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Collective chemotactic dynamics in the presence of self-generated fluid flows
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In microswimmer suspensions locomotion necessarily generates fluid motion, and it is known that such
flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of
how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis
to the flows of collective swimming shows separate branches of chemotactic and hydrodynamic instabilities
for isotropic suspensions, the first driving aggregation, the second producing increased orientational order
in suspensions of “pushers” and maximal disorder in suspensions of “pullers.” Nonlinear simulations show
that hydrodynamic interactions can limit and modify chemotactically driven aggregation dynamics. In puller
suspensions the dynamics form aggregates that are mutually repelling due to the nontrivial flows. In pusher
suspensions chemotactic aggregation can lead to destabilizing flows that fragment the regions of aggregation.
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A growing body of experimental work has established that
suspensions of motile microorganisms can develop complex
large-scale patterns of collective swimming at sufficiently
high concentration [1,2]. This behavior generally occurs in
the absence of directional cues for swimming, purely as a
consequence of steric and hydrodynamic interactions between
the cells. Yet, there are many circumstances in which cells
exhibit chemotaxis, directed motion in response to chemical
gradients, and this process by itself can lead to complex
spatiotemporal pattern formation [3]. As swimmer-generated
flows may also advect any chemoattractant field, it is natural
then to ask how self-generated fluid flows in suspensions
of microorganisms affect modes of communication [4] and
aggregation. Here we present an analysis of this issue and
suggest potential realizations of this pattern-forming system.

Chemotactic focusing of cell concentration has been studied
using the classical Keller-Segel (KS) model [5] and in
theories incorporating the run-and-tumble (RT) [6] dynamics
of bacterial motion [7,8]. We extend a well-known kinetic
model for modulated RT dynamics to include flows produced
by the active stresses due to swimming. A simpler version of
our model is considered in Ref. [7] to study swimmer transport
and rotation in a given background shear flow. Without RT
dynamics, our model reduces to one for active suspensions [9]
which captures the large-scale flows seen in experiments [1,10]
and illuminates the effect of propulsion mechanism (pusher
versus puller) on large-scale dynamics and stability. When
swimmers produce a chemoattractant leading to aggregation,
the self-generated flows can have a large effect; pushers create
complex flows that can bound growth in organism density,
while pullers show limited pattern coarsening and isolated
aggregates repelling due to nontrivial flows. Merging the RT
and active suspension models is seamless as both are kinetic
theories with conformation variables the particle position and
orientation [11].

Consider a suspension of swimmers at local concentration
�(x,t), each of which moves at a constant speed U in a run-
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and-tumble dynamics. They move in a fluid of local velocity
u(x,t) and produce a chemoattractant of concentration C(x,t)
and molecular diffusivity DC . We choose rescalings based on
the swimmer contribution to the fluid stress tensor (below),
with a characteristic length � = l/φ, where l is the swimmer
size and φ ≡ l3〈�〉 is the effective mean volume fraction in
suspension. Scaling time by �/U , C evolves as

Ct + u · ∇C = Pe−1∇2C − β1C + β2�, (1)

where β1 and β2 are rate constants for chemoattractant
self-degradation and production, and the Péclet number Pe =
U�/DC measures the strength of diffusion to advection on the
intrinsic scale �. Collective swimming may generate coherence
on larger scales with higher speeds, increasing the importance
of advection. Without advection this is the KS model [5]. In the
case of E. coli [12] gives U ∼ 25 μm/s, l ∼ 5 μm, φ ∼ 0.1
at a cell concentration of 109 cm−3, so � ∼ 50 μm. With
DC ∼ 5 × 10−6 cm2/s we obtain Pe � 2.5, β1 � 0.008, and
β2 � 0.004. For faster-swimming organisms, such as marine
bacteria [13], this intrinsic Péclet number can reach O(10–20).

The configuration of swimmers is given by a distribution
function �(x,p,t) of the center of mass position x and
orientation p satisfying the Fokker-Planck equation

�t = −
[
λ(DtC)� − 1

4π

∫
dp′λ(DtC)�(x,p′,t)

]
−∇x · (�ẋ) − ∇p · (�ṗ), (2)

where the local swimmer concentration is �(x,t) =∫
dp�(x,p,t). The bracketed term in (2) describes the effect

of RT chemotaxis based on a swimming dynamics of straight
runs and modulated reorientations (tumbles) where λ(DtC) is a
tumbling frequency, the probability of a bacterial tumble event
as a function of the chemoattractant temporal gradient DtC =
Ct + (p + u) · ∇C along a swimmer’s path. Experiments [14]
show that when DtC > 0 the tumbling frequency is reduced,
and is otherwise constant, as captured by the biphasic form
λ(DtC) = λ0 max[min(1 − χDtC,1),0], a linearized version
of an earlier model [8,12]. The fluxes in Eq. (2) are

ẋ = p + u, ṗ = (I − pp)(γ E + W)p. (3)
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The particle velocity ẋ includes swimming at constant speed
(nondimensionalized to unity) in the axis direction p (|p| = 1),
translation by the fluid velocity u. (In the KS model [5],
swimmer speed is linear in the chemical gradient.) The
angular velocity ṗ follows Jeffrey’s equation [15] where
E = (∇xu + ∇xuT )/2 is the rate-of-strain tensor, and W =
(∇xu − ∇xuT )/2 is the vorticity tensor. For rodlike swimmers,
the shape factor is γ ∼ 1.

The fluid velocity u(x,t) produced by the suspension
satisfies the Stokes equations driven by an “active” stress �a

arising from particle locomotion:

−∇2
x u + ∇xq = ∇x · �a, ∇x · u = 0, (4)

�a(x,t) = α

∫
dp�(x,p,t)pp. (5)

The active stress is an orientational average of the force dipoles
αpp the cells exert on the fluid [9], where α is an O(1) constant
by our rescaling. A cell that self-propels by front actuation (a
puller) has stresslet strength α > 0, and a rear-actuated cell
(pusher) has α < 0. The case of “neutral” cells (α = u = 0) is
the closest this model approaches the KS [5] and RT models
[8,12].

We first illustrate the effect hydrodynamics has on aggre-
gation. From nonlinear simulations of Eqs. (1)–(6), Fig. 1
shows the swimmer concentration �(x,t) and mean orientation
n = ∫

dp�/� at late times, having started near uniform
isotropy, for neutral, puller, and pusher suspensions. All
share a dominant self-aggregation instability, but differing
(or no) hydrodynamic interactions. Neutral swimmers show
aggregation and pattern coarsening. Pullers show limited
aggregation into circular spots kept apart by nontrivial fluid

flows. Pushers create complex fluid flows and fragmented
aggregation regions.

These behaviors can be understood through a stability anal-
ysis of uniform isotropic suspensions. For simplicity, consider
rodlike (γ = 1) swimmers and a quasistatic chemoattractant
field Pe−1∇2C − β1C = −β2�, which slaves C to �. The
tumbling frequency is simplified to λ(p) = λ0(1 − χp · ∇C).
A steady state is �0 = 1/4π (� = 1), u = 0, and C0 = β1/β2.
Perturbations of the form ε(�̃(p,k),C̃(k)) exp(ik · x + σ t)
yield

(σ + λ0 + ik · p)�̃ = λ0

4π

(
ikχβ2(k̂ · p)

β1 + k2Pe−1
+ 1

)
�̃

− 3α

4π
(k̂ · p)p · (I − k̂k̂)�̃pk, (6)

where �̃ = ∫
dp′�̃ ′ and k = kk̂. Since �̃p = ∫

dp′�̃ ′p′p′,
this is a linear eigenvalue problem for �̃ and σ . The first
term on the right-hand side (RHS) is chemotactic (C) and
has unstable dynamics restricted to the zeroth azimuthal mode
on |p| = 1. The second is hydrodynamic (H), with unstable
dynamics restricted to the first azimuthal mode. This yields
uncoupled relations for growth rates σC,H ,

2

λ0
= R

[
2 + aC log

(
aC − 1

aC + 1

)]
− 1

ik
log

(
aC − 1

aC + 1

)
,

4k

3iα
= 2a3

H − 4

3
aH + (

a4
H − a2

H

)
log

(
aH − 1

aH + 1

)
, (7)

where aC,H = (σC,H + λ0)/ik and R = χβ2/(β1 + k2/Pe).
We refer to these as the chemotactic and hydrodynamic
relations, respectively. The first induces growth in concen-
tration fluctuations, while the second increases orientational

FIG. 1. (Color online) Chemotactic suspensions at large times, t = 3000. Swimmer concentration � (top) and mean direction n (bottom)
for (i) chemotactic neutral swimmers (u = 0), and (ii) � (top), fluid streamlines and velocity field u (bottom) for chemotactic pullers. (iii), (iv)
� (top), streamlines and u (bottom) for chemotactic pushers. Parameters β1 = β2 = 0.25, Pe = 20, γ = 1, DT = DR = 0.025. Parameters λ0

and χ are indicated in Figs. 2(c) and 2(d) for cases (i)–(iii) and are λ0 = 5,χ = 0.6 for case (iv). See Supplemental Material [16] for movies
of swimmer concentration dynamics.
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FIG. 2. (Color online) Linear stability analysis. (a) Branches of the hydrodynamic instability, with and without tumbling, for pushers.
(b) Chemotactic branch for χ = 35, λ0 = 0.25, β1 = β2 = 1/4, and Pe = 20. Regimes diagram for (c) neutral swimmers and pullers, and
(d) pushers. Solid curves give linear stability boundaries for long waves. Dashed lines show shifted boundaries in nonlinear simulations at finite
box size. Encircled labels (i)–(iii) denote parameters used in simulations [Figs. 1(a)–1(c)].

order. The two are coupled only through the basal tumbling
rate λ0 which in the hydrodynamic relation only shifts the
growth rate. Further, the chemotactic instability gives rise
to normal stresses of the form �̃p = k̂k̂ − k̂⊥k̂⊥, while the
hydrodynamic instability gives shear stresses of the form
�̃p = k̂k̂⊥ + k̂⊥k̂.

For pushers (α < 0) the hydrodynamic instability has a
finite bandwidth [Fig. 2(a)], though with maximal growth
rates at k = 0. Tumbling shifts down the Re[σH (k)] branch
by λ0 for all k, further stabilizing the system. Long-wave
asymptotics of Eq. (7) give two solution branches: σH1 �
−α/5 − λ0 + 15/7αk2 and σH2 � −λ0 + O(−αk2). There
is no hydrodynamic instability for pullers [9]. Figure 2(b)
shows the chemotactic growth rate. Small k asymptotics yields
σC ≈ k2/(3λ0)[(χβ2/β1)λ0 − 1]: For (χβ2/β1) > 1/λ0 there
are wave numbers with Re[σC(k)] > 0, shown in one case as
a finite band of unstable modes whose width is controlled by
chemoattractant diffusion.

From Fig. 2(a), we can obtain a range for λ0 for which there
is a hydrodynamic instability in pusher suspensions. Heuristi-
cally, λ0 sets an effective rotational diffusivity, and λ0 � 0.2
turns off the hydrodynamic instability for any system size.
For L = 50 and the diffusion constants used in simulations,
λ0 � 0.09, suffices. This information is assembled in Figs. 2(c)
and 2(d) as phase diagrams that relate the parameters to various
dynamical regimes.

Numerical studies of the full nonlinear dynamics (1)–(5)
were done in two dimensions (2D), with a box size L =
50 large enough to include several unstable linear modes.
Swimmer translational and rotational diffusions are added in
the model to control the growth of steep gradients over long
times. An initial random perturbation of the uniform isotropic
state is used: �(x,p,0) = 1/2π + �iεi cos(ki · x + ξi)Qi(pi)
with random coefficients |εi | < 0.01, ξi an arbitrary phase,
and Qi a low-order polynomial. The initial chemoattractant
concentration is uniform with C(x,0) = β1/β2 = 1. Figure 1
shows long-time swimmer concentration � for four illustrative
cases. In each case, concentration C closely tracks �. Cases
(i)–(iii) share the same chemotactic instability, but differ in
swimming actuation: α = 0,1,−1.

The expected regimes of these three cases are shown
in Figs. 2(c) and 2(d). For neutral swimmers, aggregation

dominates and the dynamics is typified by the formation of
a few regions of steadily increasing concentration that slowly
coarsen [Fig. 1(a)]. The maximum swimmer concentration
(Fig. 3) shows little sign of the rapid self-focussing associated
with finite-time chemotactic collapse [17] of the KS model,
which here may be due to the fixed swimming speed [18].
While the initial aggregation for pullers [Fig. 1(b)] is similar
to that for neutral swimmers (Fig. 3), its long-time behavior is
very different. Concentration growth and coarsening cease as
the dynamics enters a near steady state with circular regions of
high concentration. Active-stress-driven flows suppress further
coarsening by pushing nearby peaks apart and apparently
maintain the few remaining high concentration regions.

For pushers [Fig. 1(c)], linear theory gives only a chemotac-
tic instability, and the dynamics is indeed initially dominated
by aggregation as is evidenced by the early rapid growth of
normal stresses relative to shear stresses (not shown). However,
aggregation into a regions with high swimmer concentration
creates a destabilizing active stress, giving rise to unsteady
fluid flows. These flows fragment the peaks while pushing
them around the domain. The dynamics is one of constant
aggregation and flow instability, which apparently suppresses
further growth in swimmer concentration (Fig. 3).

Lastly, we examine in Fig. 1(iv) the dynamics that arises
with parameters close to those measured by Saragosti et al.
[12] (before our rescaling) in their experiments of E. coli
chemotaxis. These parameters lie far to the right of the
aggregation regime of Fig. 2(d) as λ0 is 20 times higher

FIG. 3. (Color online) Measures of growth: Maximum swimmer
concentration for cases (i)–(iii) in Fig. 1.
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than at the predicted threshold for suppressing hydrody-
namic instabilities. Not surprisingly, the simulations show
chemotactic aggregation into very high peaks. Once the swim-
mer concentration in those peaks is large enough, the active
stresses give rise to small-scale and localized fluid flows [cf.
Fig. 1(iii)]. These local flows do appear to be implicated in the
slow “wriggling” we observe of the saturated aggregates (see
Supplemental Material [16]). The experiments of Saragosti
et al. [12], which are performed in confined microchannels
and capillaries, show instead the development of traveling
concentration waves of chemotactic bacteria. These traveling
waves were initiated in the experiments through an initial
concentration by centrifugation of the swimmer population
to one end of the channel. We do not observe the spontaneous
formation of such traveling waves here though ours is an
open system (though confined geometrically by the assumed
periodicity length) and the initial swimmer state is unoriented
and nearly homogeneous. The combined effects of a confining
geometry and the initial concentration of swimmers has yet to
be examined in our theoretical system.

We have shown that the intrinsically generated fluid
flows arising from collective swimming of microorganisms
can modify patterns of chemotactic aggregation and, most
importantly, can limit aggregate concentration. This is un-
like chemotactic models that predict concentration blowup
or include artificial terms to cap growth. While we have

emphasized hydrodynamic effects in attractive chemotactic
dynamics, it is important to remember that ours is a dilute
to semidilute theory that does not capture near interactions
between swimmers, hydrodynamic or otherwise. In denser
suspensions swimmer size limits local swimmer density
through steric interactions though well-founded models that
combine these with hydrodynamic interactions have not yet
been developed. Nonetheless, we expect similar results when
large-scale coherence is driven by steric effects [10,19]. On
that note, steric effects with no hydrodynamics may also limit
aggregation of chemotactic random walkers [20].

Finally, these autochemotactic effects can be seen as
complementary to the enhanced mixing by swimmers [11]
that has also been explored for microfluidic applications
[21]. Systematic studies of the interplay between chemotaxis
and locomotion-generated fluid flow should be possible
through controlled introduction of exogeneous chemoattrac-
tants to trigger aggregation, through the interplay of quo-
rum sensing and chemotaxis [22], and perhaps by specific
genetic engineering of the dynamics of locomotion and
chemosensing [23].
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