speed imaging in microfluidic environ-
ments [4-6]. The molecular biology of these internally driven filaments is virtually identical
in green algae [5], protists [7] and humans [8], and the flows they generate fulfill crucial roles
in development, motility, sensing and transport. When close together, the mutual interac-
tion between their oscillatory flow fields can cause them to beat in synchrony [9], and larger
ensembles of flagella demonstrate striking collective motions in the form of metachronal
waves (MWs) [10-13], akin to the ‘Mexican wave’ propagating around a packed stadium.
Many surrogate models for flagellar dynamics have been proposed [13-24], typically with a
set geometry that fixes the range and coupling between oscillators.

Here we relax this condition and study a linear array of colloidal oscillators [25] driven in
circular trajectories at a controllable height above a no-slip wall. Originally introduced as a
mathematically convenient minimal model for synchronization at low Reynolds numbers [15],
colloidal rotors have been experimentally shown to reproduce the the time-dependent flow
field associated with a beating flagellum down to distances comparable to its size (~ 10 um)
9, 26]; and when generalized to include waveform flexibility [14, 27, 28] are also capable of
capturing interflagellar synchronization in bulk [9]. The system of colloidal rotors studied
here can be modified continuously from being primarily coupled through nearest neighbors
to a regime involving significant long-range interactions. As a function of rotor properties,
a traveling wave found at small heights becomes either a chevron pattern or is punctuated
by phase defects at large ones. The transition is not a gradual morphing between the two
profiles, but rather a process involving generation and propagation of defects along the strip,
where phase-locked and non-phase-locked subgroups of oscillators can coexist. A behavior
arising from long-range interactions whose amplitude is modulated by the distance from the
wall [18], these dynamics are reminiscent of chimera states, in which oscillators split into
phase-locked and desynchronized clusters [29, 30].

In our experiments, silica colloids of radius a = 1.74 um (BangsLab, USA) suspended
in a water-glycerol solution of viscosity © = 6 mPas within a 150 um-thick sample, are
captured and driven by feedback-controlled time-shared (20 kHz) optical tweezers (OTs)
based on acousto-optical deflection of a 1064 nm-wavelength diode-pumped solid-state laser
(CrystaLaser IRCL-2W-1064) as previously described [31, 32]. The OTs describe a planar
array of circular trajectories (Fig. 1a) of radius R = 1.59 um and center-to-center separation
¢ =9.19 um, a distance h above the sample bottom, with 4.2(4) um < h < 51.7(4) pm. This
configuration, which reflects the capabilities and limitations of our OT setup, is similar to
arrays of nodal cilia, but differs from another common situation where the ciliary beating
plane is perpendicular to an organism’s surface.

The oscillators are imaged under a Nikon inverted Eclipse Ti-E with a 60x Nikon Plan
Apo VC water immersion objective (NA = 1.20), and recorded for up to 1200s using an
AVT Marlin F131B CMOS camera set at 229 fps. The rotor positions are measured using
an algorithm that correlates the image intensity I(x,y) with a rotationally symmetric kernel
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image K (z,y) constructed from a real colloid. By fitting the 2D cross-correlation function
C(x0,90) = d(oy [(@y) X K(z — 20,y — yo) with a 2D parabola and maximizing this
function, the rotor positions (xg,yo) are extracted with subpixel resolution, and used to
track their phases {¢;(t)} over time (Fig. 1a).

The rapid feedback loop between colloid and trap positions facilitates the arbitrary place-
ment of the OTs with respect to the colloidal particles. The trap positions are maintained
at a constant radius R and fixed angular distance ahead of the colloids. Consequently, a
colloidal particle on the ith trajectory (i € {0, ..., N —1}) experiences a radial harmonic po-
tential with spring constant A = 2.06 +0.06 pN/um resisting excursions from the prescribed
radius, and a constant tangential force of magnitude F; = F3, D*~%5 leading to rotation. The
period of rotation is therefore not fixed, and it is this degree of freedom that permits synchro-
nization of interacting particles. The choice of A\ reflects estimates of the bending rigidity
of flagella, x ~ 4 x 10722 N m?, and their length, L. From \ = x/L3 [14], and for typical
values of L, values of A ~ O(1 — 10) pN/um should represent typical flagella. Unavoidable
delays in the OT’s feedback response introduce a mismatch between the parameters used
in experiments and simulations, which is corrected by increasing the simulation value of A
by a constant factor v relative to the experimental one. The previously reported value of
v = 2.21 [32] is adopted throughout this paper, which results in quantitative agreement of
simulations with the present experiments (see Fig. 1c).

Isolated oscillators rotate with a height-dependent angular velocity w; = F;/ Ry, where
o = 6mpa is the sphere’s bulk drag coefficient, and (y,(h) = 1+ 5% + O(a®/h?) accounts
for the presence of the wall [33]. Experimental results are compared with deterministic
hydrodynamic simulations in which colloids are treated as point-like particles above a no-
slip boundary, and therefore coupled through the so-called “Blake tensor” [11, 34]. Before
each experiment we calibrate Fy, ~ 2.23 pN (see [35]; typical variation £2%). D # 1 is used
to break left-right symmetry along the chain and induce a stable traveling wave for small
h [11]. For the detuning adopted here, D = 1.01, the period of individual oscillators varies

between 7 ~ 0.5s and ~ 1s across the explored range of h.

Consider first two rotors separated by a distance ¢. For rotors with instantaneous
positions {x;} and velocities {v;}, the hydrodynamic drag on the ith rotor is given by
—C(zi) - [vi = >, G(=j, @) - FF**], where F** is the net external force acting on the jth
sphere and G(z;, x;) is the Green’s function in the presence of the no-slip wall. For identi-
cal rotors (detuning D = 1), hydrodynamic coupling eventually leads to synchrony provided
A < 00, by perturbing the angular velocities of the two rotors so that the leading and lagging
rotors become slower and faster respectively [13, 14]. The timescale for synchronization is
proportional to the spring constant A (see Eq. (1)) and also depends on the strength of
hydrodynamic interactions between rotors, which is a function of height h and spacing /.
The dynamics become richer if a discrepancy between the rotor’s intrinsic frequencies is in-
troduced (D # 1), for then the coupling must be sufficiently strong to overcome the natural
tendency for the rotor’s phase difference y = ¢1 — ¢¢ to drift.

Bifurcation plots in Fig. 1b show, for different A, the average phase drift between two
oscillators as a function of D. The behavior is typical of a saddle-node bifurcation: the
oscillators phase-lock until D reaches a critical value D*(h) and then drift with a monoton-
ically increasing speed. D*(h) increases with h, reflecting the strengthening of inter-rotor
hydrodynamic coupling with increasing distance from the wall. The phase-locking behavior
is summarized in Fig. lc, where the experimental synchronization boundary is based on a
threshold of 5 slips in the whole experiment (X., = 0.131rad/s). The results of individual
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experiments are classified based on this threshold, and are represented as either red (drift) or
blue (synchronized) points in Fig. 1lc. As h is increased, the rotor pair moves deeper into the
synchronized region: the coupling between the two strengthens due to lower hydrodynamic
screening from the wall, leading to an enhanced stability of the synchronized state. This
is reproduced by simulations (Fig. 1c) up to small shift in D, which could come from the
finite value of a/h and experimental noise. In the limit a, R < ¢, the evolution of the phase
difference x = ¢ — ¢y can be derived by a generalization of previous arguments [14, 35]. As
phase-locking is slow compared to the rotation period, we average over this fast timescale

and find
. F1 - Fo 3a FOF1
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where, A(8) =1 - X - ZX3 B(8) =1 - X*+ X5 X =1/\/T+ 32, and § = 2h/¢,
From Eq. (1), the average phase drift x., for non-phase-locked states reads

o = \/ () (S B0 a9+ m)) )

Given the functional form of the frequency detuning, F; = Fy, D*"%5 Eq. (2) can be solved
explicitly to yield the critical detuning D*(h) (solid line in Fig. 1c). The theoretical and

[2A(ﬁ) + B(ﬁ)} sin y, (1)
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FIG. 1. (color online). Experimental setup and results. (a) Microspheres of radius a =
1.74 um, situated at a distance h above a no-slip boundary are driven by time-sharing op-
tical tweezers in circular trajectories of radius R = 1.59um and center-to-center separation
¢ = 9.19um. (b) Average phase drift y = ¢; — ¢ for a rotor pair vs. detuning D for
h = 4.2(e),6.7(e),11.7(®),16.7(e),31.7(),51.7(e) um. (c) Phase diagram showing experimental
regions of synchrony (blue) and drift (red), the boundary from hydrodynamic simulations (dashed)
and theory from Eq. (2) (solid).



numerical solutions for the boundary in Fig. 1c slightly under- and over-estimate the data,
respectively, owing to neglect of temporal variations in the inter-particle spacing and the
finite size of the beads, respectively. Both also neglect thermal fluctuations.

We now turn to the dynamics of a linear array of 6 rotors, with the ith rotor centered
at = (il,0,h). This is the longest controllable chain with our active-feedback-based
OTs. Linear arrays of colloidal oscillators have been shown to capture the dynamics of two-
dimensional arrays [13], so this simplified geometry will be the focus here. The dynamics are
studied experimentally as a function of h, but numerical simulations allow wider exploration
of parameters, including changes in the radial stiffness A, which governs the coupling strength
9, 11, 13, 14, 32] as in Eq. (1). In both experiments and simulations we introduce a mild
frequency bias D = 1.01, typical also of Volvox colonies [13], which breaks the translational
symmetry and induces a MW for h < 10 um. At all heights studied, this value of D is deep
within the synchronized region of parameter space for two rotors.
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FIG. 2. (color online). Results for the linear array of driven colloidal oscillators, shown schemati-
cally in grey (not to scale). (a) Kymographs showing sin ¢; at three heights above the wall. With
increasing h, the traveling wave becomes frustrated, with the introduction of wobbles (arrows) and
phase defects (circles). (b) Numerical results from model. (c¢) Fraction of total coupling corre-
sponding to interacting with different neighbors, as a function of h. Shaded red region represents
experimental parameter regime.

Figure 2a shows that at h = 6.7(4) um the rotors phase-lock in a stable MW whose
direction is set by the frequency bias. With increasing h, defects (phase slips) emerge,
giving rise to a net drift in the cumulative phase difference between rotors at opposite ends
of the chain. Phase defects always propagate in the direction of the fastest oscillator. At
these intermediate heights, the phase profile also displays “wobbles” — perturbations to the
MW that are not accompanied by a phase defect. Numerical results shown in Fig. 2b capture
the traveling wave at h = 5 um, the presence of defects and their propagation direction, and
wobbles at larger heights. At the largest height, h = 50 um, defects no longer propagate
through the chain, and rotors 3-5 remain phase-locked.

The phase dynamics of wobbles and defects are shown in Fig. 3a for h = 11.7(4) um. The
first 25 seconds of the time-series show fluctuations in ¢;—¢o (wobbles), even while the system
is frequency-locked. Fluctuations start at the first oscillator pair and travel unidirectionally
along the chain (Fig. 3b) with a preserved, soliton-like signature [36]. Occasionally, they
terminate within the chain with a slip (Fig. 3a); these are the phase defects observed in
kymographs. Both wobbles and defects are characterized by initial excursions of amplitude
W and recurrence time 7 (Fig. 3c), which depend on h (Fig. 3d,e). The typical time
7 ~ 10(T) (where (T') ~ 1s is the average period) depends less strongly on h than does
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W, which shows a pronounced growth (Fig. 3d), mirroring the increased probability that a
wobble will terminate in a slip within the chain, causing a defect (Fig. 3f). Although their
position can vary, defects tend to cluster, in this case at the middle of the chain (position
i = 2), as seen also in simulations of longer chains [35].

The hydrodynamic coupling between two rotors increases monotonically with h; for an
isolated pair, this manifests in more robust synchronization at larger heights. For a chain
of rotors, increasing h has the reverse effect, disrupting the stable MW with wobbles and
punctuating it with periodic phase defects (Fig. 2). The hydrodynamic coupling between
every pair of rotors in the chain grows as h is increased. For just two rotors, Eq. (1) shows
that equivalent changes to the hydrodynamic coupling can be achieved through modification
of the mean interparticle separation [. For the chain of 6 rotors, in which longer range
hydrodynamic interactions also occur, changes to h and [ are no longer equivalent.
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FIG. 3. (color online). Experimental phase dynamics. (a,b) Phase difference relative to the first
rotor, ¢; — ¢g, at h = 11.7 um. (c) Wobbles are characterized by their magnitude W (radians) and
timescale 7/(T) (normalized by rotor period), shown as a function of h in panels (d) and (e). (f)
Probability that a propagating wobble ends at rotor ¢, resulting in a slip.

The peculiar dynamics observed arise from a change in the relative contributions of
interactions with different neighbors. The no-slip wall has the effect of screening the hydro-
dynamic interactions in a way that qualitatively changes as a function of § = 2h/¢. This
is an important determinant of MW stability, as observed also in simulations of colloidal
“rowers” [18]. Figure 2¢ shows the magnitude of the coupling of a given oscillator with its
jth nearest neighbor, estimated with Eq. (1), normalized by the total interaction strength
with the first 5 neighbors. Although all pairwise couplings grow monotonically with h, the
relative magnitude of the nearest neighbor interactions actually diminishes. Conversely, the
relative importance of all others increases with h. Hydrodynamic disturbances parallel to
the wall decay as u ~ r~7 where j = 1 and 3 represent the far (3 > 1) and near (8 < 1)
asymptotic limits [18]. For the end rotor the magnitude of the coupling with the nth nearest
neighbor, normalized by the total coupling strength is S(n) = n™7/ Zle i, For B < 1
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the interactions are dominated by nearest neighbor, with S(1) = 0.84, while for 5 > 1,
S(1) = 0.44 (see black curve in Fig. 2c). We test the hypothesis that the breakdown of
the traveling wave is due to long-range hydrodynamic interactions through simulations in
which interactions are truncated at nearest neighbors, and find the abundance of defects is
significantly reduced. Importantly, the dynamics are nearly insensitive to h, with a maxi-
mum relative variation in end-to-end drift speed of just 3% between h = 5 um and 1000 pum
(Fig. 4) [35].
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FIG. 4. (color online). (a) Average phase drift per beat between end oscillators (measured in beats)
as a function of height above the wall and radial spring stiffness. Shown also are four representative
kymographs. (b) Time-averaged amplitude A and (c) angle |¥| of the complex order parameter
Z = Ae'. The axes are the same as in a. (d) Same as a but with hydrodynamic interactions
truncated to nearest neighbor. Parameters used include a = 1.74 ym, ¢ = 9.19 ym, R = 1.59 ym,
viscosity p = 6 mPas. Simulations correspond to 0 < ¢ < 2000 s. The dashed white line shows the
value of A corresponding to Fig. 2. Note the different color scales used throughout.

Additional numerical simulations permit the wider exploration of parameter space. The
range of A values studied here corresponds to the estimated values A = x/L? based upon
ciliary lengths of between L ~ 4 —10 um [14]. Figure 4a shows the average end-to-end phase
drift per beat as a function of A and h, and enables analysis of many numerical simulations
without looking at the individual kymographs. The area of solid blue corresponds to specific
parameter combinations for which complete phase-locking occurs. However, from the drift
alone, one cannot distinguish between a linear traveling wave (3) and a chevron phase profile
(D). For this we compute the complex order parameter Z = Ae'V = ﬁ 271;7;01 eXn where
Xn = Pni1 — ¢n [18, 37]. Note the use of the pairwise phase differences, not the individual
rotor phases. Looking at the mean value of |¥| (see Fig. 4c), the region of phase space
corresponding to complete phase-locking can be decomposed into chevron (|¥| ~ 0) and
MW (|®¥| > 0) regions. Using the average values A and ¥ for ¢ > 200 s [Fig. 4b,c], we see
that as h is increased at the experimental value of A (white dotted line), the stable traveling
wave at small h shifts to a profile with defects and wobbles, initially along the whole chain,
and then localized to one half of the chain with the remaining three oscillators constantly
phase-locked.

At values of X smaller than the experimental one, however, we observe qualitatively dif-
ferent dynamics. For A < 2.5pN/um, the pattern morphs continuously between different
types of complete synchronization as h is increased, going from a MW (3) to a chevron-
like pattern (1). These transitions happen without the emergence of defects [11]. For
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2.5pN/pum < XA < 3pN/um the system shows reentrant behavior with defects only at inter-
mediate heights, separating a MW region from a chevron-like region. The order parameter
angle |¥| (Fig. 4c) identifies clearly the stable MW (yellow/orange) and chevron (dark blue)
regions of parameter space. For a fixed h 2 50 um, increasing A results in a monotonic
decrease in A owing to the reduced rotor compliance. Conversely, the end-to-end phase
drift exhibits a strong peak around A\ = 4.5 pN/um, where the rotors slip approximately
one beat in every five, despite an intrinsic frequency difference of just 5%. These nontrivial
dynamics emerge due to the combination of phase slips induced by long-range interactions,
and rapid healing of phase defects through orbit compliance. The complete absence of these
features from the simulations with nearest neighbor coupling alone (Fig. 4d) highlights the
role played by competition between interactions at different ranges. Changing h is then a
simple and accessible way to modulate their relative strength (see Fig. 2).

Large arrays of cilia are synonymous with no-slip boundaries, and in many cases, the
spacing between these organelles is comparable to their length [13], so that effectively h/¢ ~ 1
(see Fig. 4a). Our results suggest that flagella of Volvoxr may then be balancing the need
to extend out into the fluid enough to generate a vigorous thrust, with the screening of
long-rage hydrodynamic interactions necessary to stabilize MWs on the colony surface. As
a result, ensembles of flagella in Volvox [11] (but see also numerical simulations [22]) may
operate in a regime naturally prone to the emergence of metachronal phase defects, which
are indeed observed experimentally [13].
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I. SUPPLEMENTARY MATERIAL
A. Single rotor force calibration

For a single bead of radius a in a viscous fluid, situated at a distance h from an infinite no-
slip boundary, the external applied force F' is related to its velocity v according to F' = (- v,
where ¢ is the anisotropic drag matrix, given by [15]

¢ =¢(h) = G[I+ I+ eze) + O((a/h)*)]. (S1)

The coefficient (5 = 6mpa is the drag on the sphere in an unbounded fluid of viscosity
(equivalent to setting h — 00). We are interested only in trajectories that are parallel to
the no-slip wall (v - e, = 0). For a constant applied driving force Fy,, the sphere’s speed
v = |v| is given by
Fdr
VY ——————,
G(1+5%4%)
implying a monotonic increase of the sphere’s speed with h for a given Fy,. Each set of
experiments involves studying the colloidal oscillators at a number of different heights h.
For each set, the center of the trajectory, its radius and the driving and radial forces are
calibrated, for each individually loaded rotor, at the height of A = 22 um. These are then
checked for independence on h. Figure S1 shows, after a full calibration, the speed of an
individually loaded colloidal oscillator at 6 different heights together with the prediction
from Eq. (S2) using a constant driving force. The two agree well for Fy, = 2.23 pN.

(52)

B. Hydrodynamic interaction of two rotors at an arbitrary distance from a no-slip
plane

The fluid disturbance produced by the motion of a sphere parallel to a no-slip wall
depends on its height above the planar boundary. For two such spheres situated in the fluid,
it is important to calculate the strength of the hydrodynamic interactions between them,
and the subsequent effects on their dynamics. We consider two spheres of radius a driven
around circular orbits of radius Ry that are parallel to a no-slip wall. The orbit’s centers are
located at positions (z,y,z) = (0,0, h) and (¢, 0, h) respectively. The plane z = 0 represents
the no-slip boundary, with the semi-infinite domain z > 0 filled with fluid of viscosity pu.
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FIG. S1. Calibration of an individual colloidal oscillator, moving under the influence of a harmonic
potential in an optical tweezer. Experimental results (dots) are shown alongside the prediction of
Eq. (S2), from which the driving force of Fy, = 2.23 pN can be extracted.

(€41, €R1) and (€42, €po) are the unit vectors of the local cylindrical frame of reference of each
single rotor. This reference frame is centered at the center of the orbit. The displacement
of each sphere from the center of its trajectory will be expressed in its cylindrical frame of
reference as (R, ¢1) and (Ry, ¢o) respectively. Each rotor is subject to a constant tangential
driving force F; = Fjég;, and also to a radial spring force with stiffness A\, which suppresses
excursions from the equilibrium radius Ry. The spring stiffness is assumed to be large
enough that the radial degree of freedom is slaved to the angular degree of freedom. That is,
knowing (¢1, ¢2), we know the instantaneous value of (Ry, Ry). It will be our goal to derive
the equations of motion of the spheres, without making any assumptions about the relative
magnitudes of ¢ and h.

We assume that sphere radius and trajectory radius are both small compared to other
length scales (a, Ry < h, ). Correspondingly, the two orbits are sufficiently far from each
other that we can neglect the variation in the relative separation between the spheres as
they move. The separation vector will always be taken to be ¢é,. We will write the re-
lation between the sphere’s angular velocity w; and the tangential driving force F;, as
F; = (o(uRow;, where (y = 6mpa is the bulk drag coefficient, and (, is the correction
due to the presence of the wall. For sufficiently small a/h this correction can be written as
Co = 1+ (9a/16h) + O((a/h)*). The first thing required is the generic expression of the
‘Blakelet’; i.e. the Stokeslet on top of a bounding wall. This is given by [34]:

. F} 6ij rir; 5@']‘ RZR]
“ﬂﬁ%[(?* )\’ TR

+ 210000k — 5j353k)a—Rk { 22 (ES + R33) } } ) (S3)

Here r = (¢,0,0), r = |r|; R = (£,0,2h), R = |R|; @ € {1,2}. In our case, the point
force will be in the (z,y) plane. Furthermore, we are only interested in the component of
the velocity in the same plane, since the trajectories are constrained to lie at z = h. The
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background flow is due to the motion of the other sphere, and is given by:

o = g (£ 1552 - (5 )

— 2h? (E — 3M) lJ : (S4)

R3 R5

In the limit as h — 0, this reduces to Eq. (16) in [14]. Being interested only in the ||
component, and because F = F||, we can substitute

R(F-R) = (r + 2hé3)(F-r) - r(F - r). (Sh)
Calling, as in [14], s = F/8mu we get

Uy = A(B)s + B(B)i(s - 7) (S6)

r

where 7 = r/r = é,, called ng; in [14]; § = 2h/¢, and

AB)=1- (ﬁ)—%(ﬁ) (S7)

B 1 \? 382/ 1 \°
B0)=1- () + 7 () o)

Notice that, due to the nearby wall, the strength of the Stokeslet s is written in terms of
the sphere’s velocity as:

3 oA
s = ZaConRz‘@%- (S9)

The derivation of the equations of motion follows the same procedure outlined in Appendix
A of [14]. The only things we need to calculate are:

Con 012 = 3 CuTadal (2A(9) + B(8)) con(01 — 62)

+ B(B) cos(¢1 + ¢2)), (S10)
€Rp1 - Vg = %CwRQQ;Q[(2A(6) + B(ﬁ)) Sin(¢1 — ¢2)
+ B(B) sin(¢1 + ¢2)]. (S11)

The rest of the calculation can be carried out in exactly the same way as in [14] and the
final result is

b1 = w1 — pwaJ (41, ba; B) — pawrwa K (61, ¢2; B), (S12)
ﬁ'bz = w2 — Pwlj(ﬁbz, ®1; 5) - POéwlsz(¢2, G1; 5)7 (813)
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where now p = 3a(, /8¢, o = w(x(y,/A, and

J(¢i, 05 B) = —[(2A(B) + B(PB)) cos(¢i — ¢;)

+ B(B) cos(¢; + ¢;)] (S14)
K(¢i, ¢; : B) = (2A(B) + B(B)) sin(¢; — ¢;)
+ B(B) sin(¢; + ¢;). (S15)

For example, this means that the phase difference y = ¢ — ¢; and phase sum ® = ¢; + ¢»
evolve according to

X = (w2 —wi)[1 4 pJ(¢1, d2; 5)]

— 2pawiw (2A(B) + B(f)) sin(x), (516)
b = (w1 +wo)[1 + p(2A(8) + B(B)) cos x
+ pB(B) cos @] — 2pawiwy B(3) sin ®. (S17)

To the first order in the small quantities Aw = wy —w; and p, and averaging over a “natural”
timescale of the fast variable ® we get

X = Aw — 2awywsy p(2A(B) + B()) sin x, (S18)
(@) = (w1 +w2) [L+ p(2A(8) + B(B)) cos ] (519)

These functions can be rewritten as

X = Aw + D(x), (S20)
(®) = (w1 +ws) +S(x), (S21)

where D(x) = Dysin y and S(x) = Sy cosx. As in [14], time has been rescaled according to
the mean angular speed @, and both w; are measured in units of w. Rewriting Eq. (S18) in
dimensional units yields

3a (o2
40 )\

X =Aw — wiws [2A(B) + B(B)] sin(x). (522)
This is of the form x = Aw — C'sin(y), with C > 0. If |[Aw| < C then a stable fixed point
X = 0 exists. Conversely, for |Aw| > C, a cycle-averaged phase drift will occur. We use the
following relation

2
. ~1 2m
/0 l[a—bsiny] dx = T for |a| > |b| (523)
to find the time-averaged phase drift
. ,  (3aGC? ’
Xav = (Aw) - 4_ZTW1W2 [QA(B) + B(ﬁ)} : (824)

For each rotor (now indexed by i € {0,1}), the intrinsic angular frequency is given by
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w; = F;/((oCwRo) and so the above equations reads:

o = \/ (f_gﬂgﬂ f;) - (i—j e A0+ B(B)}>2- (525)

Since a detuning factor D is included so that the driving force is F; = Fy,D""'/2, the above
equation can be written as

o = ;C\/ s - (e pae + 59 ) (526)

The threshold value of D beyond which the rotors” phase difference will drift can be calcu-
lated explicitly.

C. Varying chain length

In order to assess the generality of the results presented in the main text, we used numeri-
cal simulations to explore the effect of changing the number of rotors, IV, present in the linear
array (see Fig. la). Figure S2 shows the average phase drift (measured in beats per beat)
with respect to the first rotor, along chains of different length, N € {2,15}. Each chain has
a fixed detuning of 5% between the end rotors. For each height h = 10 ym and h = 100 pm,
simulations were conducted with full hydrodynamic coupling and nearest neighbor coupling
only.

The results for N = 6 are representative of the dynamics across a range of chain lengths.
For chains in which rotors are coupled through nearest neighbor interactions, the rotors
tend to phase-lock in clusters of 2-5 rotors. As discussed in the main text, the nearest
neighbor results are fairly insensitive to changes in h, shown here by the similarly between
the results of Fig. S2b and d. In stark contrast, the chains in which rotors are fully coupled
to one another through hydrodynamic interactions exhibit qualitatively different behavior
at different heights.

D. Truncation of hydrodynamic interactions
Figure S3 shows the results of deterministic numerical simulations, with hydrodynamic

interactions truncated to be nearest neighbor in nature (see also Fig. 4d). The dynamics
are almost completely insensitive to changes in h, across several orders of magnitude.
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FIG. S2. (color online). Average phase drift with respect to the first rotor, for chains of different
lengths N € {2,15}, at two different heights A € {10pum, 100 um}, and subject to either full
hydrodynamic coupling or nearest neighbor interactions only. The end-to-end detuning is fixed at
5% in each case, the radial spring stiffness is A = 4.5pN/um, and all other parameters are as in

Fig. 4.
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Kymographs showing the phase sin ¢; along the linear chain of model
rotors, coupled hydrodynamically through the Blake tensor, but with interactions artificially re-
stricted to be nearest neighbor. The radial spring stiffness is A = 4.5 pN/um and all other param-
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