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Deformations of cell sheets during morphogenesis are driven by developmental processes such as cell division
and cell shape changes. In morphoelastic shell theories of development, these processes appear as variations of
the intrinsic geometry of a thin elastic shell. However, morphogenesis often involves large bending deformations
that are outside the formal range of validity of these shell theories. Here, by asymptotic expansion of three-
dimensional incompressible morphoelasticity in the limit of a thin shell, we derive a shell theory for large
intrinsic bending deformations and emphasise the resulting geometric material anisotropy and the elastic role
of cell constriction. Taking the invagination of the green alga Volvox as a model developmental event, we show
how results for this theory differ from those for a classical shell theory that is not formally valid for these large
bending deformations and reveal how these geometric effects stabilise invagination.

I. INTRODUCTION

During animal and plant development, cell division, cell
shape changes, and related processes can drive deformations
of cell sheets [1–6]. In elastic continuum theories of the de-
velopment of the green alga Volvox [7–10], of tissue folding in
Drosophila [11, 12], or of more abstract active surfaces [13],
these driving processes appear as changes of the reference or
intrinsic geometry of thin elastic shells.

Just as classical thin shell theories arise from an asymp-
totic expansion of bulk elasticity in the small thickness of
the shell [14–16], these “morphoelastic” shell theories should
be asymptotic limits of a bulk theory. While there is now a
well-established framework of three-dimensional morphoelas-
ticity [17, 18], based on a multiplicative decomposition of the
deformation gradient tensor into intrinsic and elastic deforma-
tions [19], studies of this asymptotic limit appear to have been
restricted to the case of flat morphoelastic plates. Extensions
of the classical Föppl–von Kármán equations [20, 21] have
been derived for this case, but we are not aware of any corre-
sponding study for curved morphoelastic shells. Rather, such
studies have remained more phenomenological: some mod-
els [7, 8, 11–13] simply replaced the elastic strains in classical
shell theories [15, 22, 23] with measures of the difference of
the intrinsic and deformed geometries. Other studies [9, 10]
took a more geometric approach, mirroring geometric deriva-
tions of classical shell theories [22] based on the so-called
Kirchhoff “hypothesis”. This is the asymptotic result [15] that
the normals of the midsurface of the undeformed shell remain,
at leading order, normal to the deformed midsurface.

There is however one more serious limitation of these mod-
els: tissues in development undergo large bending deforma-
tions (Fig. 1) that are outside the formal range of validity of the
underlying thin shell theories, which assume that the thickness
of the shell is much smaller than all lengthscales of the midsur-
face of the shell [15, 22, 23]. However, even if the thickness
of the cell sheet is much smaller than its undeformed radius of
curvature, this radius of curvature may become comparable,
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locally, to the thickness of the cell sheet as it deforms (Fig. 1).
This is associated with cells contracting at one cell pole to
splay and thereby bend the cell sheet [4].
Here, we derive a theory of thin incompressible morphoe-

lastic shells undergoing large bending deformations by asymp-
totic expansion of three-dimensional elasticity. We reveal how,
even in a constitutively isotropic material, this new scaling
limit of large bending deformations induces, in the thin shell
limit, a geometric anisotropy absent from classical shell the-
ories: different deformation directions exhibit different de-
formation responses. We stress how this geometric effect is
associated with the geometric singularity of cell constriction,
i.e. the limit of wedged triangular cells [Fig. 1(b), inset] as-
sociated with these large bending deformations. Specialising
to the invagination of the green alga Volvox [25, 26], we then

(a)

(b)

FIG. 1. Large bending deformations during morphogenesis: even if
the thickness of the cell sheet is small compared to the undeformed
radius of curvature, the local radius of curvature need not remain small
compared to the cell sheet thickness as the sheet deforms. (a) Cross
section of ventral furrow formation in Drosophila, reproduced from
Ref. [24]. (b)Midsagittal cross section of invagination in the spherical
alga Volvox globator, reproduced from Ref. [8]. Inset: cartoon of
constricted triangular cells in the bend region. Scale bars: 20 µm.
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show how results for this theory differ from those for a classi-
cal theory that is not formally valid in this large bending limit,
and reveal how invagination is stabilised by the geometry of
large bending deformations.

II. ELASTIC MODEL

In this section, we describe large bending deformations of a
thin incompressible morphoelastic shell, starting from three-
dimensional morphoelasticity. We shall have to distinguish
between three configurations of the shell [Fig. 2(a)]: (i) the
undeformed configuration of the shell, (ii) the deformed con-
figuration of the shell, and (iii) the intrinsic configuration of
the shell that encodes the local, intrinsic deformations of the
shell, i.e. the cell shape changes or cell division in the biolog-
ical system. These intrinsic deformations are not in general
compatible with the global geometry of the shell. Elasticity
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FIG. 2. Morphoelasticity of an axisymmetric shell. (a) The unde-
formed (top), deformed (left), and intrinsic (right) configurations of
the shell are related by the three tensors F̃, F0, and F = F̃

(
F0)−1.

(b) Undeformed geometry of an axisymmetric shell of thickness Yℎ,
described by coordinates A (B), I(B), where B is arclength, with respect
to the basis {ur , u5 , uz } of cylindrical polars. (c) Cross section of
the undeformed shell, defining a local basis B = {es , e5 , n} and the
transverse coordinate Z . (d) Deformed geometry of the shell: after
a torsionless deformation, the shell has thickness Yℎ̃, arclength B̃,
and is described by coordinates Ã (B), Ĩ(B) with respect to cylindrical
polars. (e) Cross section of the deformed shell, defining a local basis
B̃ = {ẽs , ẽ5 , ñ}. Normals to the midsurface rotate so that a point
at a distance YZ from the undeformed midsurface � is at a distance
YZ̃ (B, Z) from the deformedmidsurface �̃, and displaced by a distance
Yẽ (B, Z) parallel to �̃.

must therefore intervene to “glue” the intrinsically deformed
patches of cell sheet back together, as illustrated in Fig. 2(a).
Configurations (i) and (ii) are related by the geometric defor-
mation gradient F̃. This tensor decomposes multiplicatively
into an intrinsic contribution F0 that relates configurations (i)
and (iii), and an elastic contribution F = F̃

(
F0)−1. This is the

multiplicative decomposition of morphoelasticity [17, 18].
In this section, we restrict to torsionless deformations of

an axisymmetric shell. The analysis can be extended to more
general deformations of the shell, and, for the sake of complete-
ness, we do so in Appendix A, but the restriction to axisym-
metric deformations eschews themire of tensorial notation that
arises in the general case.
The derivation of the shell theory for large bending deforma-

tions divides, like derivations of classical shell theories, into
two steps: first, in subsection II A, we describe the kinematics
of the deformations and derive expressions for the geomet-
ric, intrinsic, and elastic deformations gradients. Second, in
subsection II B, we analyse the mechanics of the shell and
expand the three-dimensional elastic energy and equilibrium
conditions asymptotically. At the end of this section, in subsec-
tion II C, we discuss the limit of small bending deformations
that gives rise to classical shell theories.

A. Axisymmetric deformations of an elastic shell

We consider an elastic shell of undeformed thickness Yℎ,
where Y � 1 is a small asymptotic parameter expressing the
thinness of the shell compared to other lengthscales associated
with its midsurface. Large bending deformations will be in-
troduced by allowing one of the intrinsic radii of curvature of
the shell to be of order$ (Y). We now derive an expression for
the elastic deformation gradient F for torsionless deformations
of an axisymmetric shell.

1. Undeformed configuration of the shell

We shall describe the undeformed configuration � of the
shell with reference to a midsurface � that we shall choose
later. With respect to the basis {ur , u5 , uz} of cylindrical
coordinates, we define the position vector of a point on �,

1(B, q) = A (B)ur (q) + I(B)uz , (1)

with B denoting arclength and q being the azimuthal coordi-
nate [Fig. 2(b)]. The tangent angle k(B) of � is defined by

A ′(B) = cosk(B), I′(B) = sink(B), (2)

in which dashes denote differentiation with respect to B. The
vectors

es (B, q) = cosk(B)ur (q) + sink(B)uz , e5 (q) = u5 (q)
(3)

thus constitute a basis of the tangent space of � [Fig. 2(c)],
which we extend to an orthonormal basis B =

{
es , e5 , n

}
for

� by adjoining the normal to �,

n(B, q) = cosk(B)uz − sink(B)ur (q). (4)
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We complete the description of� by computing its curvatures,

pB (B) = k ′(B), pq (B) =
sink(B)
A (B) . (5)

Now, the position of a point in � is

r (B, q, Z) = 1(B, q) + YZn(B, q), (6)

where we have introduced the transverse coordinate Z

[Fig. 2(c)]. Noting the partial derivatives mn/mB = pBes and
mn/mq = pqe5 , we obtain

mr

mB
= (1 − YpBZ)es ,

mr

mq
= A (1 − YpqZ)e5 . (7)

2. Deformed configuration of the shell

As the shell deforms into its deformed configuration �̃, the
midsurface � maps to the deformed midsurface �̃ [Fig. 2(d)],
with position vector

1̃(B, q) = Ã (B)ur (q) + Ĩ(B)uz , (8)

where, in particular, B is again the undeformed arclength. De-
noting by B̃ the deformed arclength, we define the stretches

5B (B) =
dB̃
dB
, 5q (B) =

Ã (B)
A (B) , (9)

which enable us to define the tangent angle k̃(B) of �̃ by

Ã ′(B) = 5B cos k̃(B), Ĩ′(B) = 5B sin k̃(B), (10)

where dashes still denote differentiationwith respect to B. Sim-
ilarly to the analysis of the undeformed configuration, we in-
troduce the tangent vectors

ẽs (B, q) = cos k̃(B)ur (q) + sin k̃(B)uz , ẽ5 (q) = u5 (q),
(11)

and the normal vector

ñ(B, q) = cos k̃(B)uz − sin k̃(B)ur (q) (12)

to define an orthonormal basis B̃ =
{
ẽs , ẽ5 , ñ

}
to describe

�̃ [Fig. 2(e)]. The curvatures of the deformed shell are

^B (B) =
k̃ ′(B)
5B (B)

, ^q (B) =
sin k̃(B)
Ã (B) . (13)

As the shell deforms, the normals to� need not remain normal
to �̃, and so a point in � at a distance YZ from � will end
up, in �̃, at a distance YZ̃ from �̃, and displaced by a distance
Yẽ parallel to �̃ [Fig. 2(e)]. By definition of the midsurface,
Z̃ = ẽ = 0 if Z = 0. The position of a point in �̃ is thus

r̃ (B, q, Z) = 1̃(B, q) + YZ̃ (B, Z) ñ(B, q) + Yẽ (B, Z) ẽs (B, q).
(14)

Finally, using commata to denote partial differentiation, we
note the partial derivatives

m r̃

mB
=

[
5B

(
1 − Y^B Z̃

)
+ Yẽ,B

]
ẽs + Y

(
Z̃,B + 5B^B ẽ

)
ñ, (15a)

and

m r̃

mq
=

[
Ã
(
1 − Y^q Z̃

)
+ Yẽ cos k̃

]
ẽ5 , Y

−1 m r̃

mZ
= Z̃,Z ñ + ẽ,Z ẽs .

(15b)

3. Calculation of the deformation gradient tensors

Combining Eqs. (7) and (15), we obtain an expression for the
geometric deformation gradient tensor and hence write down
an expression for the intrinsic deformation gradient tensor, viz.

F̃ = ∇r r̃ =

©«

5B
(
1 − Y^B Z̃

)
+ Yẽ,B

1 − YpBZ
0 ẽ,Z

0
5q

(
1 − Y^q Z̃

)
+ Yẽ cos k̃/A

1 − YpqZ
0

Y
(
Z̃,B + 5B^B ẽ,B

)
1 − YpBZ

0 Z̃,Z

ª®®®®®®®®¬
, F0 =

©«

5 0
B

(
1 − Y^0

BZ
0)

1 − YpBZ
0 0

0
5 0
q

(
1 − Y^0

q
Z0)

1 − YpqZ
0

YZ0
,B

1 − YpBZ
0 Z0

,Z

ª®®®®®®®®¬
,

(16)

In the expression for F0, we have introduced the intrinsic stretches 5 0
B , 5

0
q
, the intrinsic curvatures ^0

B , ^
0
q
, and the intrinsic

displacement Z0 from the intrinsic midsurface �0 of the intrinsic configuration�0 of the shell. In writing down this expression
for F0, we have assumed that there is no intrinsic displacement parallel to the midsurface, e0 = 0. In Eq. (16), F̃ is expressed with
respect to the mixed basis B̃ ⊗ B, while F0 is expressed with respect to another mixed basis, B0 ⊗ B, where B0 = {Ks , K5 , T} is
a (local) orthonormal basis for the intrinsically deformed configuration of the shell. The elastic deformation gradient is thus
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F = F̃
(
F0)−1

=

©«

5B
(
1 − Y^B Z̃

)
+ Y

(
ẽ,B + ẽ,Z 0 Z0

,B

)
5 0
B

(
1 − Y^0

BZ
0) 0 ẽ,Z 0

0
5q

(
1 − Y^q Z̃

)
+ Yẽ cos k̃/A
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q

(
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q
Z0) 0

Y
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,B Z̃,Z 0
)

5 0
B

(
1 − Y^0

BZ
0) 0 Z̃,Z 0

ª®®®®®®®®®¬
, (17)

expressed here with respect to the natural mixed basis B̃ ⊗ B0.
Since B̃ and B0 are orthonormal, there exists a rotation, rep-
resented by an orthogonal matrix R, that maps B̃ onto B0.
With respect to B0 ⊗ B0, the elastic deformation gradient ten-
sor is then represented by the matrix RF. This rotation can,
as explained below, be in fact ignored in the calculations that
follow. This simplification is not however possible for general
deformations, as discussed in Appendix A.

B. Thin shell theory for large bending deformations

In this subsection, we derive the effective elastic energy
for the shell by asymptotic expansion of three-dimensional
elasticity. We assume the simplest constitutive law, that the
shell is made of an incompressible neo-Hookeanmaterial [17],
so that its elastic energy is

E =
∫
�0
4 d+0, with 4 =

�

2
(ℐ1 − 3), (18)

wherein � is a material parameter, andℐ1 is the first invariant
of the right Cauchy–Green tensor C = F>F [17]. We empha-
sise that the integration of the strain energy density 4 is over
the intrinsic configuration �

0 of the shell, which has volume
element d+0. The (first) Piola–Kirchhoff stress tensor for this
neo–Hookean material [21] is, with respect to B0 ⊗ B0,

P = �
[
(RF) − ? (RF)−>

]
= �RQ, (19)

with Q = F − ?F−>, and where the Lagrange multiplier ?
is proportional to pressure and imposes the incompressibility
condition det F = 1. The second equality follows, since R is
orthogonal, from (RF)−> = (F>R>)−1

=
(
F>R−1)−1

= RF−>.
The configuration of the shell minimising the energy E in

Eq. (18) is determined by Div0 P = 0 [17], where the diver-
gence is taken with respect to �

0. Separating into compo-
nents parallel and perpendicular to the midsurface and using
Eq. (19),

(QT),Z 0 + YR>∇0 · (RQJ) = 0, (20)

since R is independent of Z0 and orthogonal, where the nabla
operator denotes the gradient on�0, and where J = I− T ⊗ T
denotes projection onto the intrinsic midsurface, normal to T.

1. Scaling assumptions

We now introduce large intrinsic bending deformations ex-
plicitly by scaling the intrinsic curvatures so as to allow small

radii of curvature in the meridional direction, viz.

^0
B = 5 0

B 5
0
q

_0
B

Y
, ^0

q = 5 0
B 5

0
q _

0
q , (21)

wherein the rescaling by the prefactor 5 0
B 5

0
q
absorbs, as do sim-

ilar rescalings below, the intrinsic stretching of the midsurface.
This scaling regime in which the meridional intrinsic curva-
ture becomes comparable to the thickness of the cell sheet is
the one relevant for Volvox invagination, as shown in Fig. 1(b).
Appendix A treats the general case in which all components
of the curvature tensor are allowed to be large.
Next, we make the standard scaling assumption of shell

theory, that the elastic strains are small, i.e. that the stretches
and curvatures in the deformed configuration do not differ
“too much” from the intrinsic stretches and curvatures. More
formally, we introduce the shell strains �B , �q by writing

5B = 5 0
B

(
1 + Y�B

)
, 5q = 5 0

q

(
1 + Y�q

)
, (22)

and the curvature strains !B , !q by letting

^B = 5 0
B 5

0
q

(
_0
B

Y
+ !B

)
, ^q = 5 0

B 5
0
q

(
_0
q + !q

)
. (23)

Finally, we introduce the scaled variables

/0 = 5 0
B 5

0
q Z

0, / = 5 0
B 5

0
q Z̃ , ( = 5 0

B 5
0
q ẽ . (24)

2. Boundary and incompressibility conditions

We now impose the incompressibility condition det F = 1
and the boundary conditions, which require that there be no
external forces on the surfaces of the shell. These boundary
conditions are relevant for many problems in developmental
biology, where deformations are, as discussed in the intro-
duction, driven by changes of the intrinsic geometry only; in-
cluding external forces does not pose any additional difficulty,
though.
These force-free boundary conditions read P±T± = 0 [17],

where, from Eq. (19), P± = �RQ± are the Piola–Kirchhoff
stress tensors evaluated on the shell surfaces of the intrinsic
configuration �

0, and T± are the unit outward normals to
these shell surfaces. Since the rotation R is an isometry, the
boundary conditions become Q±T± = 0.
To complete the derivation of the boundary conditions, we

must obtain expressions for the normals T± to the shell sur-
faces. At this stage, we complete specifying the midsurface by
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choosing�0 so that the shell surfaces are at Z0 = ±ℎ0/2. Sim-
ilarly to the calculations leading up to Eqs. (15), we compute
the unit tangent vectors to the shell surfaces in the intrinsic
configuration,

K±s ‖ 5 0
B

(
1 ∓ Y^0

Bℎ
0/2

)
Ks ±

(
Yℎ0
,B/2

)
T, K±5 = K5 , (25)

expressed here with respect to B0 =
{
Ks , K5 , T

}
. By defini-

tion, T± ‖ K±s × K±5 . Introducing a normalisation factor and
expanding while recalling that ^0

B = $
(
Y−1) , we obtain

T± = ±
T ∓ a±Ks√

1 + a2
±

with a± =
Yℎ0
,B/2

5 0
B

(
1 ∓ Y^0

Bℎ
0/2

) ,
= ±T −

Yℎ0
,B

5 0
B

(
2 ∓ 5 0

B 5
0
q
_0
Bℎ

0
) Ks +$

(
Y2) . (26)

3. Expansion of the boundary and incompressibility conditions

To expand the incompressibility and boundary conditions in
the small parameter Y, we now posit regular expansions

/ = /0 + / (0) + Y/ (1) +$
(
Y2) , ( = ( (0) +$ (Y), (27)

for the scaled transverse and parallel displacements. Through-
out this paper, we shall use subscripts in parentheses in this
way to denote the different terms in asymptotic expansions
in Y. We further expand

Q = Q(0) + YQ(1) +$
(
Y2) , ? = ? (0) +$ (Y). (28)

a. Solution at order $ (1). At leading order, Eq. (20)
yields (Q(0)T),Z 0 = 0, so Q(0)T = W(B) is independent of Z0.
It follows that 0 = Q±T± = ±Q±(0)T+$ (Y) = ±W+$ (Y) using
Eq. (26). Thus 0 ≡ W = Q(0)T =

(
CB(0) , 0, C=(0)

)
, where [27]

0 = CB(0) =
_0
B( (0)

[ (
( (0) ,/ 0

)2 − ? (0)
(
/ (0) ,/ 0

)2
]
− ( (0) ,/ 0

(
1 + / (0) ,/ 0

) [
1 − _0

B

(
/0 + / (0)

) ]
_0
B( (0)( (0) ,/ 0 −

(
1 + / (0) ,/ 0

) [
1 − _0

B

(
/0 + / (0)

) ] , (29a)

0 = C=(0) =
_0
B( (0)( (0) ,/ 0

(
1 + / (0) ,/ 0

) (
/0 + / (0)

)
−

[
1 − _0

B

(
/0 + / (0)

) ] [ (
1 + / (0) ,/ 0

)2 − ? (0)
]

_0
B( (0)( (0) ,/ 0 −

(
1 + / (0) ,/ 0

) [
1 − _0

B

(
/0 + / (0)

) ] . (29b)

Moreover, expanding the incompressibility condition, we find

1 = det F = 1 +
/ (0) ,/ 0 − _0

B

[
( (0)( (0) ,/ 0 + / (0) +

(
/0 + / (0)

)
/ (0) ,/ 0

]
1 − _0

B/
0

+$ (Y). (30)

Eqs. (29) and (30) define a system of three simultaneous linear
algebraic equations for ? (0) , / (0) ,/ 0 , and ( (0) ,/ 0 , with solution

? (0) =

(
1 − _0

B/
0)2[

1 − _0
B

(
/0 + / (0)

) ]2 +
(
_0
B( (0)

)2 , (31a)

/ (0) ,/ 0 =
_0
B

{
/ (0) − _0

B

[
(2
(0) + / (0)

(
/0 + / (0)

) ]}[
1 − _0

B

(
/0 + / (0)

) ]2 +
(
_0
B( (0)

)2 , (31b)

( (0) ,/ 0 = −
_0
B( (0)

(
1 − _0

B/
0)[

1 − _0
B

(
/0 + / (0)

) ]2 +
(
_0
B( (0)

)2 . (31c)

Eqs. (31b) and (31c) imply

− 2
(
1 + / (0) ,/ 0

) [
1 − _0

B

(
/0 + / (0)

) ]
+ 2_0

B( (0)( (0) ,/ 0

= −2
(
1 − _0

B/
0) . (32a)

Integrating using the fact that / (0) = ( (0) = 0 at /0 = 0 by
definition of the midsurface, we obtain[

1 − _0
B

(
/0 + / (0)

) ]2 +
(
_0
B( (0)

)2
=

(
1 − _0

B/
0)2
. (32b)

Eq. (31a) now becomes ? (0) = 1. Moreover, on substituting
Eq. (32b) into Eq. (31b),

m/ (0)

m/0 = −
_0
B/ (0)

1 − _0
B/

0
=⇒

/ (0)

1 − _0
B/

0
= const., (33)

which, using / (0) = 0 at /0 = 0 again, yields / (0) ≡ 0. Hence
( (0) ≡ 0 from Eq. (31c). The last equality is the Kirchhoff
“hypothesis” [15]: normals to the intrinsic midsurface remain,
at lowest order, normal to the deformed midsurface.
b. Solution at orders $ (Y) and $

(
Y2) . We now expand

the incompressibility condition further, finding

0 = det F − 1

= Y

(
�B + �q − !q/0 +

m/ (1)

m/0 −
!B/

0 + _0
B/ (1)

1 − _0
B/

0

)
+$

(
Y2) .
(34)

On solving the resulting differential equation for / (1) by im-
posing / (1) = 0 at /0 = 0, we obtain

/ (1) = −
/0

{
6(�B + �q) − 3/0 [

!B + !q + _0
B (�B + �q)

]
+ 2_0

B!q
(
/0)2

}
6
(
1 − _0

B/
0) . (35)
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Next, we formally expand the entries of the deformation gradient in Eq. (17) further by writing

F = ©«
1 + Y0 (1) + Y20 (2) +$

(
Y3) 0 YE (1) +$

(
Y2)

0 1 + Y1 (1) + Y21 (2) +$
(
Y3) 0

YF (1) +$
(
Y2) 0 1 + Y2 (1) + Y22 (2) +$

(
Y3) ª®¬ . (36)

In particular, we obtain

0 (1) =
6�B − 6

[
!B + _0

B

(
�B − �q

) ]
/0 + 3_0

B

[
!B − !q + _0

B

(
�B − �q

) ] (
/0)2 + 2

(
_0
B

)2
!q

(
/0)3

6
(
1 − _0

B/
0)2 , 1 (1) = �q − /0!q .

(37)

Expressions for 0 (2) , 1 (2) , 2 (1) , 2 (2) , E (1) , F (1) can be obtained in terms of the expansions (27), but will turn out to be of no
consequence. Hence the incompressibility condition becomes

1 = det F = 1 + Y
(
0 (1) + 1 (1) + 2 (1)

)
+ Y2 (

0 (2) + 1 (2) + 2 (2) + 0 (1)1 (1) + 1 (1)2 (1) + 2 (1)0 (1) − E (1)F (1)
)
+$

(
Y3) . (38)

Next, we notice that Q(0) = O from Eq. (36), and hence Eq. (20) at order $ (Y) is just (Q(1)T),Z 0 = 0. Moreover, since Q(0) = O
and using Eq. (26), 0 = Q±T = YQ±(1)T + $

(
Y2) , so, similarly to above, Q(1)T ≡ 0. Now, on direct computation of Q(1) from

Eq. (36), we find Q(1)T =
(
Y(E (1) + F (1) ), 0, $ (Y)

)
. From this and from Eq. (38), we infer

F (1) = −E (1) , 2 (1) = −
(
0 (1) + 1 (1)

)
, 2 (2) = 0

2
(1) + 0 (1)1 (1) + 1

2
(1) − 0 (2) − 1 (2) + E (1)F (1) . (39)

4. Asymptotic expansion of the constitutive relations

On computing the expansion of the eigenvalues of F from Eq. (36) and hence ofℐ1, and simplifying using Eqs. (39), we obtain

ℐ1 = 3 + Y
[
2
(
0 (1) + 1 (1) + 2 (1)

) ]
+ Y2 [

02
(1) + 12

(1) + 22
(1) + E2

(1) + F2
(1) + 2

(
0 (2) + 1 (2) + 2 (2)

) ]
+$

(
Y3)

= 3 + Y2 [4(
02
(1) + 0 (1)1 (1) + 12

(1)
) ]
+$

(
Y3) . (40a)

Hence, from Eqs. (37) and on introducing G = _0
B/

0 and LB = !B/_0
B , Lq = !q/_0

B ,

ℐ1 = 3 + Y2

(1 − G)4

{[
1 + (1 − G)2

]2
�2
B + 2

[
1 + (1 − G)2

]
�B�q +

(
4 − 12G + 18G2 − 12G3 + 3G4

)
�2
q

− 2G
(
4 − 6G + 4G2 − G3

)
�BLB − 2G(2 − G)�qLB −

2G
3

(
6 − 12G + 11G2 − 5G3 + G4

)
�BLq

− 2G
3

(
12 − 39G + 55G2 − 36G3 + 9G4

)
�qLq + G2 (2 − G)2L2

B +
2G2

3

(
6 − 9G + 5G2 − G3

)
LBLq

+ G
2

9

(
36 − 126G + 177G2 − 114G3 + 28G4

)
L2
q

}
+$

(
Y3) . (40b)

This determines the leading-order term of the asymptotic ex-
pansion of the energy density in Eq. (18). On defining, from
Eq. (36), the (symmetric) effective two-dimensional deforma-
tion gradient and associated two-dimensional strain tensor,

F̂ =
(

1 + Y0 (1) 0
0 1 + Y1 (1)

)
+$

(
Y2) , ê =

F̂>F̂ − I
2

, (41)

wherein I is the identity, we rewrite Eq. (40a) as

ℐ1 − 3 = 2
[ (

tr ê
)2 + tr

(
ê2) ] +$ (

Y3) . (42)

This shows how, at leading order, the energy density depends
only on the two invariants of the effective two-dimensional
strain tensor. In the asymptotic limit of a thin shell, the consti-
tutive relations have thus become effectively two-dimensional.

5. Intrinsic volume conservation

To complete the derivation of the shell energy, we must
specify the intrinsic deformations, and in particular how Z0

and hence /0 depend on Z . Volume conservation between the
undeformed and intrinsic configurations of the shell requires
equality of the corresponding volume elements, d+ = d+0,
which condition becomes

5 0
B 5

0
q

(
1 − Y^0

BZ
0) (1 − Y^0

qZ
0) A dB dq dZ0

=
(
1 − YpBZ

) (
1 − YpqZ

)
A dB dq dZ, (43)

This, on recalling that ^0
B = $

(
Y−1) yields, at leading order, a

differential equation for /0 (Z),(
1 − _0

B/
0
)
/0
,Z = 1 =⇒ /0 =

1
_0
B

(
1 −

√
1 − 2_0

BZ

)
, (44)
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on imposing /0 = 0 at Z = 0. The shell surfaces are at
Z0 = ±ℎ0/2 in the intrinsic configuration, and at Z = ±ℎ±
in the undeformed configuration, where ℎ+ + ℎ− = ℎ is the
undeformed thickness of the cell sheet. Let �0 = ℎ0 5 0

B 5
0
q
.

Eq. (44) yields

ℎ± =
�0

2

(
1 ∓

_0
B

4
�0

)
=⇒ ℎ = ℎ+ + ℎ− = �0. (45)

Finally, we introduce [ = _0
Bℎ, so that the shell surfaces are at

G = ±[/2. We note that Eq. (45) is a leading-order result only,
since we have ignored $ (Y) corrections in Eq. (44).

6. Derivation of the thin shell theory

We are now set up to average out the transverse coordinate
and thus obtain the thin shell theory. We note, from Eq. (43),

the expression for the volume element in the intrinsic config-
uration,

d+0 = Y
(
1 − _0

B/
0) A dB dq d/0 +$

(
Y2)

=
1 − G
_0
B

Y A dB dq dG +$
(
Y2) . (46)

On substituting Eqs. (40b) and (46) into Eq. (18), integrating
with respect to G, and using axisymmetry, we obtain

E =
∫
�

4̂ A dB dq = 2π
∫
�

4̂ A dB, (47a)

with the first integration over the undeformed axisymmetric
midsurface � and the second over the curve � generating �.
The effective two-dimensional energy density 4̂ in Eq. (47a) is

4̂ =
Y

_0
B

∫ [/2

−[/2
4(G) (1 − G) dG = �

2
Y3

{
ℎ
[
UBB�

2
B + (UBq + UqB)�B�q + Uqq�2

q

]
+ 2ℎ2 [

VBB�B!B + VBq�B!q + VqB�q!B

+ Vqq�q!q
]
+ ℎ3 [WBB!2

B + (WBq + WqB)!B!q + Wqq!2
q

]}
+$

(
Y4) , (47b)

wherein

UBB =
[4 − 8[2 + 32(

4 − [2)2 + 4
[

tanh−1
([
2

)
, (48a)

UBq = UqB =
16(

4 − [2)2 +
2
[

tanh−1
([
2

)
, (48b)

Uqq =
3[4 − 24[2 + 64(

4 − [2)2 , (48c)

VBB =
[3 − 8[(
4 − [2)2 , (48d)

VBq =
[6 + 16[4 − 176[2 + 192

36[
(
4 − [2)2 − 2

3[2 tanh−1
([
2

)
, (48e)

VqB = −
16

[
(
4 − [2)2 +

2
[2 tanh−1

([
2

)
, (48f)

Vqq =
3[5 − 20[3 + 16[

12
(
4 − [2)2 , (48g)

WBB =
[4 − 8[2 + 32
[2 (

4 − [2)2 −
4
[3 tanh−1

([
2

)
, (48h)

WBq = WqB =
[6 − 8[4 + 16[2 + 192

36[2 (
4 − [2)2 − 2

3[3 tanh−1
([
2

)
,

(48i)

Wqq =
5[4 − 42[2 + 96

18
(
4 − [2)2 (48j)

are functions of

[ = _0
Bℎ =

^0
B

5 0
B 5

0
q

(Yℎ) = ^0
B (Yℎ0) (49)

only. All of these coefficient functions diverge as [→ ±2; this
divergence, absent from theories not valid for large bending
deformations, is not surprising. Indeed, the limit [ → ±2
corresponds to constricted cells, i.e. wedge-shaped, triangu-
lar cells [Fig. 1(b), inset] for which the radius of curvature
is half the intrinsic cell sheet thickness: either the apical
or basal surface has become geometrically singular by con-
tracting to a point. As the intrinsic configuration approaches
this constricted limit somewhere, deviations from the intrinsic
configuration become more and more expensive energetically
there compared to other positions in the cell sheet. Fig. 3
makes a more general point by plotting the coefficient func-
tions in Eqs. (48), arbitrarily scaled with UBB to absorb their
divergence as [ → ±2. This shows how the relative impor-
tance of different deformation modes depends on the amount
of intrinsic bending. In other words, large bending deforma-
tions break the material isotropy, so that different directions of
stretching have different effective stretching moduli; similarly,
different effective bendingmoduli are associated with different
directions of bending. This anisotropy is therefore geometric;
as discussed in more detail below, this effect is absent from
previous theories not valid for large bending deformations.
Moreover, rearranging Eqs. (22) and (23), the shell strains

in Eq. (47b) are

Y�B =
5B − 5 0

B

5 0
B

, Y�q =
5q − 5 0

q

5 0
q

, (50)
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FIG. 3. Effective two-dimensional energy density. Plots of the coef-
ficients defined in Eqs. (48) against [. All coefficients are arbitrarily
scaled with UBB to absorb their divergence in the constriction limit
[ → ±2. (a) Plot of the stretching coefficients UBB , UBq , UqB , Uqq .
Inset: unscaled plot of UBB against [, diverging as [ → ±2. (b) Plot
of the mixed coefficients VBB , VBq , VqB , Vqq . (c) Plot of the bending
coefficients WBB , WBq , WqB , Wqq .

while the curvature strains are

!B =
^B − ^0

B

5 0
B 5

0
q

=  B +$ (Y), !q =
^q − ^0

q

5 0
B 5

0
q

=  q +$ (Y),

(51a)

where we have defined

 B =
5B^B − 5 0

B ^
0
B(

5 0
B

)2
5 0
q

,  q =
5q^q − 5 0

q
^0
q

5 0
B

(
5 0
q

)2 . (51b)

At leading order (i.e. at the order to which the shell theory is
valid), wemay choose to replace the curvature strains !B , !q in
Eq. (47b) with the alternative curvature strains  B ,  q defined
above. The latter choice may be more natural since  B ,  q
vanish for pure stretching deformations, whereas !B , !q do
not: consider a shell, the undeformed (and intrinsic) config-
uration of which is a sphere of radius ', and which deforms
into a sphere of radius '′ = 5 ', for example because of
a pressure difference between the inside and outside. For

this deformation, 5 0
B = 5 0

q
= 1, ^0

B = ^
0
q
= 1/', 5B = 5q = 5 ,

^B = ^q = 1/ 5 ', and so !B = !q = (1 − 5 )
/
5 3' ≠ 0 for

5 ≠ 1, but  B =  q = 0. In other words, Eqs. (51a) show
that the stretching deformations associated with changes in
curvature can be neglected at leading order in the shell theory.
Ref. [15] has also discussed this point.

This completes the derivation of the elastic energy (47a)
of a thin shell undergoing large axisymmetric bending defor-
mations. In Appendix B, we derive the governing equations
associated with Eq. (47a). We solve these equations numeri-
cally using the boundary value problem solver bvp4c of Mat-
lab (The MathWorks, Inc.) and the continuation software
auto [28].

C. Limit of small bending deformations

We conclude our calculations by taking the limit [ → 0,
in which the bending deformations become small compared
to the thickness of the shell. The energy density in Eq. (47b)
then limits to the form familiar from classical shell theories,

4̂ → 2�Y3
[
ℎ

(
�2
B + �B�q + �2

q

)
+ ℎ

3

12

(
 2
B +  B q +  2

q

)]
,

(52)

up to corrections of order$
(
Y4) . This is the energy density of

a thin Hookean shell [15, 22, 23] with Poisson’s ratio a = 1/2,
implying incompressibility, and elastic modulus � = 6�. In
particular, our analysis also provides a formal derivation of the
morphoelastic version of this classical shell theory. The first
term in the sum in square brackets is the stretching energy,
while the second term is the bending energy. To pick up on
a point made earlier, we note that, in this theory, the same
stretching modulus �ℎ

/ (
1− a2) = 8�ℎ and the same bending

modulus �ℎ3/ [
12

(
1 − a2) ] = 2�ℎ3/3 are associated with all

directions of stretching or bending; it is this isotropy resulting
from the constitutively assumed isotropy of the material that
is broken by the geometry of large bending deformations.
Of course, Eq. (52) could be derived directly by imposing

different scalings, of small intrinsic bending, replacing those
for large bending deformations in Eq. (21); these scalings
would considerably simplify the solutions of Eqs. (29), (30),
and (34). Indeed, the structure of these calculations would
be broadly similar to the earlier asymptotic derivation of the
classical shell theories in Ref. [16]. We are not however aware
of previouswork pointing out, aswe did above, that the terms at
order $

(
Y2) in the expansion (36) of the deformation gradient

need not be computed explicitly.
We note that Eq. (52) has the same structure as the elastic

energies used in previous models referenced in the introduc-
tion, but the morphoelastic definitions of the shell and curva-
ture strains in Eqs. (50) and (51b) differ from those in these
previous models: in models not based on morphoelasticity
and its multiplicative decomposition of the deformation gra-
dient [7, 8, 11–13], the shell and curvature strains are simply
differences of stretches or curvatures, missing the scaling fac-
tors of 5 0

B , 5
0
q
that appear in Eqs. (50) and (51b). We also note

that the expressions for the curvature strains in Eqs. (51b) dif-
fer, by a factor of 5 0

B 5
0
q
, from those in Refs. [9, 10], which, as
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discussed earlier, derived morphoelastic shell theories based
on a geometric approach. The geometric role of this factor has
been noticed previously in the context of uniform growth of
an elastic shell [29].

Moreover, the geometric approach in Refs. [9, 10] leads to
additional terms in the energy density. The present analysis
proves that these terms are not leading-order terms in the thin
shell limit. However, there is no reason to expect this geometric
approach to yield all terms at next order in the asymptotics. A
complete expansion could in principle be obtained by continu-
ing the asymptotic analysis presented here. This would permit
asymptotic justification of the so-called shear deformation the-
ories [30] in which the normals to the undeformed midsurface
need not remain normals in the deformed configurations, but
we do not pursue this further here.

III. INVAGINATION IN VOLVOX

A. Biological background

The green algal genus Volvox [31] has become a model
for the study of the evolution of multicellularity [32, 33], for
biological fluid dynamics [34], and for problems in develop-
mental biology [35, 36]. Adult Volvox colonies [Fig. 4(a)]
are spheroidal, consisting of several thousand biflagellated so-
matic cells that enclose a small number of germ cells [31].
Each germ cell undergoes several rounds of cell division to
form a spherical embryonic cell sheet [Figs. 4(b) and 4(e)], at
which stage those cell poles whence will emanate the flagella
point into the sphere [31]. To acquire motility, the embryo
turns itself inside out in a process called inversion [25, 37].

In some species of Volvox [25, 26], inversion starts with the
formation of a circular invagination [Figs. 4(c) and 4(f)], rem-
iniscent of the cell sheet folds associated with processes such
as gastrulation or neurulation in higher organisms. At the cell
level, this invagination results from two types of cell shape
changes [7, 26]: (1) cells near the equator become wedge-
shaped [Fig. 4(d)], while the cytoplasmic bridges (cell-cell
connections resulting from incomplete division) rearrange to
connect the cells at their thin wedge ends, and (2) cells in
the posterior hemisphere narrow in the meridional direction.
These cell shape changes arise simultaneously, with (1) splay-
ing the cells and thereby bending the cell sheet [Fig. 4(d)]
and (2) contracting the posterior hemisphere to facilitate the
subsequent inversion of the posterior hemisphere inside the as
yet uninverted anterior hemisphere. In later stages of inver-
sion, other cell shape changes arise in different parts of the cell
sheet [9, 26] to facilitate the peeling of the anterior hemisphere
over the inverted posterior and thus complete inversion.

B. Results

Following our earlier work [7–10], we model Volvox in-
version by considering the deformations of an incompressible
elastic spherical shell under quasi-static axisymmetric vari-
ations of its intrinsic stretches and curvatures representing
the cell shape changes driving inversion. The slow speed of

somatic cells
embryo

CB

interior

cell shape changes

CBexterior

I

C

W
W

s

κ0
s

κp
κa

κb

s0

s0−w

C
W

s

s

f 0
s , f

0
φ

fp

fa

s0C
W

(a)

(d)

(b) (c)

(e) (f)

(g) (h)

FIG. 4. Invagination in Volvox. (a) Volvox colony, with somatic
cells and one embryo labelled. (b) Light-sheet microscopy image
of a spherical Volvox embryo before inversion. (c) Corresponding
image at an early stage of inversion, when a circular invagination
(I) has formed. (d) Splaying of cells and bending of the cell sheet
result from the formation of wedge-shaped cells and the rearrange-
ment of the cytoplasmic bridges (CBs); red lines indicate position of
CBs. (e) Midsagittal cross-section of a Volvox embryo before inver-
sion. (f) Corresponding cross-section during invagination, with the
regions where wedge-shaped cells (W) and contracted spindle-shaped
cells (C) have formed labelled. (g) Plot of the intrinsic curvature ^0

B

against arclength B, defined in the inset. The plot defines the model
parameters ^p, ^b, ^a, B0, andF. Regions of cell shape changes (W,C)
as in (f) are also indicated. (h) Corresponding plot of the intrinsic
stretches 5 0

B , 5
0
q , defining additional model parameters 5p, 5a. Panels

(a)–(f) include microscopy images by Stephanie Höhn and have been
redrawn from Ref. [8]. Scale bars: (a) 50 µm; (e), (f) 20 µm.

inversion—it takes about an hour for a Volvox embryo to turn
itself inside out [25, 26]—justifies this quasi-static approxi-
mation. In more detail, Figs. 4(g) and 4(h) show functional
forms of the intrinsic stretches and curvatures encoding the
cell shape changes driving invagination and define the model
parameters ^p, ^b, ^a, 5p, 5a, B0, and F that encode the intrinsic
curvatures and intrinsic stretches of different regions of the
cell sheet and the extent of these regions. In numerical calcu-
lations, we regularise the step discontinuities in the definitions
of the intrinsic stretches and curvatures in Figs. 4(g) and 4(h),
we non-dimensionalise all lengths with the pre-inversion ra-
dius ' of the embryo, and we take Yℎ = 0.15, appropriate for
Volvox globator [7, 9].
During the invagination stage, the radius of curvature in

the bend region of wedge-shaped cells [Fig. 4(f)] becomes
comparable to the thickness of the cell sheet: this is the scal-
ing limit of large bending deformations studied in Section II.
We therefore compare the resulting elastic model, with energy
density (47b), to the classical theory, in which the energy den-
sity is given by Eq. (52). For weakly invaginated stages of
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FIG. 5. Comparison of the elastic model for large bending deformations (solid lines), with energy density given by Eq. (47b), and the classical
model (dashed lines), with energy density given by Eq. (52). (a) Early invagination stage: the two models yield very similar shapes. Dotted
line: undeformed configuration of the spherical shell. Parameter values: ^p = ^a = 1, ^b = −2, 5p = 0.8, 5a = 1, B0 = 1.5, F = 0.2.
(b) Corresponding plot of the meridional curvature and intrinsic curvature. (c) Later invagination stage: as the cells in the bend region
approach the constriction limit, the shapes resulting from the two models start to differ. Parameter values are as in (a), except ^b = −8.5,
F = 0.4. (d) Corresponding plot of the meridional curvature and intrinsic curvature. (e) Bifurcation diagram, for different values of F, in
(:, 3) space, with : = −^b and with 3 the posterior displacement defined in the axis inset. Different lines correspond to parameter values
F = 0.3, 0.5, 0.6, 0.7, 0.8, 0.9. Other parameter values are as in (a). The vertical line |[ | = 2 corresponding to the constriction limit is also
shown. Vertical arrows indicate discontinuous jumps in 3 as : is increased.

Volvox inversion (corresponding to small values of [ in the
large bending theory), the two models yield, unsurprisingly,
very similar shapes [Fig. 5(a)], mirrored by very similar pro-
files of meridional curvature [Fig. 5(b)]. However, the more
the intrinsic configuration of the cell sheet approaches the limit
of cell constriction, the more the shapes resulting from the two
models differ [Fig. 5(c)]. The curvature profile of these shapes
differ in particular in the bend region of nearly constricted
cells [Fig. 5(d)], as expected: since the coefficients defined in
Eqs. (48) diverge in the constriction limit, deviations from the
intrinsic configuration become increasingly expensive there in
the large bending theory, but not in the classical theory. For
this reason, the cell sheet is more invaginated in the large bend-
ing theory than in the classical theory [Fig. 5(c)]. In this way,
the geometric effects of large bending stabilise the invagination
process.

These examples indicate that the results of the two models
differ at a quantitative, if not at a qualitative level. We extend
this observation by plotting : = −^b against the displacement
3 of the posterior pole [Fig. 5(e), inset] for different values
of the width F of the bend region in Fig. 5(e). Again, the
solution curves show similar behaviour in the two models, but
differ at a quantitative level. There is a critical bend region
width F∗ such that the solution curves in the (:, 3) diagram
are single-valued for F < F∗, but become multivalued for
F > F∗, leading to discontinuous jumps in 3 as : is varied.
Where multiple solutions exist for a given value of : , the one
with the lowest value of 3 has the lowest energy (not shown).
For the classical theory, we have discussed this bifurcation
behaviour in Ref. [8], and rationalised it by constructing an
effective energy that estimates different elastic contributions.
It is therefore not surprising that, here, we find qualitatively
identical bifurcation behaviour in the two models, but, again,
there are quantitative differences in the bifurcation behaviour

of the two theories. In particular, we note that F∗ is larger
in the large bending theory than in the classical theory. In
other words, continuous invagination is possible in a larger
region of parameter space in the large bending theory than in
the classical theory, so, again, the geometry of large bending
deformations is stabilising.

IV. CONCLUSION

In this paper, we have derived a morphoelastic shell theory
valid for the large bending deformations that are commonly
observed in developmental biology (Fig. 1), and have shown
how this new scaling limit of large bending deformations in-
duces a purely geometric effective material anisotropy absent
from classical theories. Taking the invagination of the green
alga Volvox as an example, we have compared this theory to
a simpler, classical theory not formally valid for these large
bending deformations. Since the classical theory does not
account for the geometric singularity of cell constriction, it
differs, for strongly invaginated shapes as in Figs. 1(b), 4(c),
and 4(f), from the theory for large bending deformation at a
quantitative, if not at a qualitative level. In particular, we have
argued that this geometric limit stabilises invagination.
This and the growing interest in quantitative rather than

merely qualitative analyses of morphogenesis [38, 39] empha-
sise the importance of this new scaling limit of large bending
deformations for studies of the mechanics of developmental
biology. The theory we have derived here is not however
the most general theory of these large bending deformations.
Indeed, when writing down the expression for the intrinsic
deformation gradient in Eq. (16), we assumed that there is
no intrinsic displacement parallel to the midsurface, e0 = 0.
For e0 ≠ 0, we would replace the expansion of ( posited in
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Eq. (27) with ( = (0 + ( (0) +$ (Y), where (0 = 5 0
B 5

0
q
e0. The

nonlinear differential equations extending Eqs. (29) and (30)
that arise in the expansions of the boundary and incompress-
ibility conditions in this more general case still admit a trivial
solution ( (0) ≡ 0, / (0) ≡ 0, ? (0) = 1, but we were unable to
extend our calculations in Section II to prove that this solution
is unique; we raise a similar issue in Appendix C. It there-
fore remains unclear what form the extension of the Kirchhoff
“hypothesis” [15] to this case takes.

In this paper, we assumed the simplest, incompressible Neo-
Hookean constitutive relations when deriving our shell theory
for large bending deformations. The restriction to incompress-
ible elastic materials is justified by the biological context of
our analysis, in which the models derived here describe sheets
of fluid-filled cells that are therefore indeed incompressible to
a first approximation. However, the bulk elastic response of
biological materials such as brain tissue is not linear [40–42].
The restriction to linear Neo-Hookean relations may therefore
appear to be a limitation of the analysis, but that turns out
not to be the case: in the thin shell limit, general hyperelastic
constitutive relations reduce to Neo-Hookean relations. This
result has been established previously for thin plates [20, 43],
and, in Appendix C, we (partially) extend it to the large bend-
ing deformations of thin shells considered here. In the context
of shell theories, the problem of specifying the nonlinear con-
stitutive relations of biological tissues does not therefore arise.
However, we have recently shown that the continuum limit of
a class of discrete models of cell sheets involves not only non-
linear elastic, but also nonlocal, nonelastic terms [44]. More-
over, adding the geometric singularity of apical constriction
(corresponding to triangular cells in the underlying discrete
model) as a constraint to the variational problem that arises in
this continuum limit remains an important open problem [44],
solving which may provide a regularisation of the singularity
that arises in the theory derived here. Meanwhile, this sug-
gests that the journey towards understanding the continuum
mechanics of biological materials, on which we have taken
another step with the present analysis of large bending defor-
mations of thin elastic shells, will continue to abound with
new problems in nonlinear mechanics.
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APPENDIX A: NON-AXISYMMETRIC LARGE BENDING
DEFORMATIONS OF AN ELASTIC SHELL

In this Appendix, we extend the calculations for axisym-
metric deformations of an elastic shell in Section II to general,
non-axisymmetric deformations.

1. Non-axisymmetric deformations of an elastic shell

As in Section II, we begin by deriving an expression for the
deformation gradient tensors of an elastic shell of thickness Yℎ,
where Y is, again, a small asymptotic parameter that expresses
the thinness of the shell.

a. Undeformed configuration of the shell

We parameterise the undeformed midsurface � of the shell
in terms of generalised, not necessarily orthogonal coordi-
nates; we shall use Greek letters to denote these coordinates.
Thus, if 1 is the position of a point on �, the tangent vectors
there are e" = m1/mU. The metric g of the midsurface thus
has components 6UV = e" · e# , and we set 6 = det g.
Next, we define a basis B for the shell by adjoining the

normal vector n to this tangent basis. The Weingarten and
Gauß equations [45]

n,U = pU
Ve# , e",V = −pUVn + ΓUVWe$, (A1)

in which commata denote partial differentiation, express the
derivatives of the normal and tangent vectors in terms of the
curvature tensor pUV = e" · n,V and the Christoffel symbols
associated with the metric of the midsurface [45].
The position of a point in the undeformed configuration �

of the shell is r = 1 + YZn, where Z denotes the transverse
coordinate, as defined in Fig. 2(c). Hence

r ,U =
(
XU

V + YZpUV
)
e# , r ,Z = Yn, (A2)

wherein we have used the Weingarten equation (A1), and
where X is the Kronecker delta. The metric tensor G of the
undeformed configuration therefore has components
�Z Z = Y

2, �UZ = �Z U = 0, �UV = r ,U · r ,V . (A3)

b. Deformed configuration of the shell

We take the same generalised coordinates to parameterise
the deformed midsurface of the shell, and define the tangent
vectors ẽ" at a point 1̃ on its midsurface �̃. The metric g̃ of
the midsurface has components 6̃UV = ẽ" · ẽ# . We extend the
tangent basis of the midsurface to a basis B̃ for the deformed
shell by adding the unit normal ñ, and introduce the corre-
sponding curvature tensor ˜̂UV = ẽ" · ñ,V . Extending the setup
in Fig. 2(e) to non-axisymmetric deformations, the position of
a point in the deformed configuration �̃ of the shell is

r̃ = 1̃ + Y
(
Z̃ ñ + ẽU ẽ"

)
, (A4)

where Z̃ and ẽU are the transverse and parallel displacements
of this point relative to the midsurface. In particular, for these
non-axisymmetric deformations, the displacement parallel to
the midsurface is no longer a scalar. Using theWeingarten and
Gauß equations (A1), we find

r̃ ,U =
(
XU

V + YZ̃ ˜̂UV + YẽV ;U

)
ẽ# + Y

(
Z̃,U − ẽV ˜̂UV

)
ñ,

(A5a)
r̃ ,Z = Y

(
Z̃,Z ñ + ẽU,Z ẽ"

)
, (A5b)
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in which ẽV ;U = ẽ
V
,U + ΓUWV ẽW is a covariant derivative.

c. Intrinsic configuration of the shell

We define the intrinsic configuration of the shell by specify-
ing the intrinsic basisB0 of the shell, containing the vectorsK",
which we think of as the intrinsic tangent vectors, and a unit
vector T normal to these tangent vectors. The metric g0 of the
intrinsic midsurface has components 60

UV = K" · K# , and we
write 60 = det g0. Further, we define the (symmetric) intrinsic
curvature tensor ^0

UV = K" · T ,V , and the metric tensor G0

of the intrinsic configuration. Denoting by Z0 the intrinsic
transverse displacement, G0 has, by analogy with Eqs. (A2)
and (A3), components

�0
Z Z = Y

2
(
Z0
,Z

)2
, �0

UZ = �
0
Z U = 0, (A6a)

and

�0
UV =

(
XU

W + YZ0^0
U
W
) (
XV
X + YZ0^0

V
X
)
K$ · K%

= 60
UW

(
XW X + YZ0^0 W

X

) (
XXV + YZ0^0

V
X
)
. (A6b)

When writing down these expressions, we have assumed, as
we did in Section II, that there is no intrinsic displacement
parallel to the midsurface, e0 U = 0.

d. Calculation of the deformation gradient tensors

The deformation gradient tensor relating the undeformed
and deformed configurations of the shell is F̃ = r̃ ,U ⊗ r ,U by
definition. Now, from Eq. (A3), �Z Z = Y−2, �UZ = �Z U = 0,
and hence

r ,U = �UW
(
6WV + ZpWV

)
e# , r ,Z = Y−1n. (A7)

It follows that

F̃ =
(
XW
U + YZ̃ ˜̂W U + YẽU;W

)
�WX

(
6XV + YZpXV

)
ẽ" ⊗ e#

+ Y
(
Z̃,U − ẽW ˜̂UW

)
�UW

(
6WV + YZpWV

)
ñ ⊗ e#

+ ẽU,Z ẽ" ⊗ n + Z̃,Z ñ ⊗ n. (A8a)

or, in block matrix notation,

F̃ =

(
ÃH =̃ ,Z

b̃
>H Z̃,Z

) [
B̃ ⊗ B∗

]
, (A8b)

in which the asterisk denotes a dual basis, and where we have
introduced

�UV = �
UW

(
6WV + YZpWV

)
, (A9)

and we write

�̃UV = X
U
V + YZ̃ ˜̂V U + YẽU;V , 1̃U = Y

(
Z̃,U − ẽV ˜̂UV

)
.

(A10)

By analogy with Eqs. (A8), the intrinsic deformation gradient
tensor is

F0 =
(
XW
U + YZ0^0

W
U
)
�WX

(
6XV + YZpXV

)
K" ⊗ e#

+ YZ0
,U�

UW
(
6WV + YZpWV

)
T ⊗ e# + Z0

,Z T ⊗ n,

(A11a)

or, in block matrix notation,

F0 =

(
A0H 0
b0>H Z0

,Z

) [
B0 ⊗ B∗

]
, (A11b)

Here we have again assumed that there is no intrinsic dis-
placement parallel to the midsurface, e0 U = 0, and we have
introduced

�0 U
V = X

U
V + YZ0^0

V
U, 10

U = YZ
0
,U . (A12)

On inverting the block-lower triangular matrix in Eq. (A11b),
we find

(
F0)−1

=

©«
H−1 (

A0)−1 0

−
b0> (

A0)−1

Z0
,Z

1
Z0
,Z

ª®®®¬
[
B ⊗

(
B0)∗] . (A13)

The elastic deformation gradient is F = F̃
(
F0)−1. From

Eqs. (A8b) and (A13), we obtain

F =
©«

(
Ã − =̃ ,Z 0b0>

) (
A0)−1

=̃ ,Z 0(
b̃
> − Z̃,Z 0b0>

) (
A0)−1

Z̃,Z 0

ª®®¬
[
B̃ ⊗

(
B0)∗] .

(A14a)

We replace B̃ with an intermediate basis B̃0 by replacing the
tangent vectors using the transformation ẽ" = *

V
U K̃# . Then

F =
©«

U
(
Ã − =̃ ,Z 0b0>

) (
A0)−1 U=̃ ,Z 0(

b̃
> − Z̃,Z 0b0>

) (
A0)−1

Z̃,Z 0

ª®®¬
[
B̃0 ⊗

(
B0)∗] ,
(A14b)

The bases B̃ or B̃0 and B0 are not necessarily orthogonal or
normalised, so themap thatmaps the first onto the second is not
now in general a rotation, but we can around work around this
issue using the following observation: since the unit normals
ñ and T are orthogonal to K̃" and K" respectively, we can
choose K̃" in such away that B̃0 is a rotation ofB0, represented
by a matrix R. In particular, if (abusing notation) F denotes
the matrix in Eq. (A14b), then the deformation gradient is
represented, with respect to B0 ⊗

(
B0)∗, by the matrix RF.

Further K̃" · K̃# = K" · K# since rotations preserve dis-
tances and angles. Hence, on recalling the definitions of the
metrics 6̃UV and 60

UV of the deformed and intrinsic midsur-
faces of the shell,

6̃UV = ẽ" · ẽ# = *W U* X
V K̃$ · K̃%

= *W U*
X
VK$ · K% = *

W
U*

X
V6

0
WX . (A15)
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2. Thin shell theory for large bending deformations

As in Section II, we assume that the shell is made of an
incompressible neo-Hookean material, with energy given by
Eq. (18). Given our above remark on modifying the bases,
Eq. (19) still provides the expression for the (first) Piola–
Kirchhoff stress tensor P, now with respect to B0 ⊗

(
B0)∗:

we still have P = RQ, with Q = F − ?F−>, in which F is now
given by Eq. (A14b). Moreover, Eq. (20) still applies.

a. Scaling assumptions

Again as in Section II, we now introduce large bending
deformations explicitly by scaling the intrinsic curvature tensor
so as to absorb the intrinsic stretching of the midsurface,

^0
UV =

√
60

6

_0
UV

Y
. (A16)

Next, we make the standard scaling assumptions of shell the-
ory, that the elastic strains remain small. First, we therefore
require that the metrics g̃ and g0 be not “too different”. In-
troducing the shell strain tensor E, and from Eq. (A15), we
therefore impose

*UV = X
U
V + Y� UV . (A17)

For axisymmetric deformations, these tensors are symmetric,
and we recover the definition of the shell strains in Eq. (22).
Similarly, we require the curvature tensors of the intrinsic and
deformed configurations to be not “too different”. We therefore
introduce the curvature strain tensor K by writing

˜̂UV =

√
60

6

(
_0
UV

Y
+ !UV

)
, (A18)

Finally, we introduce scaled variables

/0 =

√
60

6
Z0, / =

√
60

6
Z̃ , Y =

√
60

6
=̃ . (A19)

b. Intrinsic volume conservation

We now impose volume conservation of the intrinsic config-
uration of the shell compared to the undeformed configuration.
We need one preliminary result:

Lemma 1. Let M be a 2 × 2 matrix, and G be a scalar. Then

det
(
I + GM

)
= 1 + G tr M + G2 det M.

Proof. By direct computation,

det

(
1 + G"11 G"12

G"21 1 + G"22

)
= 1 + G("11 + "22) + G2 ("11"22 − "12"21),

which proves the claim. �

Volume conservation between the undeformed and intrinsic
configurations of the shell requires equality of the volume
elements,

√
det G =

√
det G0. Now, from Eqs. (A2) and (A3),

�UV = 6UV +$ (Y), and hence
√

det G = Y
√
6 +$

(
Y2) . (A20a)

Moreover, from Eqs. (A6) with the scalings introduced above
and invoking Lemma 1, we find√

det G0 = Y

(√
6

60 /
0
,Z

) {√
60

[
1 + 2H0/0 +K0 (/0)2

]}
,

(A20b)

wherein H0 = 1
2 trλ0 and K0 = detλ0 are the (scaled) mean

and Gaussian intrinsic curvatures [45]. The eigenvalues _1, _2
of λ0 are real [45], and H0 = 1

2 (_1 + _2), K0 = _1_2, from
which follows the well-known inequality

(
H0)2

> K0.
Now, integrating the differential equation for /0 (Z) resulting

from Eqs. (A20) and imposing /0 = 0 at Z = 0, we find

/0 +H0 (/0)2 + K0

3
(
/0)3

= Z . (A21)

Since Eq. (A20a) neglects $
(
Y2) corrections, this result holds

at leading order only.
Now, as discussed in Section II, the shell surfaces are at

Z0 = ±ℎ0/2 in the intrinsic configuration, and at Z = ±ℎ± in
the undeformed configuration, where ℎ+ + ℎ− = ℎ is the unde-
formed thickness of the cell sheet. On defining�0 = ℎ0

√
60/6,

so that the shell surfaces are at /0 = ±�0/2 in the intrinsic
configuration, Eq. (A21) yields

ℎ± =
�0

2

[
1 ∓ H0

2
�0 + K0

12
(
�0)2

]
, (A22a)

and hence

ℎ = ℎ+ + ℎ− = �0 + K0

12
(
�0)3

, (A22b)

which is a depressed cubic equation for �0 (ℎ) that can be
solved in closed form. In particular, Eq. (A22b) has a unique
positive real solution if K0 > 0, but has no positive real solu-
tion if ℎ2K0 < −16/9. If 0 > ℎ2K0 > −16/9, two positive
real solutions exist; by continuity, the smaller must be chosen.
More generally, we require that Z increases with /0, for��/0
�� 6 �0/2. As

(
H0)2

> K0, the cubic in Eq. (A21) has
two turning points [Fig. 6(a)], at /0 = /0

±, where explicit ex-
pressions for /0

− 6 /0
+ in terms of K0,H0 can be found by

solving a quadratic equation. The condition that Z increases
with /0 translates to inequalities /0

± ≷ �
0 (ℎ)/2 depending on

the signs of K0,H0 [Fig. 6(a)]. These inequalities involving
ℎ,H0,K0 only depend onH0ℎ andK0ℎ2, since the curvatures
can be nondimensionalised with ℎ. The inequalities can then
be solved numerically to determine the region in

(
K0ℎ2,H0ℎ

)
parameter space for which intrinsic volume conservation is
possible [Fig. 6(b)]. In particular, Fig. 6(b) shows that in-
trinsic volume conservation requires −16/9 6 K0ℎ2 6 2 and��H0ℎ

�� 6 √2 , where 2 is a numerical constant. We note that
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Z0Z0− Z0
+

K0 >0
H0 >0

��Z0
+

��>H0/2

Z0

Z0
+Z0−

K0 >0
H0 <0

Z0−>H0/2

Z0Z0−

Z0
+

K0 <0

H0/2<
��Z0−

��, Z0
+

(a)

(b)

H
0 (h
)≯

0

(H0)2 � K0

− 16
9 c= 64

9

√
c= 8

3

−√c

K0h2

H0h

FIG. 6. Intrinsic volume conservation. (a) Plot of Z
(
/0) defined in

Eq. (A21) for the cases K0 > 0, H0 > 0; K0 > 0, H0 < 0; K0 < 0.
The positions of the turning points at /0 = /0

± are indicated, and
Z
(
/0) must increase monotonically for

��/0�� < �0/2. This condition
excludes the dotted parts of the graphs. (b) Intrinsic volume conserva-
tion in

(
K0ℎ2,H0ℎ

)
space: conservation of intrinsic volume is only

possible within the region of parameter space enclosed by the solid
curve, in which −16/9 < ℎ2K0 < 2 = 64/9 and ℎ

��H0�� < √2 = 8/3.
The dashed lines delimit the regions of parameter space excluded by
the inequality

(
H0)2 > K0 and the condition that Eq. (A22b) have a

positive real solution.

an expression for the boundary of this region can also be de-
termined in closed form using Mathematica (Wolfram, Inc.);
although rather complicated, this expression can be used to
show that 2 = 64/9.
Finally, to relate this discussion to the results of Section II,

we note that if K0 = 0, the condition is
��H0

�� 6 1, which is
equivalent to |[ | 6 2, as expected.

c. Boundary conditions and condition of incompressibility

As in Section II, the incompressibility and boundary condi-
tions read det F = 1 and Q±T± = 0.
To derive an expression for the normals T±, we compute the

tangent vectors K±" to the surfaces of the intrinsic configuration
of the shell, at Z0 = ±ℎ0/2 ⇐⇒ /0 = ±�0/2. By analogy
with Eq. (A5a) and using the scalings in Eqs. (A16) and (A19),

K±" =
(
XU

V ± �0_0
U
V/2

)
K# ±

(
Yℎ0

,U/2
)
T. (A23)

We now order B0 = {K1, K2, T} so that K1 × K2 =
√
60T,

and hence K1 × T = −K2, K2 × T = K1. By expanding in
components, we find

K±1 × K±2 =
[
1 ± �0H0 + 1

4
(
�0)2K0

] √
60T

∓ 1
2Yℎ

0
,U

[(
1 ± �0H0

)
XUV ∓ 1

2_
0
V
U�0

]
K# .

(A24)

On normalising this vector, we deduce

T± = ±T−Y
ℎ0
,U

[
2
(
1±�0H0) XUV∓�0_0

V
U
]√

60
[
4
(
1 ±H0�0) + (

�0)2K0
] K#+$

(
Y2) .

(A25)

d. Expansion of the boundary and incompressibility conditions

To expand the boundary and incompressibility conditions,
we extend Eqs. (27) by writing

/ = /0 + / (0) + Y/ (1) +$
(
Y2) , Y = Y (0) +$ (Y). (A26)

Solution at order $ (1). From Eqs. (A10) and (A12), and
using the definitions (A19), we obtain the leading-order ex-
pansions

�0 U
V = X

U
V + /0_0

V
U, �̃UV = �

0 U
V + / (0)_0

V
U +$ (Y),

(A27a)

and

10
U = $ (Y), 1̃U = −( (0) V_0

UV +$ (Y), (A27b)

and thence, from Eq. (A14b),

F =

(
B v

w> 2

)
+$ (Y), (A28a)

in which dashes now denote differentiation with respect to
/0, and where, writing Ã = Ã(0) + $ (Y), with Ã(0) given by
Eq. (A27a),

B = Ã(0)
(
A0)−1

, v = Y′(0) , w = −
(
A0)−>λ0Y (0) , 2 = 1+/ ′(0) .

(A28b)

On computing the determinant of the block matrix [46] in
Eq. (A28a), the incompressibility condition becomes

1 = det F = (det B)
(
2 − w>B−1v

)
+$ (Y). (A29)

Using further properties of block matrices [46] and from
Eq. (A28a), we obtain

F−> =

(
$ (1) −B−>w

(
2 − w>B−1v

)−1

$ (1)
(
2 − w>B−1v

)−1

)
+$ (Y), (A30)

and thus, writing Q = Q(0) + YQ(1) +$
(
Y2) , ? = ? (0) +$ (Y),

Q(0)T =

(
v + ? (0)B−>w

(
2 − w>B−1v

)−1

2 − ? (0)
(
2 − w>B−1v

)−1

)
. (A31)

Now, as in Section II, the governing equation (20) of three-
dimensional elasticity is, at leading order,

(
Q(0)T

)
,/ 0 = 0.

Using Eq. (A25), it follows that the boundary conditions read
0 = Q±T± = Q(0)T+$ (Y). HenceQ(0)T ≡ 0 as in Section II.



15

From Eqs. (A28b), w>B−1 = Y>(0)D with D = −
(
λ0)>Ã−1

(0) ,
so that B−>w = D>Y (0) . Eqs. (A29) and (A31) then yield the
leading-order incompressibility and boundary conditions,

1 + / ′(0) − Y>
(0)DY′

(0) = (det B)−1 , (A32a)

and hence

Y′
(0) + ? (0) (det B)D>Y (0) = 0, 1 + / ′(0) − ? (0) (det B) = 0.

(A32b)

In particular, noting that Y′(0)>D>Y (0) = Y>(0)DY′(0) since this
expression is a scalar,

Y′
(0)
>Y′
(0) = −? (0) (det B)Y′

(0)
>D>Y (0) = −? (0) (det B)Y>(0)DY′(0)

= −? (0) (det B)
[
1 + / ′(0) − (det B)−1]

= ? (0) −
(
1 + / ′(0)

)2
. (A33)

Moreover, fromEqs. (A27) and the definition (A28b) and using
Lemma 1, we obtain

det B =
det Ã(0)
det A0 =

1 + 2H0 (/0 + / (0)
)
+K0 (/0 + / (0)

)2

1 + 2H0/0 +K0 (/0)2 .

(A34)

Substituting in the second of Eqs. (A32b) and integrating,

tanh−1 H0 +K0 (/0 + / (0)
)√(

H0)2 −K0
= ? (0) tanh−1 H0 +K0/0√(

H0)2 −K0
+ 0,

(A35)

in which 0 is a constant of integration; the singular cases
K0 = 0, K0 = H0 = 0, or K0 =

(
H0)2 can be dealt with

similarly, but we will not discuss these in detail.
Now, by definition, on the midsurface /0 = 0, we have

/ (0) = 0 and Y (0) = 0. Thus det B = 1 on /0 = 0, and
hence, successively from Eqs. (A32), / ′(0) = 0, Y′(0) = 0 on
/0 = 0, and hence ? (0) = 1 (which is constant). Then taking
/0 = / (0) = 0 in Eq. (A35) yields 0 = 0; the same equation
then immediately yields / (0) ≡ 0. Finally, Eq. (A33) yields
Y′(0)
>Y′(0) = 0, so Y′(0) ≡ 0, and hence, since Y (0) = 0 on /0 = 0,

we find Y (0) ≡ 0. This proves the Kirchhoff “hypothesis” [15]
for general large bending deformations.

We note that, in the case of axisymmetric deformations, this
argument provides an alternative to the direct integration of
the leading-order equations in Section II.

Solution at orders $ (Y) and $
(
Y2) . We now expand fur-

ther. In particular, extending Eqs. (A27), we find

Ã = A0 + Y
(
/0L + / (1)λ0) +$ (

Y2) , (A36)

while now b0, b̃, =̃ = $ (Y), and hence

F = I + Y
(

E +
(
/0L + / (1)λ0) (A0)−1

$ (1)
$ (1) / ′(1)

)
+$

(
Y2) .
(A37)

from Eq. (A14b), using Eq. (A17). Thus, using Lemma 1,

det F = 1 + Y
{
/ ′(1)+tr E+tr

[ (
/0L+/ (1)λ0) (A0)−1

]}
+$

(
Y2) .

(A38)

The incompressibility condition det F = 1 thus yields, at order
$ (Y), an ordinary differential equation for / (1) . To make
further progress, we shall need the following result:

Lemma 2. Let M be a 2 × 2 matrix, and G be a scalar. Then

(I + GM)−1 =
I + G adj M

1 + G tr M + G2 det M
.

Proof. By definition of the adjugate matrix,

(I + GM)−1 =
adj (I + GM)
det (I + GM) =

adj (I + GM)
1 + G tr M + G2 det M

,

using Lemma 1. But, by direct computation,

adj (I + GM) =
(

1 + G"22 −"12

−"21 1 + G"22

)
=

(
1 0
0 1

)
+ G

(
"22 −"12

−"21 "11

)
= I + G adj M.

The result follows. �

On multiplying this result by a general 2 × 2 matrix N and
taking the trace on both sides, we obtain

Corollary 1. Let M,N be 2× 2 matrices, and let G be a scalar.
The following equality holds:

tr
[
N(I + GM)−1] = tr N + G tr (N adj M)

1 + G tr M + G2 det M
.

We shall also need the following observation:

Lemma 3. Let M,N be 2 × 2 matrices. Then

tr (N adj M) = tr M tr N − tr (MN) and tr (M adj M) = 2 det M.

Proof. Notice that M + adj M = (tr M)I since(
"11 "12

"21 "22

)
+

(
"22 −"12

−"21 "11

)
= ("11 + "22)

(
1 0
0 1

)
.

Hence NM+N adj M = (tr M) N on multiplication by N. Taking
the trace gives the first result. The second result follows from
the definition of the adjugate, M adj M = (det M)I, by taking
the trace and noting that tr I = 2. �

Combining Corollary 1 and Lemma 3, and recalling the
definitions trλ0 = 2H0, detλ0 = K0, the differential equation
for / (1) resulting from Eq. (A38) is
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/ ′(1) +
(

2H0 + 2K0/0

1 + 2H0/0 +K0 (/0)2

)
/ (1) + tr E +

/0 tr L +
(
/0)2 [2H0 tr L − tr

(
Lλ0) ]

1 + 2H0/0 +K0 (/0)2 = 0. (A39)

Integrating and imposing / (1) = 0 at /0 = 0, we find

/ (1) = −

[
/0 +H0 (/0)2 + 1

3K
0 (/0)3

]
tr E + 1

2
(
/0)2 tr L + 1

3
(
/0)3 [2H0 tr L − tr

(
Lλ0) ]

1 + 2H0/0 +K0 (/0)2 . (A40)

Next, from Eq. (A37), we may write

F =

(
I+YB(1)+Y2B(2) +$

(
Y3) Yv (1) +$

(
Y2)

Yw>(1) +$
(
Y2) 1+Y2 (1)+Y22 (2) +$

(
Y3)

)
,

(A41)

with, using Lemma 2,

B(1) = E +
(
/0L + / (1)λ0) (I + /0 adjλ0)

1 + 2H0/0 +K0 (/0)2 , (A42)

in which / (1) is given by Eq. (A40), and where explicit expres-
sions for B(2) , v (1) , w (1) , 2 (1) , 2 (2) could be obtained in terms
of the expansions in Eq. (A26), but will turn out not to be
required.

Using the general expressions for the determinant of block
matrices [46] and Lemma 1, Eq. (A41) yields

det F = 1 + Y
(
tr B(1) + 2 (1)

)
+ Y2 (tr B(2) + 2 (2) + 2 (1) tr B(1)

+ det B(1) − w>(1)v (1)
)
+$

(
Y3) . (A43)

Moreover, from the general expression for the inverse of a
block matrix [46],

F−> =

(
I +$ (Y) −Yw (1) +$

(
Y2)

$ (Y) 1 +$ (Y)

)
, (A44)

and hence, recalling that ? = 1 +$ (Y),

Q(0) = O, Q(1)T =

(
v (1) + w (1)
$ (1)

)
. (A45)

As in Section II, Q(0) = O implies that, at leading or-
der, Eq. (20) is

(
Q(1)T

)
,/ 0 = 0, with boundary condition

Q±(1)T = 0, which implies Q(1)T ≡ 0. This and the incom-
pressibility condition det F = 1 imply, from Eqs. (A43) and
(A45),

2 (1) = − tr B(1) , w (1) = −v (1) , (A46a)

and hence

2 (2) = − tr B(2) +
(
tr B(1)

)2 − det B(1) − v>(1)v (1) . (A46b)

e. Expansion of the constitutive relations

Before expanding the constitutive relations to obtain the
asymptotic expansion of the three-dimensional energy density,
we need to introduce one further result:

Lemma 4. Let M,N be 2 × 2 matrices. Then

(i) tr
(
M2) = (tr M)2 − 2 det M,

(ii) tr
(
M2N

)
= tr M tr (MN) − det M tr N.

Proof. The Cayley–Hamilton theorem [46] implies that, for
a 2 × 2 matrix, M2 = (tr M)M − (det M)I. Taking the trace
on both sides of this relation and noting that tr I = 2, we
obtain (i). Multiplying this relation by N and taking the trace
yields (ii). �

We start by computing the expansion of the (left) Cauchy–
Green tensor: from Eq. (A41), we obtain

C = F>F =

(
I+Y

(
B(1)+B>(1)

)
+Y2 (

B(2)+B>(2)+B>(1)B(1)+w (1)w>(1)
)
+$

(
Y3) $ (Y)

$ (Y) 1+2Y2 (1)+Y2 (
22 (2)+22

(1)+v>(1)v (1)
)
+$

(
Y3)

)
,

(A47)

and hence, noting in particular that tr
(
w1w>1

)
= tr

(
w1w>1

)>
= w>1 w1 since this expression is a scalar,

ℐ1 = tr C = 3 + Y
[
2(tr B(1) + 2 (1) )

]
+ Y2 [

2(tr B(2) + 2 (2) ) + tr
(
B>(1)B(1)

)
+ 22
(1) + v>(1)v (1) + w>(1)w (1)

]
+$

(
Y3)

= 3 + Y2
[
3
(
tr B(1)

)2 − 2 det B(1) + tr
(
B>(1)B(1)

) ]
+$

(
Y3) = 3 + Y2

[
2
(
tr B(1)

)2 + tr
(
B2
(1)

)
+ tr

(
B>(1)B(1)

) ]
+$

(
Y3) ,

(A48a)
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where we have used, first, Eqs. (A46) and, second, Lemma 4. Using general properties of the trace operator, that for matrices
M,N, tr M> = tr M and tr MN = tr NM, yields an equivalent, more symmetric form of this result:

ℐ1 − 3 = 2Y2
[ (

tr e
)2 + tr

(
e2) ] +$ (

Y3) , where e =
B(1) + B>(1)

2
, (A48b)

so that e is the symmetric effective two-dimensional strain tensor. This determines the leading-order term in the expansion of
the three-dimensional energy density 4 defined in Eq. (18), and thus completes the asymptotic expansion for the limit of a thin
shell that undergoes general large bending deformations.

Some more simplifications are however possible in this general case. In what follows, we shall denote the symmetric part of a
tensor M using overlines, so that M =

(
M +M>

)
/2. Then, using Eqs. (A40) and (A42) and defining L= Lλ0, we obtain

e = E + 41L + 42L adjλ0 +
[
43 tr E + 45 tr L + 47 tr L

]
λ0 +

[
44 tr E + 46 tr L + 48 tr L

]
I, (A49)

where

41 =
/0

1 + 2H0/0 +K0 (/0)2 , 42 = /
041, 43 = −

/0 +H0 (/0)2 + 1
3K

0 (/0)3[
1 + 2H0/0 +K0 (/0)2

]2 , 44 = K0/043, (A50a)

45 = −
1
2
(
/0)2 + 2

3H
0 (/0)3[

1 + 2H0/0 +K0 (/0)2
]2 , 46 = K0/045, 47 =

1
3
(
/0)3[

1 + 2H0/0 +K0 (/0)2
]2 , 48 = K0/047. (A50b)

Now, on applying Lemmata 3 and 4 repeatedly, we obtain, from Eq. (A49),

tr e =
(
1 + 2H043 + 244

)
tr E +

(
41 + 2H042 + 2H045 + 246

)
tr L +

(
2H047 + 248 − 42

)
tr L, (A51a)

tr e2 = tr E
2 +

(
41 + 242H0)2 tr L

2 + 42
2 tr L

2 + 2
(
41 + 242H0) tr E L − 242 tr E L− 242

(
41 + 242H0) tr L L

+ 2
{
44 +

(
44 + 43H0)2 +

[ (
H0)2 −K0

]
42

3

} (
tr E

)2 + 2
{(
48 + 47H0)2 + 4147 − 4248 +

[ (
H0)2 −K0

]
42

7

} (
tr L

)2

+ 2
{
46

(
41 + 242H0) + (

46 + 45H0)2 + 4245K0 +
[ (
H0)2 −K0

]
42

5

} (
tr L

)2 + 243 tr E tr E+ 245 tr L tr E

+ 2
{
2
(
44 + 43H0) (46 + 45H0) + 44

(
41 + 242H0) + 46 + 4243K0 + 2

[ (
H0)2 −K0

]
4345

}
tr E tr L

+ 2
{
2
(
44 + 43H0) (48 + 47H0) + 48 + 4143 − 4244 + 2

[ (
H0)2 −K0

]
4347

}
tr E tr L

+ 2
{
2
(
46 + 45H0) (48 + 47H0) + 48

(
41 + 242H0) + 4145 − 4246 + 2

[ (
H0)2 −K0

]
4547

}
tr L tr L, (A51b)

where we have set E= Eλ0 and used the symmetry of L andλ0.
On substitution in Eq. (A48b), these yield a more explicit ex-
pression for the leading-order three-dimensional elastic energy
density 4. We are not aware of any more possible simplifica-
tions of the traces in these expressions in the general case;
we note that the coefficients of the different trace terms in
Eqs. (A51) only depend on the intrinsic configuration.

f. Averaging over the transverse coordinate

The volume element in the intrinsic configuration�0 is, by
definition and using Eq. (A20b),

d+0 =
√

det G0
(

d(
√
6

)
dZ

= Y

[
1 + 2H0/0 +K0 (/0)2

]
d( d/0 (A52)

where d( is the surface element of the undeformed midsurface
�, and hence the elastic energy of the shell is

E =
∫
�

4̂ d(, (A53a)

in which expression

4̂ = Y

∫ � 0/2

−� 0/2
4
(
/0) [

1 + 2H0/0 +K0 (/0)2
]

d/0, (A53b)

is the effective two-dimensional energy density. In this ex-
pression, �0 is given in terms of the undeformed thickness ℎ
of the shell by Eq. (A22b).
Since the coefficients functions 41, 42, 43, 44, 45, 46, 47, 48

defined in Eqs. (A50) that appear in Eq. (A49) and hence in
the expansion of 4 are rational functions of /0, the integral
with respect to /0 in Eq. (A53b) can be performed in closed
form, but the resulting expressions are, in the general case, ex-
tremely cumbersome and therefore not presented here. For this
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reason, the general theory presented here is likely most useful
to describe deformations with some additional symmetry, such
as the axisymmetric deformations discussed in Section II.

APPENDIX B: DERIVATION OF THE GOVERNING EQUA-
TIONS FOR AXISYMMETRIC DEFORMATIONS

In this Appendix, we derive the governing equations for
axisymmetric deformations, by varying the elastic the elastic
energy (47a). Similar derivations are given in our previous
work [9, 10] for the elastic theories considered there, but here,
we keep the explicit asymptotic scalings in the derivation.
From Eq. (47b), with the alternative curvature strains defined
in Eq. (51b) and considering leading-order terms only, we have

X4̂ = Y
(
=B X�B + =q X�q

)
+ <B X B + <q X q , (B1)

wherein the shell stresses and shell moments are

=B = �Y
2ℎ

[
UBB�B+UBq�q + ℎ

(
VBB B+VBq q

) ]
, (B2a)

=q = �Y
2ℎ

[
UqB�B+Uqq�q + ℎ

(
VqB B+Vqq q

) ]
,

(B2b)
<B = �Y

3ℎ2 [
VBB�B+VqB�q + ℎ

(
WBB B+WBq q

) ]
, (B2c)

<q = �Y
3ℎ2 [

VBq�B+Vqq�q + ℎ
(
WqB B+Wqq q

) ]
,

(B2d)

since UBq = UqB , WBq = WqB . Now, from the definitions of the
shell and curvature strains in Eqs. (50) and (51b),

X�B =
sec k̃ XÃ ′ + 5B tan k̃ Xk̃

Y 5 0
B

, X�q =
1
Y 5 0
q

(
XÃ

A

)
, (B3a)

and

X B =
k̃ ′(
5 0
B

)2
5 0
q

, X q =
1

5 0
B

(
5 0
q

)2

(
cosk
A

Xk

)
. (B3b)

Hence, on letting

#B =
=B

5q 5
0
B

, #q =
=q

5B 5
0
q

, (B4a)

"B =
<B

5q
(
5 0
B

)2
5 0
q

, "q =
<q

5B 5
0
B

(
5 0
q

)2 , (B4b)

we obtain, from Eq. (47a) and using Eq. (9),

XE
2π

=
q
Ã#B sec k̃ XÃ + Ã"B Xk̃

y

−
∫
�

[
d
dB
(Ã"B) − Ã 5B#B tan k̃ − 5B"q cos k̃

]
dB

−
∫
�

[
d
dB

(
Ã#B sec k̃

)
− 5B#q

]
dB, (B5)

from which we read off the governing equations and boundary
conditions.

As in standard shell theories [23], the apparent singular-
ity in the resulting equations is removed by introducing the

transverse shear tension, ) = −#B tan k̃, and we obtain, using
Eqs. (10) and (13),

d#B
dB

= 5B

(
#q − #B

Ã
cos k̃ + ^B)

)
, (B6a)

d"B
dB

= 5B

(
"q − "B

Ã
cos k̃ − )

)
. (B6b)

Moreover, by differentiating the definition of ) and using
Eq. (B6a), we find

d)
dB

= − 5B
(
^B#B + ^q#q + )

cos k̃
Ã

)
. (B6c)

Together with the relations

dÃ
dB
= 5B cos k̃,

dk̃
dB

= 5B^B (B7)

from Eqs. (10) and (13), Eqs. (B6) determine the deformed
configuration of the shell. Having solved these equations, in-
tegrating the otherwise redundant shape equation Ĩ′ = 5B sin k̃
from Eqs. (10) yields the shape of the shell.

Numerical solution of Eqs. (B6)

We conclude the derivation of the governing equations for
axisymmetric deformationswith two remarks on the numerical
solution of Eqs. (B6).
First, we note that Eqs. (B6) are singular where Ã = 0. At

such a point, geometric continuity implies k̃ = 0. Hence) = 0
there by definition, and #q = #B for regularity in Eq. (B6a).
Moreover, by applying l’Hôpital’s rule to the definitions in
Eqs. (9) and (13), 5B = 5q , ^B = ^q . Hence Eqs. (B6) are
replaced with

d#B
dB

= 0,
d"B
dB

= 0,
d)
dB

= − 5B^B#B , (B8)

of which the first two follow by reflection across the axis of
symmetry, and the last follows by applying l’Hôpital’s rule to
Eq. (B6c) and using the previous observations and Eqs. (B7).
Second, as discussed also in Ref. [9, 10], at each stage of

the numerical solution, 5B , 5q , ^B , ^q must be determined from
Ã , k̃, "B , #B . To beginwith, 5q , ^q and hence �q ,  q are com-
puted directly from Ã , k̃ using the definitions (50) and (51b).
We can then compute 5B , ^B by noting that, once 5q , �q ,  q
are known, the definitions of #B , "B in Eqs. (B2a), (B2c), and
(B4) define a system of linear equations for �B ,  B . Their def-
initions (50) and (51b) then yield 5B and finally ^B . We can
then compute #q , "q using Eqs. (B2b), (B2d), and (B4), and
thus continue the numerical integration. (Moreover, if Ã = 0,
we similarly obtain two linear equations for 5 = 5B = 5q and
: = 5B^B = 5q^q , from the solution of which the numerical
integration can be continued.)
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APPENDIX C: NEO-HOOKEAN RELATIONS AS THE THIN
SHELL LIMIT OF GENERAL CONSTITUTIVE RELATIONS

In this final Appendix, we show that the effective two-
dimensional constitutive relations, resulting from Eq. (A48b),

4 = �Y2
[ (

tr e
)2 + tr

(
e2) ] +$ (

Y3) , (C1)

are general and do not only apply for the neo-Hookean three-
dimensional constitutive relations assumed in Eq. (18). To
this end, following Ref. [21], we consider energy densities
expressible as a general power series

4 =
1
2

∞∑
<=0

∞∑
==0
�<= (ℐ1 − 3)< (ℐ2 − 3)=, (C2)

where we set �00 = 0 without loss of generality, and where
ℐ1 = tr C as before and ℐ2 = tr C2 is the second invariant
of the Cauchy–Green tensor C = (RF)> (RF) = F>F. In this
expression, R is, in the notation of Appendix A, the rotation
that maps B0 onto B̃0, so that R>R = I. Using results from
Ref. [21] and continuing to use the notation of Appendix A, the
Piola–Kirchhoff stress tensor for this material is, with respect
to B0 ⊗

(
B0)∗,

P = 2
{
4,ℐ1 (RF) + 4,ℐ2

[
ℐ1 (RF) − (RF) (RF)> (RF)

]}
− ?(RF)−> = RQ, (C3a)

with
Q = 2

[
4,ℐ1F + 4,ℐ2 (ℐ1F − FC)

]
− %F−>, (C3b)

since R>R = I, and where F is given by Eq. (A14b), and we
recall that C = F>F, and where % = %(0) + $ (Y) is pressure.
(We now use an uppercase letter to denote pressure to empha-
sise that it is scaled differently to Appendix A; in the notation
used there, % = �?.)
(Partial) solution at order $ (1). From Eq. (A14b), we

compute the leading-order expansion of C, finding

C =

(
B>B + ww> B>v + 2w
v>B + 2w> v>v + 22

)
+$ (Y), (C4)

and hence ℐ1 = tr
(
B>B

)
+ w>w + v>v + 22 + $ (Y). Writing

4,ℐ1 = �1 + $ (Y), 4,ℐ2 = �2 + $ (Y), and using the expan-
sion (A29) of the incompressibility condition, we find

Q =

©«
$ (1)

2
{
�1 + �2

[
tr

(
B>B

)
+ w>w

]}
v

− 2�2BB>w − 2�22Bw
+ %(0) (det B)B−>w

$ (1) 22
[
�1 + �2 tr

(
B>B

) ]
− 2�2w

>B>v − %(0) det B

ª®®®®®®®¬
+$ (Y).

(C5)
The boundary conditions implyQT = $ (Y) as in Appendix A,
and hence, from Eqs. (A29) and (C5), the leading-order prob-
lem is
2 − w>B−1v = (det B)−1, (C6a)
2
{
�1 + �2

[
tr

(
B>B

)
+ w>w

]}
v − 2�2BB>w

− 2�22Bw + %(0) (det B)B−>w = 0, (C6b)
22

[
�1 + �2 tr

(
B>B

) ]
− 2�2w

>B>v − %(0) det B = 0. (C6c)

These equations have a trivial solution

/ (0) ≡ 0, Y (0) ≡ 0, %(0) = �10 + 2�01, (C7)

for which B = I, v = w = 0, 2 = 1, and hence C = I +$ (Y), so
that ℐ1 = ℐ2 = 3 + $ (Y) and thus �1 = �10/2, �2 = �01/2.
We were not however able to show that this is the only solution
of the nonlinear first-order differential equations for / (0) , Y (0)
as functions of /0 provided by Eqs. (C6) that satisfies the
conditions / (0) = 0, Y (0) = 0 on /0 = 0. In this respect, our
solution of the leading-order problem remains partial.
Our failure to solve Eqs. (C6) emphasises once again that

what distinguishes these problems of large bending deforma-
tions from classical problems in elastic shell theories is the
fact that the leading-order problem for these deformations is
not trivial. In fact, were a second solution of Eqs. (C6) to
exist, global energy considerations would select the solution;
this would open a new can of worms in the analysis.
Solution at order $ (Y). At this stage, we take Eqs. (C7)

as the solution of the leading-order problem (C6) and proceed
thence. The expansion (A41) of the deformation gradient thus
still holds true, and we deduce

C =

(
I + Y

(
B(1) + B>(1)

)
Y
(
v (1) + w (1)

)
Y
(
v>(1) + w>(1)

)
1 + 2Y2 (1)

)
+$

(
Y2) , (C8a)

C2 =

(
I + 2Y

(
B(1) + B>(1)

)
$ (Y)

$ (Y) 1 + 4Y2 (1)

)
+$

(
Y2) , (C8b)

and thence

ℐ1 = 3 + Y
[
2
(
tr B(1) + 2 (1)

) ]
+$

(
Y2) , (C9a)

ℐ2 = 3 + Y
[
4
(
tr B(1) + 2 (1)

) ]
+$

(
Y2) , (C9b)

But, from Eq. (A43), 1 = det F = 1 + Y
(
tr B(1) + 2 (1)

)
+$

(
Y2) ,

so 2 (1) = − tr B(1) , and henceℐ1 = ℐ2 = 3 +$
(
Y2) . Hence

4 =
1
2
[
�10 (ℐ1 − 3) + �01 (ℐ2 − 3)

]
+$

(
Y4) , (C10)

and, in particular, 4,ℐ1 = �10/2+$
(
Y2) , 4,ℐ2 = �01/2+$

(
Y2) .

In this way, the constitutive relations have reduced to those of
a Mooney–Rivlin solid [17]. We then obtain

Q(0) = O, Q(1)T = (�10 + �01)
(
v (1) + w (1)
$ (1)

)
, (C11)

where we have used % = �10+2�01+$ (Y). As in Appendix A,
the boundary conditions lead to Q(1)T = 0. It follows that
Eqs. (A46a) still hold.
Solution at order $

(
Y2) . Since the expansion (A43) of

the incompressibility condition is independent of the constitu-
tive relations and therefore still holds, Eqs. (A46a) still imply
Eq. (A46b) and hence Eq. (A48b). Eqs. (A46a) and (C8a)
then show that the off-diagonal terms in Eq. (A47) are in fact
of order $

(
Y2) . It then follows from Eq. (A47) that

ℐ2 = tr
{[

I + Y
(
B(1) + B>(1)

)
+ Y2 (B(2) + B>(2)

+ B>(1)B(1) + w (1)w>(1)
)
+$

(
Y3) ]2

}
+

[
1 + 2Y2 (1) + Y2 (22 (2) + 22

(1) + v>(1)v (1)
)
+$

(
Y3) ]2

+$
(
Y4) . (C12a)
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We have shown above thatℐ2 = 3 +$
(
Y2) . Using Eqs. (A46)

and Lemma 4, we now find

ℐ2 − 3 = 2Y2
[
2(tr B(2) + 2 (2) ) + w>(1)w (1) + v>(1)v (1)

+ tr
(
B2
(1)

)
+ 2 tr

(
B>(1)B(1)

)
+ 222

(1)

]
+$

(
Y3)

= 4Y2
[
2
(
tr B(1)

)2 + tr
(
B2
(1)

)
+ tr

(
B>(1)B(1)

) ]
+$

(
Y3)

= 4(ℐ1 − 3) +$
(
Y3) . (C12b)

by comparison with Eq. (A48a). Hence, from Eq. (C10),

4 =
�

2
(ℐ1 − 3) +$

(
Y3) , with � = �10 + 4�01. (C13)

Up to smaller corrections, these are the neo-Hookean consti-
tutive relations assumed in Eq. (18) and throughout Section II
and Appendix A, and which, as shown there, indeed reduce at
order $

(
Y2) to the effective two-dimensional relations (C1).

Assuming that the trivial solution (C7) of the leading-order
problemEq. (C6) is unique, this proves our claim in Section IV,
that these effective two-dimensional constitutive relations are
general.
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