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In Debye-Hiickel theory, the free energy of an electric double layer near a colloidal (or any other)
surface can be related to the statistics of random walks near that surface. We present a numerical
method based on this correspondence for the calculation of the double-layer free energy for an arbitrary
charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of
the free energy as a function of the screening length and the surface dimension. This scaling law is
verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can

test these predictions.

PACS numbers: 05.20.—y, 02.70.+d, 73.30.+y, 82.70.Dd

In colloidal physics (and elsewhere) one is faced with
the problem of determining the free energy of electric
double layers near surfaces of arbitrary shape.! In the
strong-screening limit, where the Debye-Hiickel screen-
ing length Ap is much smaller than any scale of rough-
ness in the surface, this problem can be solved for
charged or conducting surfaces using a perturbative ex-
pansion in powers of Ap/R, where R is a typical surface
radius of curvature. This perturbation expansion has
been successfully performed (for linear screening) about
a flat surface, using exact results for various special
shapes, and, most generally, using a multiple-scattering
formalism.2™¢

Unfortunately, the perturbative approach is of little
use in the weak-screening regime, where R <Ap, or in
the intermediate-screening regime, where R ~X\p.
While the free energy is essentially a local property of
the surface in the strong-screening regime, in these other
cases nonlocal effects will become important.

In this Letter, we seek to deal with this problem by in-
troducing a general nonperturbative method for calculat-
ing double-layer free energies near arbitrary surfaces
bounded by electrolytes. This method is based upon the
well-known analogy between random walks and the
properties of the Laplace operator; the novelty in our
method is that we have exploited this analogy to gen-
erate an extremely fast and accurate numerical algo-
rithm.”"® We show that for conducting surfaces, the free
energy is determined by the first-passage time for ran-
dom walks near the surface, while, for charged surfaces,
the free energy is determined by the mean return time
for such random walks.

The analogy with random walks only works in the
linear screening regime, in which the potential in the
electrolyte satisfies the linearized Poisson-Boltzmann
equation,

Ap—rp%9=0. ()

The screening length A is given in terms of the tempera-
ture T, dielectric constant ¢, ionic concentration ¢, and
charge e* by A3 =ekpT/8nce*?. The linear approxima-
tion is valid for surface potentials ¢o<< ekgT/e* or sur-
face charges per unit area o < ekgT/Ape™.

A simple case in which our numerical results can be
compared with theoretical ideas is that of self-similar
surfaces of (Minkowski) dimension Djs, which display
roughness over a large range of length scales, offering a
near-ideal test of our method. Using simple scaling
ideas, we propose that for conducting surfaces at poten-
tial go, the free energy scales with Ap as F~odrp > 2,
while for charged surfaces with surface charge density
oo, the free energy scales as §7~03X3” a2 These laws
are in excellent agreement with our numerical results,
and can, in principle, be tested experimentally.

Suppose we have a domain D bounded by a surface &,
which is held at constant potential ¢o. The Green’s func-
tion G, for Eq. (1) satisfies

A=Ap DGy (r,rAp ) =—=6(r—r"). )

Here G,=0 when one of its arguments is a point r =w
on the boundary. If 7i(w) is the inward normal to the
surface at the point w, then the free energy # in the
Debye-Hiickel limit may be written in terms of G, as

1y €08 , oy
Flgoro ") =§defdw i i Gow,w'ikp 1),
3)

where the surface points w,w’ are approached from the
interior of the domain D.°

We will now relate this result to properties of random
walkers. Random walkers obey the diffusion equation,
whose Green’s function I is given by

[i_m,

r(r,rit)=6r—r)6@), 4)
ot
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where D is the diffusion constant and, without loss of lated by
enerality, we have set the initial time to zero. T'(r,r’;z) - , _ o

igs the prgbability that a random walk beginning at time DT 4(r,r'ss =Dhp?) =Gy(r,rihp ') . (6)
¢ =0 from the point ' reaches the point r at time z. To The outward flux of probability at w due to a walk
ensure the correspondence with the constant-potential that began at the point r' is simply D8, T4 (w,r';t)dw,
problem, we use absorbing boundary conditions, with and the total probability that the walker is absorbed at
L4(r=w,r";t) =0 when r is a point w on the boundary. time ¢ is the integral of that flux around the boundary.
Laplace transforming with respect to time, we obtain Thus we define P(t,r') =D fdwd;, Talw,r’;t), the
first-passage-time probability for a random walker start-

s |- ing at r'.
=D |A,— = |Talr,ris)=6(r—r"), (5) Suppose that we consider random walkers released a

small distance a away from the surface, this length being

the ultraviolet cutoff of the theory. Let us consider a

so the electrostatic and random-walk propagators are re- | finite-difference approximation to one of the normal
derivatives in Eq. (3). We obtain the free energy

€0 1 , e ALY —
Fporn D =§;agr{)1+;fdw [fdw 00, Gow,w'+aiwrp ) —1]. 7
From the above, we conclude that the electrostatic free energy can be written in terms of the Laplace transform P(s)
of the first-passage-time probability P(¢) as

2 2
F(oAs ) = — lim 5¢—°—l-fdw[1 —Pls=DryEw+ai)]= — lim L sl —BG=mrsDI, (8)
a—0 87 a a—0 87 a

where S is the area of the surface &, and we have defined |
the averaged-return-time probability 7. In terms of ran- can be determined directly from the numerical results.
dom walks, the integral over & is the surface average of In general, the free energy of the system will be of the
the first-passage-time probability, i.e., a sum over all order of magnitude of the typical potential times a typi-
random walks released with uniform distribution near cal charge density integrated over the region of the elec-
the surface. trolyte in which the screening charge is concentrated. In

For a surface with a specified constant charge density the Debye-Hiickel approximation, the electrolyte charge
oo, the potential will satisfy 9j(,)¢(w) =4roo/e, and the density g = — (e¢/4m03).
associated Green’s function G, has a vanishing normal Suppose that we have a conducting surface in d di-
derivative at the surface. The free energy can then be mensions, which is also self-similar. We expect that the
written in terms of G, as potential will be screened within a distance Ap of the sur-

o2 face. The total electrolyte volume within this distance is

F(oorn ‘)=_o‘f de dw'G,(ww'rp ). (9) Vp)~rE(L/Ap)P¥, where Dy is the Minkowski di-
8re ;

mension of the surface (usually the same as the Haus-

For this problem, we use the diffusive Green’s func- dorff dimension) and L is the macroscopic scale of the
tion g, with reflecting boundary conditions at the surface.!! The characteristic value of the potential in
boundary &, so that at a boundary point w we have this volume will be ¢, the surface potential. The charac-
0;wmR(w,r';t) =0. We then define the probability per teristic value of the charge density will be g~ go/A3.
unit time Q(z,r')=(D/a) fdwTg(w,r';t) that the ran- Thus we expect that
dom walker will strike the surface at time ¢. The UV 2 d—2 Dy
cutoff factor @ must appear for dimensional reasons.'” F~o6rp™ (L/Ap) ™. an
Following similar arguments to the above, we obtain that For a charged surface with total surface charge Q, we
the free energy ¥ is given in terms of the Laplace trans- have g~Q/V(Ap), and ¢ ~QAr3/V(Lp). Thus
form Q(S)OfQ(l) by . 57~Q27~12)_d(7~D/L)DMv (12)

_ oga ~ -
Floorn ") =,,leo —gf?;fde(s =Dhp %) Suppose that the domain D is closed. Then in the lim-
) it where Ap is larger than the scale of the domain, we
=lim 225G (s) . (10) can solve for the leading behavior of the free energy,
a—0 8re finding results that are natural extensions of Egs. (11)

Note that in both Egs. (8) and (10) it is necessary to and (12). Suppose the surface is conducting, at potential
make a somewhat arbitrary choice of the UV cutoff. #o. Then we can write ¢(r) =¢o+¢,(r), where ¢;— 0 as
Fortunately, the free energy can be determined exactly Ap— oo. To lowest order in A5 ', we can write F

in the large-Ap limit. Thus the appropriate UV cutoff « [dw ¢00;(,)91. Using Ag; =Ap 290+ O0(p *), we ob-
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tain directly ¥ o« —¢dAp 2V p, where Vg is the domain
volume, in agreement with the arguments leading to Eq.
(11). For the case of constant charge Q, similar argu-
ments yield :?ocQZMZ,/VZ,, which is consistent with Eq.
(12).

We can use these results to test a numerical algorithm
based upon random walks. It is computationally in-
efficient to employ random walks of a fixed step size
(say, equal to the cutoff length a); this would require
enormous numbers of individual steps to span a domain
of sufficient size to reveal the various scaling regimes.
Random-walk computations are greatly accelerated by
the use of variable-step-length walks in which the length
of each step is chosen to be as large as possible while
remaining less than the minimum distance to the nearest
point on the surface. '?

Given a sequence of such steps, exact information has
been lost regarding the true elapsed time ¢ of the total
trajectory. However, if we view each step of length / of
the trajectory as a random walk to the edge of a region
of radius /, then the probability distribution P(z) for the
total elapsed time of a sequence of steps can be written
in terms of the quantity Po(z;/), the first-passage-time
probability for a walk from the center of a region of ra-
dius / to the edge. If the walk begins at point ro, and
passes through the N intermediate points ry,...,ry,
then P(t) is a convolution over the unknown intermedi-
ate times ¢4, . . . ,zy at which it arrived at those points:

t Iy 15}
P(t;{r,-})=j; dtNJ:) dtN—l“'j:) dt\Po(t —tniln)

xPo(tN—tN—|;l1v—1)“'Po(tn;ll), (13)

where I, =|r, —r,—1| is the step length of the associated
walk.

Although Eq. (13) appears computationally difficult,
fortunately, we need only the Laplace transform of this
convolution, which satisfies P(s;{l;}) =TTI/=, Po(s:l;). At
this point, the particular temporal order of the individual
steps of the walk is irrelevant, so we may group_togeth-
er all steps of a given length to obtain P(s;{/})
=I1; [Po(s;ja)]™, where we assume that the step
lengths are integral multiples of the cutoff @ and n; is the
total number of steps of length ja. Thus, we need only

J

t t !
(Q(t)=7"°’(z)+j:) dt'?(l)(t_t')?’(w(t')+j; dz’_I;' dt"PPG¢—tPOG —t"MPOC)+ - .

Here, ™ (1) is the probability that the walk occurring
between bounce numbers n and n+1 took time ¢. La-
place transformation yields a simple continued product,
each of whose terms can be computed using the methods
for calculating 2 (s).

Figure 1 illustrates the numerical results obtained for
the Laplace transform of the average-first-passage-time
probability 7 for random walks inside two two-
dimensional domains of scale L: a Koch curve (a) with
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FIG. 1. Laplace-transformed first-passage-time probability
1 —% for two fractal domains, as a function of the Laplace
transform variable s. In the weak-screening (W) regime
(L <Ap, where L is the domain scale) we find 1 — P o s¥ with
v=1; in the intermediate-screening (I) regime (@ <<¥Ap <L,
where a is the UV cutoff) we find w=Dy/2, where Dy is the
Minkowski dimension of the surface.

know the quantities Po(s;ja) for the walk to the edge of
the region of radius ja. These may be calculated by a
simple eigenfunction expansion; in two dimensions the
result is Po(s;l) =1/1,(IN/s/D), with I, a Bessel func-
tion.

From a particular random walk, one obtains the se-
quence {/;}. Note that from a set of such walks, one can
calculate the free energy for any value of Ap. This is the
great advantage of this method over conventional relaxa-
tion techniques for partial differential equations, in
which the entire computation must be performed sepa-
rately for every value of Ap.!3 In the results discussed
below, we typically used 10° random walks for systems
with L/a ~103, which we found to give excellent numeri-
cal results.

To calculate the return-time distribution, we realize
that the probability @(¢) that a walker strikes the sur-
face at time ¢t may be resolved into contributions from
walks with differing numbers of bounces off of the sur-
face,

(14)

Dp;=In(4)/In(3) = 1.26, and a second fractal domain
(b) with Dy =2. There are three regimes— weak
screening, intermediate screening, and cutoff dom-
inated—the first two displaying power-law behavior
1 —P s, Equation (11) implies that in the inter-
mediate-screening case (a <KAp <L), w=Dy/2, while
the exact result for the weak-screening limit (L <Ap)
implies y=1. These predictions are in excellent agree-
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ment with the numerical results. For the Koch cure we
find y=0.621+0.02 for intermediate screening, and
v =0.99 +0.02 for weak screening. For the second frac-
tal domain we find y=0.74 £0.02 for intermediate
screening, and y=1.00 £ 0.02 for weak screening. For
Ap Sa, the random-walk method breaks down.

We obtain comparable numerical results for the La-
place transform of the return-time probability @ for the
same two domains.'® In this case, we expect Q(s) s,
with y=—Dy/2 for intermediate screening, and w
= —1 for weak screening. These predictions are also in
good agreement with the numerical results.

Of course, the shape of interesting surfaces will not al-
ways be well modeled by fractal geometry. Thus the
scaling laws derived above will not always be relevant.
Nevertheless, the numerical method can be used to
determine the free energy of any surface, given a reliable
model for its geometry.

Furthermore, the free energy of a conducting or
charged surface defines its effective capacitance. The
scaling laws Eqs. (11) and (12) imply that the static ca-
pacitance of a fractally rough electrode varies as a power
law with the ionic concentration ¢ of the electrolyte.
Fractally rough electrodes can be generated by electro-
deposition; their capacitance will offer a test of this
theory.'* In the more general case, the numerical
method can still determine the dependence of the capaci-
tance upon ¢. The ability to tune the screening length
over wide ranges by varying ¢ suggests the capacitance
measurement as a useful probe of rough surfaces.
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