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Deformations of cell sheets during morphogenesis are driven by developmental processes such as cell division
and cell shape changes. In morphoelastic shell theories of development, these processes appear as variations of
the intrinsic geometry of a thin elastic shell. However, morphogenesis often involves large bending deformations
that are outside the formal range of validity of these shell theories. Here, by asymptotic expansion of three-
dimensional incompressible morphoelasticity in the limit of a thin shell, we derive a shell theory for large
intrinsic bending deformations and emphasise the resulting geometric material anisotropy and the elastic role
of cell constriction. Taking the invagination of the green alga Volvox as a model developmental event, we show
how results for this theory differ from those for a classical shell theory that is not formally valid for these large
bending deformations and reveal how these geometric effects stabilise invagination.

I. INTRODUCTION

Cell division, cell shape changes, and related processes can
drive deformations of cell sheets during animal and plant de-
velopment [1–6]. In elastic continuum theories of the devel-
opment of the green alga Volvox [7–10], of tissue folding in
Drosophila [11, 12], or of more abstract active surfaces [13],
these driving processes appear as changes of the reference or
intrinsic geometry of thin elastic shells.
Just as classical thin shell theories arise from an asymp-

totic expansion of bulk elasticity in the small thickness of
the shell [14–16], these “morphoelastic” shell theories should
be asymptotic limits of a bulk theory. While there is now a
well-established framework of three-dimensional morphoelas-
ticity [17, 18], based on a multiplicative decomposition of the
deformation gradient tensor into intrinsic and elastic deforma-
tions [19], studies of this asymptotic limit have mostly been
restricted to the case of flatmorphoelastic plates. Extensions of
the classical Föppl–von Kármán equations [20, 21] have been
derived and residual stresses in Kirchhoff plate theories [22]
have been studied in this case. A theory of non-Euclidean
plates [23] has been developed in parallel. Apart from a gen-
eral geometric theory ofmorphoelastic surfaces [24], studies of
morphoelastic shells have remained more phenomenological,
however: some models [7, 8, 11–13] simply replaced the elas-
tic strains in classical shell theories [15, 25, 26] with measures
of the difference of the intrinsic and deformed geometries.
Other studies [9, 10] took a more geometric approach, mir-
roring geometric derivations of classical shell theories [25]
based on the so-called Kirchhoff “hypothesis”. This is the
asymptotic result [15] that the normals of the midsurface of
the undeformed shell remain, at leading order, normal to the
deformed midsurface.
There is however one more serious limitation of these mod-

els: tissues in development undergo large bending deforma-
tions (Fig. 1) that are outside the formal range of validity of the
underlying thin shell theories, which assume that the thickness
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of the shell is much smaller than all lengthscales of the midsur-
face of the shell [15, 25, 26]. However, even if the thickness
of the cell sheet is much smaller than its undeformed radius of
curvature, this radius of curvature may become comparable,
locally, to the thickness of the cell sheet as it deforms (Fig. 1).
This is associated with cells contracting at one cell pole to
splay and thereby bend the cell sheet [4].
Here, we derive a theory of thin incompressible morphoe-

lastic shells undergoing large bending deformations by asymp-
totic expansion of three-dimensional elasticity. We reveal how,
even in a constitutively isotropic material, this new scaling
limit of large bending deformations induces, in the thin shell
limit, a geometric anisotropy absent from classical shell the-
ories: different deformation directions exhibit different de-
formation responses. We stress how this geometric effect is

(a)

(b)

FIG. 1. Large bending deformations during morphogenesis: even if
the thickness of the cell sheet is small compared to the undeformed
radius of curvature, the local radius of curvature need not remain large
compared to the cell sheet thickness as the sheet deforms. (a) Cross
section of ventral furrow formation in Drosophila, reproduced from
Ref. [27]. (b)Midsagittal cross section of invagination in the spherical
alga Volvox globator, reproduced from Ref. [8]. Inset: cartoon of
constricted triangular cells in the bend region. Scale bars: 20 µm.
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associated with the geometric singularity of cell constriction,
i.e. the limit of wedged triangular cells [Fig. 1(b), inset] as-
sociated with these large bending deformations. Specialising
to the invagination of the green alga Volvox [28, 29], we then
show how results for this theory differ from those for a classi-
cal theory that is not formally valid in this large bending limit,
and reveal how invagination is stabilised by the geometry of
large bending deformations.

II. ELASTIC MODEL

In this section, we describe large bending deformations of a
thin incompressible morphoelastic shell, starting from three-
dimensional morphoelasticity. We shall have to distinguish
between three configurations of the shell [Fig. 2(a)]: (i) the
undeformed configuration of the shell, (ii) the deformed con-
figuration of the shell, and (iii) the intrinsic configuration of the
shell that encodes the local, intrinsic deformations of the shell,
i.e. the cell shape changes or cell division in the biological
system. These intrinsic deformations are not in general com-
patible with the global geometry of the shell: in other words,
this intrinsic configuration cannot in general be embedded into
three-dimensional Euclidean space [17]. Elasticity must there-
fore intervene to “glue” the intrinsically deformed infinitesimal
patches of cell sheet back together, as illustrated in Fig. 2(a).
Configurations (i) and (ii) are related by the geometric defor-
mation gradient F̃. This tensor decomposes multiplicatively
into an intrinsic contribution F0 that relates configurations (i)
and (iii), and an elastic contribution F = F̃

(
F0)−1. This is the

multiplicative decomposition of morphoelasticity [17, 18].
In this section, we restrict to torsionless deformations of

an axisymmetric shell. The analysis can be extended to more
general deformations of the shell, and, for the sake of complete-
ness, we do so in Appendix A, but the restriction to axisym-
metric deformations eschews themire of tensorial notation that
arises in the general case.
The derivation of the shell theory for large bending deforma-

tions divides, like derivations of classical shell theories, into
two steps: first, in subsection II A, we describe the kinematics
of the deformation and derive expressions for the geometric,
intrinsic, and elastic deformations gradients. Second, in sub-
section II B, we analyse the mechanics of the shell and expand
the three-dimensional elastic energy and equilibrium condi-
tions asymptotically. At the end of this section, in subsec-
tion II C, we discuss the limit of small bending deformations
that gives rise to classical shell theories.

A. Axisymmetric deformations of an elastic shell

We consider an elastic shell of undeformed thickness 𝜀ℎ,
where 𝜀 � 1 is a small asymptotic parameter expressing the
thinness of the shell compared to other lengthscales associated
with its midsurface. Large bending deformations will be in-
troduced in Section II B by allowing one of the intrinsic radii
of curvature of the shell to be of order 𝑂 (𝜀). We begin by
deriving an expression for the elastic deformation gradient F
for torsionless deformations of an axisymmetric shell.
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FIG. 2. Morphoelasticity of an axisymmetric shell. (a) The unde-
formed (top), deformed (left), and intrinsic (right) configurations of
the shell are related by the three tensors F̃, F0, and F = F̃

(
F0)−1. The

geometric and intrinsic midsurface stretches are 𝑓𝑠 , 𝑓𝜙 and 𝑓 0𝑠 , 𝑓 0𝜙 .
(b) Undeformed configuration V of an axisymmetric shell of thick-
ness 𝜀ℎ(𝑠), described by coordinates 𝑟 (𝑠), 𝑧(𝑠), where 𝑠 is arclength,
with respect to the basis {𝒖𝒓 , 𝒖𝝓 , 𝒖𝒛 } of cylindrical polars. (c) Cross
section of the undeformed shell, defining a basis B = {𝒆𝒔 , 𝒆𝝓 , 𝒏} and
the transverse coordinate 𝜁 . The surfaces of the undeformed shell are
at 𝜁 = ±ℎ± (𝑠), where the tangent vectors are 𝒆±𝒔 , 𝒆±𝝓 , and the normal is
𝒏±. (d) Deformed configuration Ṽ of the shell: after a torsionless de-
formation, the shell has thickness 𝜀ℎ̃(𝑠), arclength 𝑠, and is described
by coordinates 𝑟 (𝑠), 𝑧(𝑠) with respect to cylindrical polars. (e) Cross
section of the deformed shell, defining a basis B̃ = {𝒆̃𝒔 , 𝒆̃𝝓 , 𝒏̃}. Nor-
mals to the midsurface rotate so that a point at a distance 𝜀𝜁 from the
undeformed midsurface S is at a distance 𝜀𝜁 (𝑠, 𝜁) from the deformed
midsurface S̃, and displaced by a distance 𝜀𝜍 (𝑠, 𝜁) parallel to S̃. At
the surfaces 𝜁 = ±ℎ̃± (𝑠) of the deformed shell, the tangent vectors
are 𝒆̃±𝒔 , 𝒆±𝝓 , and the normal is 𝒏̃±. (f) The intrinsic midsurface S0,
on which 𝜁0 = 0, embeds, locally, into three-dimensional space to
define an intrinsic basis B0 = {𝑬𝒔 , 𝑬𝝓 , 𝑵}.

1. Undeformed configuration of the shell

We will describe the undeformed configuration V of the
shell with reference to a midsurface S that we will choose
later. With respect to the basis {𝒖𝒓 , 𝒖𝝓 , 𝒖𝒛} of cylindrical
coordinates, we define the position vector of a point on S,

𝝆(𝑠, 𝜙) = 𝑟 (𝑠)𝒖𝒓 (𝜙) + 𝑧(𝑠)𝒖𝒛 , (1)

with 𝑠 denoting arclength and 𝜙 being the azimuthal coordi-
nate [Fig. 2(b)]. The tangent angle 𝜓(𝑠) of S is defined by

𝑟 ′(𝑠) = cos𝜓(𝑠), 𝑧′(𝑠) = sin𝜓(𝑠), (2)
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in which dashes denote differentiation with respect to 𝑠. The
vectors

𝒆𝒔 (𝑠, 𝜙) = cos𝜓(𝑠)𝒖𝒓 (𝜙) + sin𝜓(𝑠)𝒖𝒛 , 𝒆𝝓 (𝜙) = 𝒖𝝓 (𝜙)
(3)

thus constitute a basis of the tangent space of S [Fig. 2(c)],
which we extend to a (right-handed) orthonormal basis
B = {𝒆𝒔 , 𝒆𝝓 , 𝒏} for V by adjoining the normal to S ,

𝒏(𝑠, 𝜙) = cos𝜓(𝑠)𝒖𝒛 − sin𝜓(𝑠)𝒖𝒓 (𝜙). (4)

In particular, 𝒏 = 𝒆𝒔 × 𝒆𝝓 . We complete the description of S
by computing its curvatures,

𝜘𝑠 (𝑠) = 𝜓 ′(𝑠), 𝜘𝜙 (𝑠) =
sin𝜓(𝑠)
𝑟 (𝑠) . (5)

Now, the position of a point in V is

𝒓 (𝑠, 𝜙, 𝜁) = 𝝆(𝑠, 𝜙) + 𝜀𝜁𝒏(𝑠, 𝜙), (6)

where we have introduced the transverse coordinate 𝜁 , which
is such that the shell surfaces are at 𝜁 = ±ℎ± (𝑠) [Fig. 2(c)].
Noting the derivatives 𝜕𝒏/𝜕𝑠 = −𝜘𝑠𝒆𝒔 and 𝜕𝒏/𝜕𝜙 = −𝜘𝜙𝒆𝝓 ,
we obtain the tangent basis of V ,

𝜕𝒓

𝜕𝑠
= (1 − 𝜀𝜘𝑠𝜁)𝒆𝒔 ,

𝜕𝒓

𝜕𝜙
= 𝑟 (1 − 𝜀𝜘𝜙𝜁)𝒆𝝓 ,

𝜕𝒓

𝜕𝜁
= 𝜀𝒏,

(7)

from which follows the expression for the Riemannian metric
of the undeformed configuration,

𝜒2𝑠 d𝑠2 + 𝜒2𝜙 d𝜙2 + 𝜒2𝜁 d𝜁2 (8a)

with associated scale factors

𝜒𝑠 = 1 − 𝜀𝜘𝑠𝜁, 𝜒𝜙 = 𝑟 (1 − 𝜀𝜘𝜙𝜁), 𝜒𝜁 = 𝜀. (8b)

and hence volume element

d𝑉 = 𝜒𝑠𝜒𝜙𝜒𝜁 d𝑠 d𝜙 d𝜁 = 𝜀(1 − 𝜀𝜘𝑠𝜁) (1 − 𝜀𝜘𝜙𝜁) 𝑟 d𝑠 d𝜙 d𝜁 .
(8c)

The position vectors of the surfaces 𝜁 = ±ℎ± (𝑠) of the unde-
formed shell are

𝒓± (𝑠, 𝜙, 𝜁) = 𝝆(𝑠, 𝜙) ± 𝜀ℎ± (𝑠)𝒏(𝑠, 𝜙), (9a)

so that, using commata to denote partial differentiation,

𝜕𝒓±

𝜕𝑠
=

(
1 ∓ 𝜀𝜘𝑠ℎ±

)
𝒆𝒔 ± 𝜀ℎ±,𝑠𝒏, (9b)

in which commata denote partial differentiation. The unit
tangent vectors to these shell surfaces are 𝒆±𝒔 ‖ 𝜕𝒓±/𝜕𝑠 and
𝒆±𝝓 = 𝒆𝝓 , in which the symbol ‖ expresses parallelism and
hides a normalisation factor for the unit vector on the left-hand
side. By definition, the unit normals 𝒏± to the deformed shell
surfaces [Fig. 2(c)] obey 𝒏± ‖ 𝒆±𝒔 × 𝒆±𝝓 . Now introducing the
normalisation factor explicitly, we find

𝒏± =
𝒏 ∓ 𝜈±𝒆𝒔√︁
1 + 𝜈2±

with 𝜈± =
𝜀ℎ±,𝑠

1 ∓ 𝜀𝜘𝑠ℎ±
. (10)

2. Deformed configuration of the shell

As the shell deforms into its deformed configuration Ṽ , the
midsurface S maps to the deformed midsurface S̃ [Fig. 2(d)],
with position vector

𝝆̃(𝑠, 𝜙) = 𝑟 (𝑠)𝒖𝒓 (𝜙) + 𝑧(𝑠)𝒖𝒛 , (11)

where, in particular, 𝑠 is again the undeformed arclength. De-
noting by 𝑠 the deformed arclength, we define the stretches

𝑓𝑠 (𝑠) =
d𝑠
d𝑠
, 𝑓𝜙 (𝑠) =

𝑟 (𝑠)
𝑟 (𝑠) , (12)

which enable us to define the tangent angle 𝜓̃(𝑠) of S̃ by

𝑟 ′(𝑠) = 𝑓𝑠 cos 𝜓̃(𝑠), 𝑧′(𝑠) = 𝑓𝑠 sin 𝜓̃(𝑠), (13)

where dashes still denote differentiationwith respect to 𝑠. Sim-
ilarly to the analysis of the undeformed configuration, we in-
troduce the tangent vectors

𝒆̃𝒔 (𝑠, 𝜙) = cos 𝜓̃(𝑠)𝒖𝒓 (𝜙) + sin 𝜓̃(𝑠)𝒖𝒛 , 𝒆𝝓 (𝜙) = 𝒖𝝓 (𝜙),
(14)

and the normal vector

𝒏̃(𝑠, 𝜙) = cos 𝜓̃(𝑠)𝒖𝒛 − sin 𝜓̃(𝑠)𝒖𝒓 (𝜙), (15)

so that 𝒏̃ = 𝒆𝒔 × 𝒆𝝓 . This defines a (right-handed) orthonormal
basis B̃ = {𝒆̃𝒔 , 𝒆̃𝝓 , 𝒏̃} describing Ṽ [Fig. 2(e)]. The curvatures
of the deformed shell are

𝜅𝑠 (𝑠) =
𝜓̃ ′(𝑠)
𝑓𝑠 (𝑠)

, 𝜅𝜙 (𝑠) =
sin 𝜓̃(𝑠)
𝑟 (𝑠) . (16)

As the shell deforms, the normals to S need not remain normal
to S̃, and so a point in V at a distance 𝜀𝜁 from S will end up,
in Ṽ , at a distance 𝜀𝜁 from S̃, and displaced by a distance
𝜀𝜍 parallel to S̃ [Fig. 2(e)]. By definition of the midsurface,
𝜁 = 𝜍 = 0 if 𝜁 = 0. The position of a point in Ṽ is thus

𝒓 (𝑠, 𝜙, 𝜁) = 𝝆̃(𝑠, 𝜙) + 𝜀𝜁 (𝑠, 𝜁) 𝒏̃(𝑠, 𝜙) + 𝜀𝜍 (𝑠, 𝜁)𝒆𝒔 (𝑠, 𝜙).
(17)

Continuing to use commata to denote partial differentiation,
we find
𝜕𝒓

𝜕𝑠
=

[
𝑓𝑠

(
1 − 𝜀𝜅𝑠𝜁

)
+ 𝜀𝜍,𝑠

]
𝒆𝒔 + 𝜀

(
𝜁,𝑠 + 𝑓𝑠𝜅𝑠𝜍

)
𝒏̃, (18a)

and
𝜕𝒓

𝜕𝜙
=

[
𝑟
(
1 − 𝜀𝜅𝜙𝜁

)
+ 𝜀𝜍 cos 𝜓̃

]
𝒆𝝓 ,

𝜕𝒓

𝜕𝜁
= 𝜀

(
𝜁,𝜁 𝒏̃ + 𝜍,𝜁 𝒆𝒔

)
.

(18b)

Noting that 𝑟 = 𝑓𝜙𝑟 from definitions (12), the Riemannian
metric of Ṽ is therefore{[
𝑓𝑠

(
1 − 𝜀𝜅𝑠𝜁

)
+ 𝜀𝜍,𝑠

]2 + 𝜀2 (
𝜁,𝑠 + 𝑓𝑠𝜅𝑠𝜍

)2} d𝑠2
+
[
𝑓𝜙𝑟

(
1−𝜀𝜅𝜙𝜁

)
+𝜀𝜍 cos 𝜓̃

]2 d𝜙2 + 𝜀2 [ (𝜁,𝜁 )2+ (
𝜍,𝜁

)2] d𝜁2
+ 2𝜀

{
𝜍,𝜁

[
𝑓𝑠

(
1 − 𝜀𝜅𝑠𝜁

)
+ 𝜀𝜍,𝑠

]
+ 𝜀𝜁,𝜁

(
𝜁,𝑠 + 𝑓𝑠𝜅𝑠𝜍

)}
d𝑠 d𝜁 .
(19a)
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From 𝜁 = 𝜍 = 0 on 𝜁 = 0, it follows that 𝜁,𝑠 = 𝜍,𝑠 = 0 on
𝜁 = 0. Hence the metric of S̃ is simply

𝑓 2𝑠 d𝑠2 + 𝑓 2𝜙 𝑟
2d𝜙2. (19b)

At the surfaces 𝜁 = ±ℎ̃± (𝑠) of the deformed shell, the unit
tangent vectors are 𝒆±𝒔 and 𝒆±𝝓 = 𝒆𝝓 . They define the normals
𝒏̃± ‖ 𝒆±𝒔 × 𝒆̃±𝝓 [Fig. 2(e)].

3. Intrinsic configuration of the shell: Incompatibility

To specify the intrinsic configuration V0 of the shell, we
introduce the intrinsic stretches 𝑓 0𝑠 , 𝑓 0𝜙 and the intrinsic cur-
vatures 𝜅0𝑠 , 𝜅0𝜙 and the intrinsic normal displacement 𝜁

0. We
assume that 𝑓 0𝑠 , 𝑓 0𝜙 and 𝜅

0
𝑠 , 𝜅

0
𝜙
are functions of 𝑠 only, while

𝜁0 (𝑠, 𝜁) is strictly increasing in 𝜁 , with 𝜁0 = 0 on 𝜁 = 0. Fur-
ther, we assume that the analogue of the displacement parallel
to the midsurface vanishes, 𝜍0 = 0.
Although we have named these functions with reference to

similar quantities defined for the deformed configuration, they
lack a geometric meaning at this stage. In fact, the Riemannian
metric that we can write down by analogy with Eq. (19a),{[
𝑓 0𝑠

(
1 − 𝜀𝜅0𝑠𝜁0

) ]2+ 𝜀2 (𝜁0,𝑠 )2} d𝑠2 + [
𝑓 0𝜙

(
1 − 𝜀𝜅0𝜙𝜁0

) ]2
𝑟2d𝜙2

+ 𝜀2
(
𝜁0,𝜁

)2d𝜁2 + 2𝜀2𝜁0,𝜁 𝜁0,𝑠 d𝑠 d𝜁, (20a)

is not in general compatible: its Riemann curvature tensor does
not vanish in general, so it cannot in general be embedded into
three-dimensional Euclidean space [17]. Mechanically, this
means that relieving all stresses in the shell requires an infi-
nite number of cuts [17]. This is not surprising because, in
the biological system, each cell undergoes independent shape
changes or division in general and, since cells are infinitesi-
mal in this continuum description, isolating these infinitesimal
building blocks requires infinitely many cuts.
We now define the intrinsic midsurface S0 of the shell by its

Riemannian metric, which is, by analogy with Eq. (19b) and
consistently with Eq. (20a),(

𝑓 0𝑠
)2 d𝑠2 + (

𝑓 0𝜙
)2
𝑟2d𝜙2. (20b)

It follows from a local embedding theorem for Riemannian
metrics [30, 31] that this two-dimensional metric can be
embedded, at least locally, into three-dimensional Euclidean
space. In particular, this means that there exists a local (right-
handed) orthonormal intrinsic basis B0 = {𝑬𝒔 , 𝑬𝝓 , 𝑵} of
three-dimensional space such that 𝑬𝒔 , 𝑬𝝓 = 𝒖𝝓 are tangent to
S0, and 𝑵 is normal to it [Fig. 2(f)]. Because the metric (20a)
is incompatible, the curvatures 𝜘0𝑠 , 𝜘0𝜙 of S

0 are in general dif-
ferent from the intrinsic curvatures 𝜅0𝑠 , 𝜅0𝜙 . While Eq. (20b)
assigns a geometric meaning to the intrinsic stretches 𝑓 0𝑠 , 𝑓 0𝜙 ,
these intrinsic curvatures therefore remain without the direct
geometric realisation that would result from an embedding
into three-dimensional Euclidean space, as does the intrinsic
normal displacement 𝜁0.

We specify the latter by requiring the intrinsic deformations
to conserve volume. This assumption is, for example, appro-
priate for Volvox inversion [Fig. 1(b)]: the cell measurements
of Ref. [29] suggest that the cell shape changes driving inver-
sion preserve volume. For other developmental processes that
include cell division, the assumption of intrinsic volume con-
servation would be replaced with a position-dependent con-
straint that takes account of this growth. Since 𝜁0 (𝑠, 𝜁) is in-
creasing and can hence be inverted to yield 𝜁

(
𝑠, 𝜁0

)
, Eq. (20a)

becomes, on changing coordinates from {𝑠, 𝜙, 𝜁 } to {𝑠, 𝜙, 𝜁0},(
𝜒0𝑠

)2d𝑠2 + (
𝜒0𝜙

)2d𝜙2 + (
𝜒0
𝜁 0

)2 (d𝜁0)2 (21a)

with scale factors

𝜒0𝑠 = 𝑓 0𝑠
(
1 − 𝜀𝜅0𝑠𝜁0

)
, 𝜒0𝜙 = 𝑓 0𝜙𝑟

(
1 − 𝜀𝜅0𝜙𝜁0

)
, 𝜒0

𝜁 0
= 𝜀.

(21b)

Its volume element is therefore

d𝑉0 = 𝜒0𝑠 𝜒0𝜙𝜒
0
𝜁 0
d𝑠 d𝜙 d𝜁0

= 𝜀 𝑓 0𝑠 𝑓
0
𝜙

(
1 − 𝜀𝜅0𝑠𝜁0

) (
1 − 𝜀𝜅0𝜙𝜁0

)
𝑟 d𝑠 d𝜙 d𝜁0. (21c)

Intrinsic volume conservation requires d𝑉 = d𝑉0, so Eqs. (8c)
and (21c) combine to yield a differential equation for 𝜁0 as a
function of 𝜁 , which we will eventually integrate in subsec-
tion II B under the scaling assumptions of our shell theory.
At this stage, S, S̃ , and S0 are defined to be corresponding

surfaces within the shell. Indeed, it would it be possible to de-
velop a shell theory for any choice of surfaces that correspond
to each other in this way. At this point however, we make a par-
ticular choice of surfaces (that we shall refer to as midsurfaces)
by imposing the following condition: the shell surfaces, at
𝜁 = ±ℎ± (𝑠) and 𝜁 = ±ℎ̃± (𝑠) in the deformed and undeformed
configurations respectively, correspond to 𝜁0 = ±ℎ0 (𝑠)/2; the
calculations in subsection II B will show that this choice can
be made. We stress that, like 𝜁0, the intrinsic thickness ℎ0 (𝑠)
lacks a direct geometric realisation.
We close by noting that 𝜁0 (𝑠, 𝜁) and hence ℎ0 (𝑠) can also be

specified without reference to the incompatible metric (20a),
by imposing the condition det F0 = 1. Indeed, with the intrin-
sic deformation gradient F0 defined as in Eq. (24) below, this
is easily seen to be equivalent with d𝑉 = d𝑉0. Conversely, the
condition det F0 = 1 can be used to define the intrinsic volume
element d𝑉0 without reference to Eq. (20a).

4. Calculation of the deformation gradient tensors

The geometric deformation gradient is F̃ = Grad 𝒓 [17], in
which the gradient with respect to the undeformed configura-
tion is [17]

Grad · = 1
𝜒2𝑠

𝜕·
𝜕𝑠

⊗ 𝜕𝒓

𝜕𝑠
+ 1
𝜒2
𝜙

𝜕·
𝜕𝜙

⊗ 𝜕𝒓

𝜕𝜙
+ 1
𝜒2
𝜁

𝜕·
𝜕𝜁

⊗ 𝜕𝒓

𝜕𝜁
. (22)

Combining Eqs. (7), (8b), and (18), we thus obtain the geo-
metric deformation gradient,
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F̃ =

©­­­­­­­­«

𝑓𝑠
(
1 − 𝜀𝜅𝑠𝜁

)
+ 𝜀𝜍,𝑠

1 − 𝜀𝜘𝑠𝜁
0 𝜍,𝜁

0
𝑓𝜙

(
1 − 𝜀𝜅𝜙𝜁

)
+ 𝜀𝜍 cos 𝜓̃/𝑟

1 − 𝜀𝜘𝜙𝜁
0

𝜀
(
𝜁,𝑠 + 𝑓𝑠𝜅𝑠𝜍

)
1 − 𝜀𝜘𝑠𝜁

0 𝜁,𝜁

ª®®®®®®®®¬
, (23)

expressed here with respect to the mixed basis B̃ ⊗ B. We now complete specifying the intrinsic configuration V0 by writing
down an analogous expression for the intrinsic deformation gradient with respect to the mixed basis B0 ⊗ B, viz.

F0 =

©­­­­­­­­«

𝑓 0𝑠
(
1 − 𝜀𝜅0𝑠𝜁0

)
1 − 𝜀𝜘𝑠𝜁

0 0

0
𝑓 0
𝜙

(
1 − 𝜀𝜅0

𝜙
𝜁0

)
1 − 𝜀𝜘𝜙𝜁

0

𝜀𝜁0,𝑠

1 − 𝜀𝜘𝑠𝜁
0 𝜁0

,𝜁

ª®®®®®®®®¬
. (24)

The elastic deformation gradient is therefore, with respect to the natural mixed basis B̃ ⊗ B0,

F = F̃
(
F0)−1 =

©­­­­­­­­­«

𝑓𝑠
(
1 − 𝜀𝜅𝑠𝜁

)
+ 𝜀

(
𝜍,𝑠 + 𝜍,𝜁 0 𝜁0,𝑠

)
𝑓 0𝑠

(
1 − 𝜀𝜅0𝑠𝜁0

) 0 𝜍,𝜁 0

0
𝑓𝜙

(
1 − 𝜀𝜅𝜙𝜁

)
+ 𝜀𝜍 cos 𝜓̃/𝑟

𝑓 0
𝜙

(
1 − 𝜀𝜅0

𝜙
𝜁0

) 0

𝜀
(
𝜁,𝑠 + 𝑓𝑠𝜅𝑠𝜍 − 𝜁0,𝑠𝜁,𝜁 0

)
𝑓 0𝑠

(
1 − 𝜀𝜅0𝑠𝜁0

) 0 𝜁,𝜁 0

ª®®®®®®®®®¬
. (25)

B. Thin shell theory for large bending deformations

In this subsection, we derive the effective elastic energy
for the shell by asymptotic expansion of three-dimensional
elasticity. We assume the simplest constitutive law, that the
shell is made of an incompressible neo-Hookeanmaterial [17],
so that its elastic energy is

E =

∫
V0
𝑒 d𝑉0, with 𝑒 =

𝐶

2
(I1 − 3), (26)

wherein 𝐶 > 0 is a material parameter, and I1 is the first in-
variant of the right Cauchy–Green tensor C = F>F [17, 32].
The integration of the strain energy density 𝑒 is over the intrin-
sic configuration V0 of the shell, with volume element d𝑉0.
As we have noted above, this can be defined from the condition
det F0 = 1, independently of the incompatible metric (20a).
The force on a area element d𝑆 with unit normal 𝒎̃ of the

deformed configuration is T𝒎̃ d𝑆 [17, 32]. In this expression,
T is the Cauchy stress tensor, which, for this neo–Hookean
material, is related to the deformation gradient by [21]

T = 𝐶
(
FF> − 𝑝I

)
, (27)

in which I is the identity, and the Lagrange multiplier 𝑝 is pro-
portional to pressure and imposes the incompressibility condi-
tion det F = 1. To this area element of the deformed configura-
tions corresponds, in the undeformed configuration, an area el-
ement d𝑆with unit normal𝒎. Nanson’s relation [17, 32] states

that 𝒎̃ d𝑆 = J̃ F̃−>
𝒎 d𝑆, where J̃ = det F̃ = det F det F0 = 1.

We introduce the tensor

P = TF̃−>
= 𝐶Q with Q = F

(
F0)−> − 𝑝F̃−>

. (28)

In particular, if F0 = I, then P = TF−> is the familiar (first)
Piola–Kirchhoff tensor [17]. By definition, T𝒎̃ d𝑆 = P𝒎 d𝑆,
and hence, similarly to the derivation of the familiar Cauchy
equation of classical elasticity [17, 32], the configuration of
the shell minimising the energy (26) is determined by

DivQ> = 0, (29a)

where the divergence (with respect to the undeformed config-
uration of the shell) is defined by contracting the first and last
indices of the gradient in Eq. (22). Since B is independent
of 𝜁 by definition, and using the nabla operator to denote the
gradient on S, this becomes, on separating the components
parallel and perpendicular to the midsurface,

(Q𝒏),𝜁
𝜀

+ ∇ · Q> = 0. (29b)

1. Scaling assumptions

At this point, we break the complete generality of our de-
scription by making scalings assumptions appropriate for a
shell theory of large intrinsic bending deformations.
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First, we introduce large intrinsic bending deformations ex-
plicitly by scaling the intrinsic curvatures so as to allow small
radii of curvature in the meridional direction, viz.

𝜅0𝑠 = 𝑓 0𝑠 𝑓
0
𝜙

𝜆0𝑠
𝜀
, 𝜅0𝜙 = 𝑓 0𝑠 𝑓

0
𝜙 𝜆
0
𝜙 , (30)

in which the scaled intrinsic curvatures 𝜆0𝑠 , 𝜆0𝜙 are assumed to
be 𝑂 (1) quantities. This scaling regime in which the merid-
ional intrinsic radius of curvature becomes comparable to the
thickness of the cell sheet is, as shown in Fig. 1(b), the one
relevant for Volvox invagination, which we shall analyse in
Section III. Appendix A treats the general case in which all
components of the curvature tensor are allowed to be large.
Second, we make the standard scaling assumptions of shell

theory, that the elastic strains are small, i.e. that the stretches
and curvatures in the deformed configuration do not differ
“too much” from the intrinsic stretches and curvatures. In
particular, while we have allowed the radius of curvature 1/𝜅0𝑠
to become comparable to the shell thickness in Eqs. (30), we
shall assume the deviations from this to remain small. More
formally, we introduce the shell strains 𝐸𝑠 , 𝐸𝜙 by writing

𝑓𝑠 = 𝑓 0𝑠
(
1 + 𝜀𝐸𝑠

)
, 𝑓𝜙 = 𝑓 0𝜙

(
1 + 𝜀𝐸𝜙

)
, (31)

and the curvature strains 𝐿𝑠 , 𝐿𝜙 by letting

𝜅𝑠 = 𝑓 0𝑠 𝑓
0
𝜙

(
𝜆0𝑠
𝜀

+ 𝐿𝑠
)
, 𝜅𝜙 = 𝑓 0𝑠 𝑓

0
𝜙

(
𝜆0𝜙 + 𝐿𝜙

)
. (32)

Finally, we introduce the scaled variables

𝑍0 = 𝑓 0𝑠 𝑓
0
𝜙 𝜁
0, 𝑍 = 𝑓 0𝑠 𝑓

0
𝜙 𝜁, 𝑆 = 𝑓 0𝑠 𝑓

0
𝜙 𝜍, (33)

While we will come back to discussing the factors 𝑓 0𝑠 𝑓 0𝜙 that
arise in Eqs. (30), (32), and (33), we note, for now and from
Eq. (20b), the following: the intrinsic midsurface S0 has sur-
face element d𝑆0 = 𝑓 0𝑠 𝑓

0
𝜙
𝑟 d𝑟 d𝜙 = 𝑓 0𝑠 𝑓

0
𝜙
d𝑆, with d𝑆 the sur-

face element of the undeformed midsurface S. Hence these
rescalings by 𝑓 0𝑠 𝑓 0𝜙 absorb the intrinsic stretching of the mid-
surface. This will turn out to simplify expressions that arise
in subsequent calculations.

2. Boundary and incompressibility conditions

We solve the Cauchy equation (29b) subject to the incom-
pressibility condition det F = 1 and force-free boundary con-
ditions. These boundary conditions, that there be no external
forces on the surfaces of the shell, are relevant for many prob-
lems in developmental biology, where deformations are, as
discussed in the introduction, driven by changes of the intrin-
sic geometry only; including external forces does not pose any
additional difficulty, though.
These force-free boundary conditions read T± 𝒏̃± = 0 [17],

where T± are the Cauchy tensors evaluated on the surfaces
𝜁 = ±ℎ̃± of Ṽ . By the above, these are equivalent with
P±𝒏± = 0, where, from Eq. (28), P± = 𝐶Q± are evaluated
on the surfaces 𝜁 = ±ℎ± of V , the normal vectors 𝒏± of which
are given by Eq. (10). The latter yields the expansion

𝒏± = 𝒏 ∓ 𝜀ℎ±,𝑠𝒆𝒔 +𝑂
(
𝜀2

)
. (34)

The incompressibility condition is det F = 1. Since the
bases B̃ and B0 are orthonormal, there exist rotations, rep-
resented by proper orthogonal matrices R̃ and R0, that map
the standard Cartesian basis X onto B̃ and B0, respectively.
Hence, if F denotes the matrix in Eq. (25) that represents F
with respect to the mixed basis B̃ ⊗ B0, then F is represented
by R̃>FR0 with respect to X ⊗ X . Since det R̃ = detR0 = 1,
det F = det

(
R̃>FR0) = det F. The incompressibility condition

can therefore be evaluated using the matrix in Eq. (25), but it
is important to recognise that incompressibility is a tensorial
condition. For the general, non-axisymmetric deformations
discussed in Appendix A, we shall indeed have to distinguish
more carefully between tensors and the matrices representing
them with respect to mixed non-orthogonal bases, which is
why we have already introduced different notations, based on
Ogden’s [32], for matrices (sans serif font) and tensors (bold
sans serif font) that could be used interchangeably here.

3. Intrinsic volume conservation

Before expanding the boundary and incompressibility con-
ditions asymptotically, we determine the dependence of 𝜁0 and
hence 𝑍0 on 𝜁 that results from the condition d𝑉 = d𝑉0 of in-
trinsic volume conservation. On recalling that 𝜅0𝑠 = 𝑂

(
𝜀−1

)
,

the expressions for d𝑉 in Eq. (8c) and d𝑉0 in Eq. (21c) yield,
at leading order, a differential equation for 𝑍0 (𝜁),(
1 − 𝜆0𝑠𝑍0

)
𝑍0,𝜁 = 1 =⇒ 𝑍0 =

1
𝜆0𝑠

(
1 −

√︃
1 − 2𝜆0𝑠𝜁

)
, (35)

where we have imposed 𝑍0 = 0 at 𝜁 = 0. Let 𝐻0 = ℎ0 𝑓 0𝑠 𝑓 0𝜙 .
Since 𝜁0 = ±ℎ0/2⇐⇒ 𝑍0 = ±𝐻0/2 at 𝜁 = ±ℎ± by definition,
Eq. (35) implies

ℎ± =
𝐻0

2

(
1 ∓

𝜆0𝑠
4
𝐻0

)
=⇒ ℎ = ℎ+ + ℎ− = 𝐻0, (36)

wherein ℎ is again the undeformed thickness of the cell
sheet [Fig. 2(c)]. We note that Eq. (36) is a leading-order result
only, since we have ignored 𝑂 (𝜀) corrections in Eq. (35).

4. Expansion of the boundary and incompressibility conditions

To expand the incompressibility and boundary conditions in
the small parameter 𝜀, we posit regular expansions

𝑍 = 𝑍 (0) + 𝜀𝑍 (1) +𝑂
(
𝜀2

)
, 𝑆 = 𝑆 (0) +𝑂 (𝜀), (37)

for the scaled transverse and parallel displacements. Through-
out this paper, we shall use subscripts in parentheses in this
way to denote the different terms in asymptotic expansions
in 𝜀. We further expand

Q = Q(0) + 𝜀Q(1) +𝑂
(
𝜀2

)
, 𝑝 = 𝑝 (0) +𝑂 (𝜀). (38)

a. Expansion at order𝑂 (1). At leading order, Eq. (29b)
yields (Q(0)𝒏),𝜁 = 0, so Q(0)𝒏 = 𝑸(𝑠) is independent of 𝜁 . It
follows that 0 = Q±𝒏± = Q±

(0)𝒏 + 𝑂 (𝜀) = ±𝑸 + 𝑂 (𝜀) using
Eq. (34). Thus 0 ≡ 𝑸 = Q(0)𝒏 =

(
𝑞𝑠(0) , 0, 𝑞𝑛(0)

)
. Expanding

definition (28) using Eqs. (23), (24), and (25), this yields [33]
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0 = 𝑞𝑠(0) = 𝑓 0𝑠 𝑓
0
𝜙

(
1 − 𝜆0𝑠𝑍0

) 𝜆0𝑠𝑆 (0) [
𝑝 (0) −

(
𝑆 (0) ,𝑍 0

)2] + (
1 − 𝜆0𝑠𝑍 (0)

)
𝑆 (0) ,𝑍 0𝑍 (0) ,𝑍 0(

1 − 𝜆0𝑠𝑍 (0)
)
𝑍 (0) ,𝑍 0 − 𝜆0𝑠𝑆 (0)𝑆 (0) ,𝑍 0

, (39a)

0 = 𝑞𝑛(0) = 𝑓 0𝑠 𝑓
0
𝜙

(
1 − 𝜆0𝑠𝑍0

) (1 − 𝜆0𝑠𝑍 (0)
) [ (

𝑍 (0) ,𝑍 0
)2 − 𝑝 (0) ] − 𝜆0𝑠𝑆 (0)𝑆 (0) ,𝑍 0𝑍 (0) ,𝑍 0(

1 − 𝜆0𝑠𝑍 (0)
)
𝑍 (0) ,𝑍 0 − 𝜆0𝑠𝑆 (0)𝑆 (0) ,𝑍 0

, (39b)

where we have used
(
𝜁0 ,𝜁

)−1
= 𝑓 0𝑠 𝑓

0
𝜙

(
1 − 𝜆0𝑠𝑍0

)
+𝑂 (𝜀), which follows from Eq. (35) on recalling the rescalings (33). Moreover,

on expanding the incompressibility condition using Eq. (25), we find

1 = det F = 1 −
1 − 𝜆0𝑠𝑍0 −

(
1 − 𝜆0𝑠𝑍 (0)

)
𝑍 (0) ,𝑍 0 + 𝜆0𝑠𝑆 (0)𝑆 (0) ,𝑍 0

1 − 𝜆0𝑠𝑍0
+𝑂 (𝜀). (40)

Eqs. (39) and (40) define a system of three simultaneous linear
algebraic equations for 𝑝 (0) , 𝑍 (0) ,𝑍 0 , and 𝑆 (0) ,𝑍 0 , with solution

𝑝 (0) =

(
1 − 𝜆0𝑠𝑍0

)2(
1 − 𝜆0𝑠𝑍 (0)

)2 + (
𝜆0𝑠𝑆 (0)

)2 , (41a)

𝑍 (0) ,𝑍 0 =

(
1 − 𝜆0𝑠𝑍0

) (
1 − 𝜆0𝑠𝑍 (0)

)(
1 − 𝜆0𝑠𝑍 (0)

)2 + (
𝜆0𝑠𝑆 (0)

)2 , (41b)

𝑆 (0) ,𝑍 0 = −
𝜆0𝑠𝑆 (0)

(
1 − 𝜆0𝑠𝑍0

)(
1 − 𝜆0𝑠𝑍 (0)

)2 + (
𝜆0𝑠𝑆 (0)

)2 . (41c)

Eq. (40) or Eqs. (41b) and (41c) imply

− 2𝑍 (0) ,𝑍 0
(
1 − 𝜆0𝑠𝑍 (0)

)
+ 2𝜆0𝑠𝑆 (0)𝑆 (0) ,𝑍 0 = −2

(
1 − 𝜆0𝑠𝑍0

)
.

(42a)

Integrating and using the fact that 𝑍 (0) = 𝑆 (0) = 0 at 𝑍0 = 0
by definition of the midsurfaces, we obtain(

1 − 𝜆0𝑠𝑍 (0)
)2 + (

𝜆0𝑠𝑆 (0)
)2

=
(
1 − 𝜆0𝑠𝑍0

)2
. (42b)

Eq. (41a) now becomes 𝑝 (0) = 1. Moreover, on substituting
Eq. (42b) into Eq. (41b),

𝜕𝑍 (0)

𝜕𝑍0
=
1 − 𝜆0𝑠𝑍 (0)

1 − 𝜆0𝑠𝑍0
=⇒

1 − 𝜆0𝑠𝑍 (0)

1 − 𝜆0𝑠𝑍0
= const., (43)

which, using 𝑍 (0) = 0 at 𝑍0 = 0 again, yields 𝑍 (0) ≡ 𝑍0.
Hence 𝑆 (0) ≡ 0 from Eq. (42b). The last equality is the Kirch-
hoff “hypothesis” [15]: normals to the intrinsic midsurface
remain, at lowest order, normal to the deformed midsurface.

b. Expansion at order𝑂 (𝜀). We now expand the incom-
pressibility condition further, finding

0 = det F − 1

= 𝜀

(
𝐸𝑠 + 𝐸𝜙 − 𝐿𝜙𝑍

0 +
𝜕𝑍 (1)

𝜕𝑍0
−
𝐿𝑠𝑍

0 + 𝜆0𝑠𝑍 (1)

1 − 𝜆0𝑠𝑍0

)
+𝑂

(
𝜀2

)
.

(44)

On solving the resulting differential equation for 𝑍 (1) by im-
posing 𝑍 (1) = 0 at 𝑍0 = 0, we obtain

𝑍 (1) = −
𝑍0

{
6(𝐸𝑠 + 𝐸𝜙) − 3𝑍0

[
𝐿𝑠 + 𝐿𝜙 + 𝜆0𝑠 (𝐸𝑠 + 𝐸𝜙)

]
+ 2𝜆0𝑠𝐿𝜙

(
𝑍0

)2}
6
(
1 − 𝜆0𝑠𝑍0

) . (45)

c. Expansion at order 𝑂
(
𝜀2

)
. It will turn out not to be necessary to expand the deformation gradient explicitly beyond

order 𝑂 (𝜀). Indeed, it will suffice to consider a formal expansion,

F =
©­«
1 + 𝜀𝑎 (1) + 𝜀2𝑎 (2) +𝑂

(
𝜀3

)
0 𝜀𝑣 (1) +𝑂

(
𝜀2

)
0 1 + 𝜀𝑏 (1) + 𝜀2𝑏 (2) +𝑂

(
𝜀3

)
0

𝜀𝑤 (1) +𝑂
(
𝜀2

)
0 1 + 𝜀𝑐 (1) + 𝜀2𝑐 (2) +𝑂

(
𝜀3

) ª®¬ , (46)

with the leading-order terms found from Eq. (25). This also yields, using Eq. (45),

𝑎 (1) =
6𝐸𝑠 − 6

[
𝐿𝑠 + 𝜆0𝑠

(
𝐸𝑠 − 𝐸𝜙

) ]
𝑍0 + 3𝜆0𝑠

[
𝐿𝑠 − 𝐿𝜙 + 𝜆0𝑠

(
𝐸𝑠 − 𝐸𝜙

) ] (
𝑍0

)2 + 2 (
𝜆0𝑠

)2
𝐿𝜙

(
𝑍0

)3
6
(
1 − 𝜆0𝑠𝑍0

)2 , 𝑏 (1) = 𝐸𝜙 − 𝑍0𝐿𝜙 .

(47)

Expressions for 𝑎 (2) , 𝑏 (2) , 𝑐 (1) , 𝑐 (2) , 𝑣 (1) , 𝑤 (1) could similarly be obtained in terms of the expansions (37), but, as announced,
will turn out to be of no consequence. Using Eq. (46), the incompressibility condition becomes

1 = det F = 1 + 𝜀
(
𝑎 (1) + 𝑏 (1) + 𝑐 (1)

)
+ 𝜀2

(
𝑎 (2) + 𝑏 (2) + 𝑐 (2) + 𝑎 (1)𝑏 (1) + 𝑏 (1)𝑐 (1) + 𝑐 (1)𝑎 (1) − 𝑣 (1)𝑤 (1)

)
+𝑂

(
𝜀3

)
. (48)
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Next, using Eq. (24), we introduce an analogous formal expansion for the intrinsic deformation gradient, viz.

F0 =
©­­«
𝑎0(0) +𝑂 (𝜀) 0 0

0 𝑏0(0) +𝑂 (𝜀) 0
𝜀𝑤0(1) +𝑂

(
𝜀2

)
0 𝑐0(0) +𝑂 (𝜀)

ª®®¬ , (49)

where 𝑐0(0) =
[
𝑓 0𝑠 𝑓

0
𝜙

(
1 − 𝜆0𝑠𝑍0

) ]−1 using Eq. (35), and the values of 𝑎0(0) , 𝑏0(0) , 𝑤0(1) are of no consequence. Hence, using Eq. (46),
F̃ = FF0 =

©­­«
𝑎0(0) +𝑂 (𝜀) 0 𝜀𝑐0(0)𝑣1 +𝑂

(
𝜀2

)
0 𝑏0(0) +𝑂 (𝜀) 0

𝜀
(
𝑤0(1) + 𝑎0(0)𝑤 (1)

)
+𝑂

(
𝜀2

)
0 𝑐0(0) +𝑂 (𝜀).

ª®®¬ , (50)

and thus, since 𝑝 = 1 +𝑂 (𝜀),

Q =
©­«
𝑂 (𝜀) 0 𝜀(𝑣 (1) + 𝑤 (1) )/𝑐0(0) +𝑂

(
𝜀2

)
0 𝑂 (𝜀) 0

𝑂 (𝜀) 0 𝑂 (𝜀).

ª®¬ =⇒ Q(0) = O, Q(1)𝒏 =
©­«
(𝑣 (1) + 𝑤 (1) )/𝑐0(0)

0
𝑂 (1)

ª®¬ . (51)

In particular, Eq. (29b) at order 𝑂 (1) is just (Q(1)𝒏),𝜁 = 0. Moreover 0 = Q±𝒏± = 𝜀Q±
(1)𝒏 + 𝑂

(
𝜀2

)
, since Q(0) = O and using

Eq. (34). Similarly to above, this implies Q(1)𝒏 ≡ 0. From this and from Eq. (48), we infer

𝑤 (1) = −𝑣 (1) , 𝑐 (1) = −
(
𝑎 (1) + 𝑏 (1)

)
, 𝑐 (2) = 𝑎

2
(1) + 𝑎 (1)𝑏 (1) + 𝑏

2
(1) − 𝑎 (2) − 𝑏 (2) + 𝑣 (1)𝑤 (1) . (52)

5. Asymptotic expansion of the constitutive relations

On computing the expansion of C = F>F from Eq. (46) and hence that of I1 = trC, and simplifying using Eqs. (52), we obtain

I1 = 3 + 𝜀
[
2
(
𝑎 (1) + 𝑏 (1) + 𝑐 (1)

) ]
+ 𝜀2

[
𝑎2(1) + 𝑏2(1) + 𝑐2(1) + 𝑣2(1) + 𝑤2(1) + 2

(
𝑎 (2) + 𝑏 (2) + 𝑐 (2)

) ]
+𝑂

(
𝜀3

)
= 3 + 𝜀2

[
4
(
𝑎2(1) + 𝑎 (1)𝑏 (1) + 𝑏2(1)

) ]
+𝑂

(
𝜀3

)
. (53a)

Hence, from Eqs. (47) and on introducing 𝑥 = 𝜆0𝑠𝑍0,

I1 = 3 +
𝜀2

(1 − 𝑥)4

{[
1 + (1 − 𝑥)2

]2
𝐸2𝑠 + 2

[
1 + (1 − 𝑥)2

]
𝐸𝑠𝐸𝜙 +

(
4 − 12𝑥 + 18𝑥2 − 12𝑥3 + 3𝑥4

)
𝐸2𝜙

− 1
𝜆0𝑠

[
2𝑥

(
4 − 6𝑥 + 4𝑥2 − 𝑥3

)
𝐸𝑠𝐿𝑠 − 2𝑥(2 − 𝑥)𝐸𝜙𝐿𝑠 −

2𝑥
3

(
6 − 12𝑥 + 11𝑥2 − 5𝑥3 + 𝑥4

)
𝐸𝑠𝐿𝜙

−2𝑥
3

(
12 − 39𝑥 + 55𝑥2 − 36𝑥3 + 9𝑥4

)
𝐸𝜙𝐿𝜙

]
+ 1(
𝜆0𝑠

)2 [
𝑥2 (2 − 𝑥)2𝐿2𝑠 +

2𝑥2

3

(
6 − 9𝑥 + 5𝑥2 − 𝑥3

)
𝐿𝑠𝐿𝜙 + 𝑥

2

9

(
36 − 126𝑥 + 177𝑥2 − 114𝑥3 + 28𝑥4

)
𝐿2𝜙

]}
+𝑂

(
𝜀3

)
. (53b)

This determines the leading-order term in the asymptotic ex-
pansion of the energy density in Eq. (26). On defining, from
Eq. (46), the (symmetric) effective two-dimensional deforma-
tion gradient and associated two-dimensional strain,

F̂ =

(
1 + 𝜀𝑎 (1) 0
0 1 + 𝜀𝑏 (1)

)
+𝑂

(
𝜀2

)
, Ê =

F̂>F̂ − I
2𝜀

, (54)

wherein I is the identity, we rewrite Eq. (53a) as

I1 − 3 = 2𝜀2
[ (
tr Ê

)2 + tr Ê2] +𝑂 (
𝜀3

)
. (55)

This shows how, at leading order, the energy density depends
only on the two invariants of the effective two-dimensional
strain. In the asymptotic limit of a thin shell, the constitutive
relations have thus become effectively two-dimensional.

6. Derivation of the thin shell theory

We are now set up to average out the transverse coordi-
nate and thus obtain the thin shell theory. We obtain, from
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Eq. (21c), the leading-order expansion for the volume element
in the intrinsic configuration,

d𝑉0 = 𝜀
(
1 − 𝜆0𝑠𝑍0

)
𝑟 d𝑠 d𝜙 d𝑍0 +𝑂

(
𝜀2

)
=
1 − 𝑥
𝜆0𝑠

𝜀 𝑟 d𝑠 d𝜙 d𝑥 +𝑂
(
𝜀2

)
. (56)

Moreover, we introduce 𝜂 = 𝜆0𝑠ℎ/2, so that the shell surfaces
𝜁0 = ±ℎ0/2 correspond to 𝑥 = ±𝜂.

On substituting Eqs. (53b) and (56) into Eq. (26), integrating
with respect to 𝑥, and using axisymmetry, we then obtain

E =

∫
S
𝑒 𝑟 d𝑠 d𝜙 = 2π

∫
C
𝑒 𝑟 d𝑠, (57a)

with the first integration over the undeformed axisymmetric
midsurface S and the second over the curve C generating S.
The effective two-dimensional energy density 𝑒 in Eq. (57a) is

𝑒 =
𝜀

𝜆0𝑠

∫ 𝜂

−𝜂
𝑒(𝑥) (1 − 𝑥) d𝑥 = 𝐶

2
𝜀3

{
ℎ
[
𝛼𝑠𝑠𝐸

2
𝑠 + (𝛼𝑠𝜙 + 𝛼𝜙𝑠)𝐸𝑠𝐸𝜙 + 𝛼𝜙𝜙𝐸

2
𝜙

]
+ 2ℎ2

[
𝛽𝑠𝑠𝐸𝑠𝐿𝑠 + 𝛽𝑠𝜙𝐸𝑠𝐿𝜙 + 𝛽𝜙𝑠𝐸𝜙𝐿𝑠

+ 𝛽𝜙𝜙𝐸𝜙𝐿𝜙

]
+ ℎ3

[
𝛾𝑠𝑠𝐿

2
𝑠 + (𝛾𝑠𝜙 + 𝛾𝜙𝑠)𝐿𝑠𝐿𝜙 + 𝛾𝜙𝜙𝐿

2
𝜙

]}
+𝑂

(
𝜀4

)
, (57b)

wherein

𝛼𝑠𝑠 =
𝜂4 − 2𝜂2 + 2(
1 − 𝜂2

)2 + 2 tanh
−1 𝜂

𝜂
, (58a)

𝛼𝑠𝜙 = 𝛼𝜙𝑠 =
1(

1 − 𝜂2
)2 + tanh−1 𝜂𝜂

, (58b)

𝛼𝜙𝜙 =
3𝜂4 − 6𝜂2 + 4(
1 − 𝜂2

)2 , (58c)

𝛽𝑠𝑠 = −
𝜂

(
2 − 𝜂2

)
2
(
1 − 𝜂2

)2 , (58d)

𝛽𝑠𝜙 =
𝜂6 + 4𝜂4 − 11𝜂2 + 3
18𝜂

(
1 − 𝜂2

)2 − tanh
−1 𝜂

6𝜂2
, (58e)

𝛽𝜙𝑠 = − 1
2𝜂

(
1 − 𝜂2

)2 + tanh−1 𝜂2𝜂2
, (58f)

𝛽𝜙𝜙 =
3𝜂5 − 5𝜂3 + 𝜂
6
(
1 − 𝜂2

)2 , (58g)

𝛾𝑠𝑠 =
𝜂4 − 2𝜂2 + 2
4𝜂2

(
1 − 𝜂2

)2 − tanh−1 𝜂2𝜂3
, (58h)

𝛾𝑠𝜙 = 𝛾𝜙𝑠 =
𝜂6 − 2𝜂4 + 𝜂2 + 3
36𝜂2

(
1 − 𝜂2

)2 − tanh
−1 𝜂

12𝜂3
, (58i)

𝛾𝜙𝜙 =
10𝜂4 − 21𝜂2 + 12
36

(
1 − 𝜂2

)2 (58j)

are functions of the large bending parameter

𝜂 =
𝜆0𝑠
2
ℎ =

𝜅0𝑠

2 𝑓 0𝑠 𝑓 0𝜙
(𝜀ℎ) =

𝜅0𝑠
2

(
𝜀ℎ0

)
(59)

only. Moreover, from Eqs. (31) and (32), the shell strains in
Eq. (57b) are

𝜀𝐸𝑠 =
𝑓𝑠 − 𝑓 0𝑠

𝑓 0𝑠
, 𝜀𝐸𝜙 =

𝑓𝜙 − 𝑓 0𝜙

𝑓 0
𝜙

, (60)

while the curvature strains are

𝐿𝑠 =
𝜅𝑠 − 𝜅0𝑠
𝑓 0𝑠 𝑓

0
𝜙

= 𝐾𝑠 −
2𝜂
ℎ
𝐸𝑠 +𝑂 (𝜀), (61a)

𝐿𝜙 =
𝜅𝜙 − 𝜅0𝜙
𝑓 0𝑠 𝑓

0
𝜙

= 𝐾𝜙 +𝑂 (𝜀), (61b)

where we have defined

𝐾𝑠 =
𝑓𝑠𝜅𝑠 − 𝑓 0𝑠 𝜅

0
𝑠(

𝑓 0𝑠
)2
𝑓 0
𝜙

, 𝐾𝜙 =
𝑓𝜙𝜅𝜙 − 𝑓 0

𝜙
𝜅0
𝜙

𝑓 0𝑠
(
𝑓 0
𝜙

)2 . (62)

Shell theories are expressedmore naturally in terms of the alter-
native curvature strains𝐾𝑠 , 𝐾𝜙 . Indeed,𝐾𝑠 , 𝐾𝜙 vanish for pure
stretching deformations, whereas 𝐿𝑠 , 𝐿𝜙 do not: consider a
shell, the undeformed (and intrinsic) configuration of which is
a sphere of radius 𝑅, and which deforms into a sphere of radius
𝑅′ = 𝑓 𝑅, for example because of a pressure difference between
the inside and outside. For this deformation, 𝑓 0𝑠 = 𝑓 0𝜙 = 1,
𝜅0𝑠 = 𝜅

0
𝜙
= 1/𝑅, while 𝑓𝑠 = 𝑓𝜙 = 𝑓 , 𝜅𝑠 = 𝜅𝜙 = 1/ 𝑓 𝑅, and

so 𝐿𝑠 = 𝐿𝜙 = (1 − 𝑓 )
/
𝑓 3𝑅 ≠ 0 for 𝑓 ≠ 1, but 𝐾𝑠 = 𝐾𝜙 = 0.

Reference [15] has also discussed this point, noting that 𝐿𝑠 , 𝐿𝜙

and 𝐾𝑠 , 𝐾𝜙 can be used interchangeably in classical shell theo-
ries. However, Eq. (61a) shows that, in the large bending limit
considered here, 𝐿𝑠 − 𝐾𝑠 = 𝑂 (1). Even at leading order, the
stretching deformations associated with changes in curvature
cannot therefore be neglected in this limit. In terms of the
alternative curvature strains 𝐾𝑠 , 𝐾𝜙 , Eq. (57b) becomes

𝑒 =
𝐶

2
𝜀3

{
ℎ
[
𝛼̄𝑠𝑠𝐸

2
𝑠 + (𝛼̄𝑠𝜙 + 𝛼̄𝜙𝑠)𝐸𝑠𝐸𝜙 + 𝛼𝜙𝜙𝐸

2
𝜙

]
+ 2ℎ2

[
𝛽𝑠𝑠𝐸𝑠𝐾𝑠 + 𝛽𝑠𝜙𝐸𝑠𝐾𝜙 + 𝛽𝜙𝑠𝐸𝜙𝐾𝑠 + 𝛽𝜙𝜙𝐸𝜙𝐾𝜙

]
+ ℎ3

[
𝛾𝑠𝑠𝐾

2
𝑠 + (𝛾𝑠𝜙 + 𝛾𝜙𝑠)𝐾𝑠𝐾𝜙 + 𝛾𝜙𝜙𝐾

2
𝜙

]}
+𝑂

(
𝜀4

)
, (63)
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where 𝛼𝜙𝜙 , 𝛽𝜙𝑠 , 𝛽𝜙𝜙 , 𝛾𝑠𝑠, 𝛾𝑠𝜙 = 𝛾𝜙𝑠 , 𝛾𝜙𝜙 are still given by
Eqs. (58), while

𝛼̄𝑠𝑠 = 𝛼𝑠𝑠 − 4𝜂𝛽𝑠𝑠 + 4𝜂2𝛾𝑠𝑠 =
4(

1 − 𝜂2
)2 , (64a)

𝛼̄𝑠𝜙 = 𝛼̄𝜙𝑠 = 𝛼𝑠𝜙 − 2𝜂𝛽𝜙𝑠 =
2(

1 − 𝜂2
)2 , (64b)

𝛽𝑠𝑠 = 𝛽𝑠𝑠 − 2𝜂𝛾𝑠𝑠 = − 1
𝜂

(
1 − 𝜂2

)2 + tanh−1 𝜂𝜂2
, (64c)

𝛽𝑠𝜙 = 𝛽𝑠𝜙 − 2𝜂𝛾𝑠𝜙 = −
𝜂

(
2 − 𝜂2

)
3
(
1 − 𝜂2

)2 . (64d)

7. Stretching, coupling, and bending energies

The terms that appear in the elastic energy (63) separate into
stretching, coupling, and bending terms, viz.

𝑒 = 𝑒stretch + 𝑒couple + 𝑒bend +𝑂
(
𝜀4

)
, (65)

with

𝑒stretch =
𝐶ℎ

2
𝜀3

[
𝛼̄𝑠𝑠𝐸

2
𝑠 + (𝛼̄𝑠𝜙 + 𝛼̄𝜙𝑠)𝐸𝑠𝐸𝜙 + 𝛼𝜙𝜙𝐸

2
𝜙

]
,

(66a)
𝑒couple = 𝐶ℎ

2𝜀3
[
𝛽𝑠𝑠𝐸𝑠𝐾𝑠 + 𝛽𝑠𝜙𝐸𝑠𝐾𝜙 + 𝛽𝜙𝑠𝐸𝜙𝐾𝑠

+ 𝛽𝜙𝜙𝐸𝜙𝐾𝜙

]
, (66b)

𝑒bend =
𝐶ℎ3

2
𝜀3

[
𝛾𝑠𝑠𝐾

2
𝑠 + (𝛾𝑠𝜙 + 𝛾𝜙𝑠)𝐾𝑠𝐾𝜙 + 𝛾𝜙𝜙𝐾

2
𝜙

]
.

(66c)

As (𝛼̄𝑠𝜙 + 𝛼̄𝜙𝑠)2 −4𝛼̄𝑠𝑠𝛼̄𝜙𝜙 = −48
(
1 − 𝜂2

)−2
< 0 for |𝜂 | < 1,

the stretching energy 𝑒stretch is positive semidefinite. Numeri-
cally, we also find that (𝛾𝑠𝜙 +𝛾𝜙𝑠)2−4𝛾𝑠𝑠𝛾𝜙𝜙 < 0 for |𝜂 | < 1,
and hence the bending energy 𝑒bend is positive semidefinite,
too. However, the coupling energy 𝑒couple can clearly be of
either sign, though 𝑒 is of course positive semidefinite.
All of the coefficient functions defined in Eqs. (58) and (64)

diverge as 𝜂 → ±1. More precisely, the coefficients diverge
like (1 − |𝜂 |)−2, and so Eq. (63) loses asymptoticity when
1 − |𝜂 | = 𝑂

(√
𝜀
)
, and hence the shell theory is not formally

valid in this limit. This is mirrored by a similar breakdown
of asymptoticity at other places in the analysis: for example,
Eqs. (47) show that the expansion of the deformation gradi-
ent in Eq. (46) also breaks down when 1 − |𝜂 | = 𝑂

(√
𝜀
)
.

However, this divergence, absent from theories not valid for
large bending deformations, is not surprising in the first place.
Indeed, the limit 𝜂 → ±1 corresponds to constricted cells,
i.e. wedge-shaped, triangular cells [Fig. 1(b), inset] for which
the intrinsic meridional radius of curvature is half the intrin-
sic cell sheet thickness: one of the surfaces of the shell has
contracted to a point in the intrinsic configuration, so is geo-
metrically singular. As the intrinsic configuration approaches
this constricted limit somewhere, deviations from the intrinsic
configuration become more and more expensive energetically
there compared to other positions in the shell, unless the di-
vergence of 𝑒 as 𝜂 → ±1 is suppressed. This happens if
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FIG. 3. Effective two-dimensional energy density. Plots of the co-
efficients in Eq. (63), defined in Eqs. (58) and (64), against 𝜂. All
coefficients are arbitrarily scaled with 𝛼̄𝑠𝑠 to absorb their divergence
in the constriction limit 𝜂 → ±1. (a) Plot of the stretching coefficients
𝛼̄𝑠𝑠 , 𝛼̄𝑠𝜙 , 𝛼̄𝜙𝑠 , 𝛼𝜙𝜙 . Inset: unscaled plot of 𝛼̄𝑠𝑠 against 𝜂, diverging
as 𝜂 → ±1. (b) Plot of the mixed coefficients 𝛽𝑠𝑠 , 𝛽𝑠𝜙 , 𝛽𝜙𝑠 , 𝛽𝜙𝜙 .
(c) Plot of the bending coefficients 𝛾𝑠𝑠 , 𝛾𝑠𝜙 , 𝛾𝜙𝑠 , 𝛾𝜙𝜙 .

𝑒couple ≈ −(𝑒stretch + 𝑒bend) < 0 or the divergence of each of
𝑒stretch, 𝑒couple, 𝑒bend is suppressed, which is possible for special
values of 𝐸𝑠 , 𝐸𝜙 , 𝐾𝑠 , 𝐾𝜙 , as discussed in more detail below.
Plots of the coefficient functions in Eqs. (58) and (64), arbi-

trarily scaled with 𝛼̄𝑠𝑠 to absorb their divergence as 𝜂 → ±1,
are shown in Fig. 3. These illustrate how the relative impor-
tance of different deformation modes depends on the amount
of intrinsic bending. In other words, large bending deforma-
tions break the material isotropy, so that different directions
of stretching have different effective stretching moduli; sim-
ilarly, different effective bending moduli are associated with
different directions of bending. This anisotropy is therefore
geometric; as discussed below, this effect is absent from the
classical theories not valid for large bending deformations.
This completes the derivation of the elastic energy (57a)

of a thin shell undergoing large axisymmetric bending defor-
mations. In Appendix B, we derive the associated governing
equations, using the expression (63) of the energy density in
terms of the alternative curvature strains defined in Eqs. (62).
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C. Limit of small bending deformations

We conclude our calculations by taking the limit 𝜂 → 0, in
which the bending deformations become small compared to
the thickness of the shell. The energy density in Eq. (63) then
limits to the form familiar from classical shell theories [15],

𝑒0 = 2𝐶𝜀3
[
ℎ

(
𝐸2𝑠 + 𝐸𝑠𝐸𝜙 + 𝐸2𝜙

)
+ ℎ

3

12

(
𝐾2𝑠 + 𝐾𝑠𝐾𝜙 + 𝐾2𝜙

)]
,

(67)

up to corrections of order𝑂
(
𝜀4

)
. This is the energy density of

a thin Hookean shell [15, 25, 26] with Poisson’s ratio 𝜈 = 1/2,
implying incompressibility, and elastic modulus 𝐸 = 3𝐶. In
particular, our analysis also provides a formal derivation of the
morphoelastic version of this classical shell theory. Again, the
energy density separates into stretching and bending terms,

𝑒0 = 𝑒0,stretch + 𝑒0,bend, (68)
with

𝑒0,stretch =
1
2
(4𝐶ℎ)𝜀3

[
𝐸2𝑠 + 𝐸𝑠𝐸𝜙 + 𝐸2𝜙

]
, (69a)

𝑒0,stretch =
1
2

(
𝐶ℎ3

3

)
𝜀3

[
𝐾2𝑠 + 𝐾𝑠𝐾𝜙 + 𝐾2𝜙

]
, (69b)

but there is no term that couples the strains and curva-
ture strains. In this theory, the same stretching modulus
𝐸 (𝜀ℎ)/

(
1 − 𝜈2

)
= 4𝐶 (𝜀ℎ) and the same bending modulus

𝐸 (𝜀ℎ)3/
[
12

(
1 − 𝜈2

) ]
= 𝐶 (𝜀ℎ)3/3 are associated with all di-

rections of stretching or bending; to pick up on a point made
earlier, it is this isotropy resulting from the constitutively as-
sumed isotropy of the material that is broken by the geometry
of large bending deformations.
Of course, Eq. (67) could be derived directly by imposing

different scalings, of small intrinsic bending, replacing those
for large bending deformations in Eq. (30); these scalings
would considerably simplify the solutions of Eqs. (39), (40),
and (44). Indeed, the structure of these calculations would
be broadly similar to the earlier asymptotic derivation of the
classical shell theories in Ref. [16]. We emphasise that, in
either derivation, the terms at order𝑂

(
𝜀2

)
in the expansion (46)

of the deformation gradient need not be computed explicitly.

1. Stretching and bending energies for small and large bending

We compare the stretching and bending energies in the small
and large bending limits by observing that

𝑒stretch = 𝑒0,stretch +
𝜂2

(
2 − 𝜂2

)(
1 − 𝜂2

)2 (
2𝐸𝑠 + 𝐸𝜙

)2
, (70a)

𝑒bend = 𝑒0,bend +
𝜂2

(
3 − 2𝜂2

)
36

(
1 − 𝜂2

)2 (
3𝐾𝑠 + 𝐾𝜙

) (
𝑘 (𝜂)𝐾𝑠 + 𝐾𝜙

)
,

(70b)
where we have used Eqs. (58) and (64) and defined

𝑘 (𝜂) = −
𝜂

(
4𝜂6 − 11𝜂4 + 10𝜂2 − 6

)
+ 6

(
1 − 𝜂2

)2 tanh−1 𝜂
𝜂5

(
3 − 2𝜂2

) .

(71)

This shows that the classical theory underestimates the stretch-
ing energy of large bending deformations: 𝑒stretch > 𝑒0,stretch
from Eq. (70a). Moreover, 𝑒stretch diverges as |𝜂 | → 1 unless
the deformations are such that 𝐸𝜙 = −2𝐸𝑠 .
The classical theorymay however overrestimate the bending

energy of large bending deformations. Indeed, numerically, we
find 13/5 = 𝑘 (0) < 𝑘 (𝜂) < 𝑘 (±1) = 3 for |𝜂 | < 1, and hence,
from Eq. (70b), 𝑒bend < 𝑒0,bend if and only if 𝐾𝑠𝐾𝜙 < 0 and
𝑘 (𝜂) |𝐾𝑠 | < |𝐾𝜙 | < 3|𝐾𝑠 |. Also from Eq. (70b), 𝑒bend diverges
as |𝜂 | → 1 unless 𝐾𝜙 = −3𝐾𝑠 .
In particular, 𝑒stretch and 𝑒bend are both bounded as |𝜂 | → 1 if

and only if 𝐸𝜙 = −2𝐸𝑠 and𝐾𝜙 = −3𝐾𝑠 . In this case, Eq. (66b)
shows that 𝑒couple is also bounded as |𝜂 | → 1. The conditions
𝐸𝜙 = −2𝐸𝑠 , 𝐾𝜙 = −3𝐾𝑠 thus define the special deformations
that allow the stretching, bending, and coupling energies to
remain bounded as |𝜂 | → 1 that we mentioned earlier.

2. Other elastic shell theories

The energy density in Eq. (67) has the same structure as
the elastic energy densities used in the models referenced in
the introduction, but the morphoelastic definitions of the shell
and curvature strains in Eqs. (60) and (62) differ from those in
these previous models: in models not based on morphoelas-
ticity and its multiplicative decomposition of the deformation
gradient [7, 8, 11–13], the shell and curvature strains are sim-
ply differences of stretches or curvatures, missing the scaling
factors of 𝑓 0𝑠 , 𝑓 0𝜙 that appear in Eqs. (60) and (62). We also
note that the expressions for the curvature strains in Eqs. (62)
differ, by a factor of 𝑔0 = 𝑓 0𝑠 𝑓

0
𝜙
, from those in Refs. [9, 10],

which, as discussed in the Introduction, used a geometric ap-
proach to derive a morphoelastic shell theory. Earlier, we
noted that this factor corresponds to the stretching of the in-
trinsic midsurface. Moreover, the 𝑂 (1) solution implies that
𝜁 = 𝜁0 + 𝑂 (𝜀). Hence, by the definition of the midsurfaces,
ℎ̃± = ±ℎ0/2 +𝑂 (𝜀), and so the deformed cell sheet has thick-
ness ℎ̃ = ℎ̃+ + ℎ̃− = ℎ0 + 𝑂 (𝜀). Eq. (36) therefore yields
ℎ/ℎ̃ = ℎ/ℎ0 + 𝑂 (𝜀) = 𝑔0 + 𝑂 (𝜀). The fact that the cur-
vature strains in Eq. (62) decrease as 𝑔0 increases therefore
expresses the fact that the shell becomes easier to bend as
it thins as a result of this stretching of the midsurface, with
𝑒bend, 𝑒0,bend ∝ 𝑔−20 . This geometric role of the factor 𝑔0 has
been noticed previously in the context of uniform growth of
an elastic shell [34].
The geometric approach in Refs. [9, 10] also leads to addi-

tional terms in the energy density. The present analysis proves
that these terms are not leading-order terms in the thin shell
limit. However, there is no reason to expect this geometric
approach to yield all terms at next order in the asymptotics.
A complete expansion could in principle be obtained by con-
tinuing the asymptotic analysis presented here. Taking the
analysis to higher orders in this way would in particular an-
swer the question: at what order does the Kirchhoff hypothesis
break down, i.e. at what order do the normals to the deformed
midsurface diverge from those to the undeformed midsurface?
This would permit asymptotic justification of the so-called
shear deformation theories [35] in which the normals to the
undeformed midsurface need not remain normals in the de-
formed configuration, but we do not pursue this further here.
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III. INVAGINATION IN VOLVOX

A. Biological background

The green algal genus Volvox [36] has become a model
for the study of the evolution of multicellularity [37, 38], for
biological fluid dynamics [39], and for problems in develop-
mental biology [40, 41]. Adult Volvox colonies [Fig. 4(a)]
are spheroidal, consisting of several thousand biflagellated so-
matic cells that enclose a small number of germ cells [36].
Each germ cell undergoes several rounds of cell division to
form a spherical embryonic cell sheet [Figs. 4(b) and 4(e)], at
which stage those cell poles whence will emanate the flagella
point into the sphere [36]. To acquire motility, the embryo
turns itself inside out in a process called inversion [28, 42].
In some species of Volvox [28, 29], inversion starts with the

formation of a circular invagination [Figs. 4(c) and 4(f)], rem-
iniscent of the cell sheet folds associated with processes such
as gastrulation or neurulation in higher organisms. At the cell

somatic cells
embryo

CB

interior

cell shape changes

CBexterior
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C

W
W

𝑠

𝜅0𝑠
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𝜅b

𝑠0

𝑠0−𝑤

C
W

𝑠

𝑠

𝑓 0𝑠 , 𝑓 0𝜙

𝑓p

𝑓a

𝑠0C
W

(a)

(d)

(b) (c)

(e) (f)

(g) (h)

FIG. 4. Invagination in Volvox. (a) Volvox colony, with somatic
cells and one embryo labelled. (b) Light-sheet microscopy image
of a spherical Volvox embryo before inversion. (c) Corresponding
image at an early stage of inversion, when a circular invagination
(I) has formed. (d) Splaying of cells and bending of the cell sheet
result from the formation of wedge-shaped cells and the rearrange-
ment of the cytoplasmic bridges (CBs); red lines indicate position of
CBs. (e) Midsagittal cross-section of a Volvox embryo before inver-
sion. (f) Corresponding cross-section during invagination, with the
regions where wedge-shaped cells (W) and contracted spindle-shaped
cells (C) have formed labelled. (g) Plot of the intrinsic curvature 𝜅0𝑠
against arclength 𝑠, defined in the inset. The plot defines the model
parameters 𝜅p, 𝜅b, 𝜅a, 𝑠0, and𝑤. Regions of cell shape changes (W,C)
as in (f) are also indicated. (h) Corresponding plot of the intrinsic
stretches 𝑓 0𝑠 , 𝑓 0𝜙 , defining additional model parameters 𝑓p, 𝑓a. Panels
(a)–(f) include microscopy images by Stephanie Höhn and have been
redrawn from Ref. [8]. Scale bars: (a) 50 µm; (e), (f) 20 µm.

level, this invagination results from two types of cell shape
changes [7, 29]: (1) cells near the equator become wedge-
shaped [Fig. 4(d)], while the cytoplasmic bridges (cell-cell
connections resulting from incomplete division) rearrange to
connect the cells at their thin wedge ends, and (2) cells in
the posterior hemisphere narrow in the meridional direction.
These cell shape changes arise simultaneously, with (1) splay-
ing the cells and thereby bending the cell sheet [Fig. 4(d)] and
(2) contracting the posterior hemisphere to facilitate the sub-
sequent inversion of the posterior hemisphere inside the as yet
uninverted anterior hemisphere.
At later stages of inversion, other cell shape changes arise

in different parts of the cell sheet [9, 29] to ease the peeling
of the anterior hemisphere over the inverted posterior and thus
complete inversion. In particular, the anterior hemisphere of
the cell sheet thins as cells there stretch anisotropically [9, 29].

B. Results

Following our earlier work [7–10], we model Volvox in-
version by considering the deformations of an incompressible
elastic spherical shell under quasi-static axisymmetric vari-
ations of its intrinsic stretches and curvatures representing
the cell shape changes driving inversion. The slow speed of
inversion—it takes about an hour for a Volvox embryo to turn
itself inside out [28, 29]—justifies this quasi-static approxi-
mation. In more detail, Figs. 4(g) and 4(h) show functional
forms of the intrinsic stretches and curvatures encoding the
cell shape changes driving invagination and define the model
parameters 𝜅p, 𝜅b, 𝜅a, 𝑓p, 𝑓a, 𝑠0, and 𝑤 that encode the intrinsic
curvatures and intrinsic stretches of different regions of the
cell sheet and the extent of these regions. In numerical calcu-
lations, we regularise the step discontinuities in the definitions
of the intrinsic stretches and curvatures in Figs. 4(g) and 4(h),
we non-dimensionalise all lengths with the pre-inversion ra-
dius 𝑅 of the embryo, and we take 𝜀ℎ = 0.15, appropriate for
Volvox globator [7, 9].
We solve the governing equations derived in Appendix B

numerically using the boundary value problem solver bvp4c of
Matlab (TheMathWorks, Inc.) and the continuation software
auto [43].
During the invagination stage, the radius of curvature in the

bend region of wedge-shaped cells [Fig. 4(f)] becomes com-
parable to the thickness of the cell sheet: this is the scaling
limit of large bending deformations studied in Section II. We
therefore compare the resulting elasticmodel, with energy den-
sity (57b), to the classical theory, in which the energy density
is given by Eq. (67). For weakly invaginated stages of Volvox
inversion (corresponding to small values of 𝜂 in the large bend-
ing theory), the two models yield, unsurprisingly, very sim-
ilar shapes [Fig. 5(a)], mirrored by very similar profiles of
meridional shell strain [Fig. 5(b)] and meridional curvature
strain [Fig. 5(c)]. The contraction of the posterior hemisphere
leads to thickening of the cell sheet there [Fig. 5(a)]. However,
themore the intrinsic configuration of the cell sheet approaches
the limit of cell constriction, the more the shapes resulting
from the two models differ [Fig. 5(d)]. Correspondingly, the
meridional shell strain [Fig. 5(e)] and meridional curvature
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FIG. 5. Comparison of the elastic model for large bending deformations and the classical model. Solid lines: large bending model with
energy density given by Eq. (63); dashed lines: classical model with energy density given by Eq. (67). (a) Early invagination stage: the two
models yield very similar shapes. Thick lines: midline of the cell sheet; thin lines and shaded area: transverse extent of the shell, illustrating
the thickness variations resulting from the cell shape changes. Dotted line: midline of the undeformed spherical shell. Parameter values:
𝜅p = 𝜅a = 1, 𝜅b = −2, 𝑓p = 0.8, 𝑓a = 1, 𝑠0 = 1.5, 𝑤 = 0.2. (b) Corresponding plot of the meridional shell strain 𝐸𝑠 . The grey shaded area
marks the bend region 𝑠0 −𝑤 < 𝑠 < 𝑠0. (c) Corresponding plot of the meridional curvature strain 𝐾𝑠 . (d) Later invagination stage: as the cells
in the bend region approach the constriction limit, the shapes resulting from the two models start differ increasingly. Parameter values are as
in (a), except 𝜅b = −8.5, 𝑤 = 0.5. (e) Corresponding plot of the meridional shell strain 𝐸𝑠 . (f) Corresponding plot of the meridional curvature
strain 𝐾𝑠 . (g) Bifurcation diagram, for different values of 𝑤, in (𝑘, 𝑑) space, where 𝑘 = −𝜅b and 𝑑 is the posterior displacement defined in the
axis inset. Different lines correspond to parameter values 𝑤 = 0.3, 0.5, 0.6, 0.7, 0.8, 0.9. Other parameter values are as in (a). The vertical line
|𝜂 | = 1 corresponding to the constriction limit is also shown. For 𝑤 > 𝑤∗ (in the large bending model) or 𝑤 > 𝑤∗

0 (in the classical model),
discontinuous jumps in 𝑑, denoted by vertical arrows, arise as 𝑘 is increased. The thick lines correspond to 𝑤 = 0.6 and show that 𝑤∗ > 𝑤∗

0.

strain [Fig. 5(f)] in the two models differ increasingly. It may
seem counterintuitive that these strains are larger in the bend
region of nearly constricted cells for the large-bending model
than for the classical model [Figs. 5(e) and 5(f)], since the
stretching and bending cost of these larger strains is much
higher in the large-bending model than in the classical model.
Indeed, on computing the stretching and bending energies (not
shown) of the shapes in Fig. 5(d), we find them to be much
larger in the large-bending model than in the classical model.
However, these large energies are balanced by a correspond-
ingly large and negative coupling energy: for example, 𝐸𝑠 < 0
and 𝐾𝑠 > 0 in the bend region [Figs. 5(e) and 5(f)], while
𝜂 < 0 =⇒ 𝛽𝑠𝑠 > 0 [Fig. 3(b)], and so 𝛽𝑠𝑠𝐸𝑠𝐾𝑠 < 0. This
negative coupling energy therefore explains the large strains in
the bend region that arise in the large-bending model.
The largest curvature strains [Fig. 5(f)] arise, however, in

the anterior fold, i.e. in the second bend region that arises
as a passive mechanical consequence of the wedge-shaped
cells in the bend region just next to it [7, 9]. As a result of
the contraction of the posterior hemisphere, the cell sheet is
thinner in the anterior [Fig. 5(d)], and hence is easier to bend
there, as discussed earlier. In fact, around the invagination
stage in Fig. 5(d), cells in the anterior fold begin to stretch in
the meridional direction [9, 29], leading to further thinning
and increased bendability of the cell sheet there.
The examples in Figs. 5(a) and 5(d) indicate that the results

of the two models differ at a quantitative, if not at a qualita-
tive level. We extend this observation by plotting, for both
models, 𝑘 = −𝜅b against the displacement 𝑑 of the posterior

pole [Fig. 5(g), inset] for different values of the width 𝑤 of
the bend region in Fig. 5(g). Again, the solution curves show
similar behaviour in the two models, but differ at a quanti-
tative level. They confirm what one observes in Fig. 5(d),
that the cell sheet is more invaginated, at the same parame-
ter values and for sufficiently large 𝑘 , in the classical model
than in the large-bending model. Nonetheless, the cell sheet
invaginates completely even in the large-bending model as 𝑤
increases [Fig. 5(g)], i.e. as more cells become wedge-shaped
and the bend region widens, as observed during Volvox in-
version [29]. Moreover, one can argue that invagination is
actually more stable in the large-bending model: there is a
critical bend region width, 𝑤∗ in the large-bending model and
𝑤∗
0 in the classical model, such that the solution curves in the

(𝑘, 𝑑) diagram are single-valued for 𝑤 < 𝑤∗ or 𝑤 < 𝑤∗
0, but

becomemultivalued for 𝑤 > 𝑤∗ or 𝑤 > 𝑤∗
0, respectively, lead-

ing to discontinuous jumps in 𝑑 as 𝑘 is varied. Where multiple
solutions exist for a given value of 𝑘 , the one with the lowest
value of 𝑑 has the lowest energy (not shown). For the clas-
sical theory, we have discussed this bifurcation behaviour in
Ref. [8], and rationalised it by constructing an effective energy
that estimates different elastic contributions. It is therefore
not surprising that, here, we find qualitatively identical bifur-
cation behaviour in the two models, but that again, there are
quantitative differences in the bifurcation behaviour. However,
Fig. 5(g) shows that 𝑤∗ > 𝑤∗

0. In other words, continuous in-
vagination is possible in a larger region of parameter space in
the large bending theory than in the classical theory: in this
sense, invagination is stabilised in the large-bending theory.
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This discussion shows how the geometry of large bending
deformations modifies the mechanical picture of invagination
suggested by the classical theory. When we introduced the
problem of large bending deformations, we argued that classi-
cal shell theories cannot describe these deformations because
of the assumption of large radii of curvature inherent in them.
At this stage, wemust therefore ask: can the large-bending the-
ory derived here provide a complete description of themechan-
ics of invagination? This is first a question of self-consistency:
is the intrinsic configuration not “too incompatible”? In other
words, are the deformations resulting from the imposed intrin-
sic stretches and curvatures consistent with the scalings (31)
and (32) assumed in the derivation of the shell theory? Even
for the late invagination stage in Fig. 5(d), the meridional shell
strain remains small [Fig. 5(e)], although the meridional cur-
vature strain reaches values of order 𝑂 (1/𝜀) [Fig. 5(f)]. Of
course, the invagination stage in Fig. 5(d) does not satisfy the
restriction 1 − |𝜂 | �

√
𝜀 of our shell theory discussed earlier.

This kind of condition is particularly restrictive for biological
tissues in which 𝜀 is not “that small” (Fig. 1). While results
remain qualitatively unchanged for somewhat smaller values
of |𝜂 | within that range of validity, this hints that understanding
the elasticity of the constriction limit |𝜂 | → 1 remains a key
open problem for future work.

IV. CONCLUSION

In this paper, we have derived a morphoelastic shell theory
valid for the large bending deformations that are commonly
observed in developmental biology (Fig. 1), and have shown
how this new scaling limit of large bending deformations in-
duces a purely geometric effective material anisotropy absent
from classical shell theories. Taking the invagination of the
green alga Volvox as an example, we have compared this large-
bending theory to a simpler, classical theory not formally valid
for large bending deformations. Since the classical theory does
not account for the geometric material anisotropy or the sin-
gularity of cell constriction, it differs, for strongly invaginated
shapes as in Figs. 1(b), 4(c), and 4(f), from the theory for
large bending deformation at a quantitative, if not at a qualita-
tive level. In particular, we have argued that these geometric
effects stabilise Volvox invagination.
This and the growing interest in quantitative rather than

merely qualitative analyses of morphogenesis [44, 45] empha-
sise the importance of this new scaling limit of large bending
deformations for studies of the mechanics of developmental
biology. The theory we have derived here is not however
the most general theory of these large bending deformations.
Indeed, when writing down the expression for the intrinsic
deformation gradient in Eq. (24), we assumed that there is
no intrinsic displacement parallel to the midsurface, 𝜍0 = 0.
The nonlinear differential equations extending Eqs. (39) and
(40) that arise in the expansions of the boundary and incom-
pressibility conditions for 𝜍0 ≠ 0 still admit a trivial solution
𝑝 (0) = 1, 𝑍 (0) ≡ 𝑍0, 𝑆 (0) ≡ 𝑆0, where 𝑆0 = 𝑓 0𝑠 𝑓

0
𝜙𝜍
0. We

were however unable to extend our calculations in Section II
to prove that this solution is unique; a similar issues arises
when extending the calculations of this paper to more general

constitutive relations, as discussed below and in Appendix C.
It therefore remains unclear what form the extension of the
Kirchhoff “hypothesis” [15] to this case takes.
In this paper, we assumed the simplest, incompressible neo-

Hookean constitutive relations when deriving our shell theory
for large bending deformations. The restriction to incompress-
ible elastic materials is justified by the biological context of
our analysis, in which the models derived here describe sheets
of fluid-filled cells that are therefore indeed incompressible to
a first approximation. However, the bulk elastic response of
biological materials such as brain tissue is not linear [46–48].
The restriction to linear neo-Hookean relations may therefore
appear to be a limitation of the analysis, but that turns out not
to be the case: in the thin shell limit, general hyperelastic con-
stitutive relations reduce to neo-Hookean relations. This result
has been established previously for thin plates [20, 49], and,
in Appendix C, we (partially) extend it to the large bending
deformations of thin shells considered here. In the context of
shell theories, the problem of specifying the nonlinear consti-
tutive relations of biological tissues does not therefore arise.
However, we have recently shown that the continuum limit of
a class of discrete models of cell sheets involves not only non-
linear elastic, but also nonlocal, nonelastic terms [50]. More-
over, adding the geometric singularity of apical constriction
(corresponding to triangular cells in the underlying discrete
model) as a constraint to the variational problem that arises in
this continuum limit remains an important open problem [50].
Solving thismay provide a regularisation of the singularity that
breaks asymptoticity as |𝜂 | → 1 in the theory derived here, and
hence a yet more complete mechanical picture of the bend re-
gion of wedge-shaped cells in Volvox invagination [Fig. 4(d)].
Meanwhile, all of this suggests that the journey towards under-
standing the continuum mechanics of biological materials, on
which we have taken another step with the present analysis of
large bending deformations of thin elastic shells, will continue
to abound with new problems in nonlinear mechanics.
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APPENDIX A: THIN-SHELL THEORY FOR LARGE
BENDING DEFORMATIONS OF AN ELASTIC SHELL

In this Appendix, we extend the calculations for axisym-
metric deformations of an elastic shell in Section II to general
deformations.
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1. Deformations of an elastic shell

As in Section II, we begin by deriving expressions for the
deformation gradient tensors of an elastic shell of thickness 𝜀ℎ,
where 𝜀 is, again, a small asymptotic parameter that expresses
the thinness of the shell.

a. Undeformed configuration of the shell

We parameterise the undeformed midsurface S of the shell
in terms of generalised, not necessarily orthogonal coordi-
nates; we shall use Greek letters to denote these coordinates.
Thus, if 𝝆 is the position of a point on S, the tangent vectors
there are 𝒆𝜶 = 𝜕𝝆/𝜕𝛼. The metric g of the midsurface thus
has components 𝑔𝛼𝛽 = 𝒆𝜶 · 𝒆𝜷 , and we set 𝑔 = det g.
Next, we define a basis B for the shell by adjoining the

unit normal vector 𝒏 to this tangent basis. This obeys the
Weingarten equation [51]

𝒏,𝛼 = −𝜘𝛼𝛽𝒆𝜷 , (A1)

in which commata denote partial differentiation and the (sym-
metric) curvature tensor is 𝜘𝛼𝛽 = −𝒆𝜶 · 𝒏,𝛽 .
The position of a point in the undeformed configurationV of

the shell is 𝒓 = 𝝆 + 𝜀𝜁𝒏, where 𝜁 denotes the transverse coor-
dinate, as defined for axisymmetric deformations in Fig. 2(c).
Hence

𝒓 ,𝛼 =

(
𝛿𝛼

𝛽 − 𝜀𝜁𝜘𝛼𝛽
)
𝒆𝜷 , 𝒓 ,𝜁 = 𝜀𝒏, (A2)

wherein we have used the Weingarten equation (A1), and
where 𝛿 is the Kronecker delta. The metric G of the unde-
formed configuration therefore has components

𝐺𝜁 𝜁 = 𝜀2, 𝐺𝛼𝜁 = 𝐺𝜁 𝛼 = 0, (A3a)

and

𝐺𝛼𝛽 = 𝑔𝛼𝛾

(
𝛿𝛾 𝛿 − 𝜀𝜁𝜘𝛾 𝛿

) (
𝛿𝛿𝛽 − 𝜀𝜁𝜘𝛿𝛽

)
, (A3b)

where we have used the symmetry of the curvature tensor. In
particular, its inverse has components

𝐺𝜁 𝜁 = 𝜀−2, 𝐺𝛼𝜁 = 𝐺𝜁 𝛼 = 0, 𝐺𝛼𝛽 . (A4)

The position vectors of the surfaces 𝜁 = ±ℎ± of the unde-
formed shell are 𝒓± = 𝝆±𝜀ℎ±𝒏, and hence the tangent vectors
to these surfaces are

𝒆±𝜶 = 𝒓± ,𝛼 =

(
𝛿𝛼

𝛽 ∓ 𝜀ℎ±𝜘𝛼𝛽
)
𝒆𝜷 ± 𝜀ℎ± ,𝛼𝒏. (A5)

We now order B = {𝒆1, 𝒆2, 𝒏} as a right-handed basis by
exchanging 𝒏 ↔ −𝒏 if required. Expanding in components,
this implies that 𝒆1 × 𝒆2 =

√
𝑔𝒏, and hence 𝒆1 × 𝒏 = −𝒆2/√𝑔,

𝒆2 × 𝒏 = 𝒆1/√𝑔. Continuing to expand in components and
after some calculations, we infer

𝒆±1 × 𝒆±2 =
[
1 ∓ 2𝜀ℎ±𝐻 + 𝜀2 (ℎ±)2𝐾

] √
𝑔𝒏

∓ 𝜀ℎ± ,𝛼
[ (
1 ± 𝜀ℎ±𝐻

)
𝛿𝛼𝛽 ∓ 𝜀𝜘𝛽 𝛼ℎ±

] 𝒆𝜷
√
𝑔
, (A6)

wherein we have identified 𝐻 = 1
2𝜘𝛼

𝛼 and 𝐾 = det 𝜘𝛼𝛽 as
the mean and Gaussian curvatures [51] of S . On normalising
these vectors, we obtain the normals to the shell surfaces,

𝒏± =
𝒏 ∓ 𝜈±𝛼𝒆

𝜶√︁
1 + 𝜈±𝛽𝜈± 𝛽

, (A7a)

with

𝜈±𝛼 =
𝜀ℎ± ,𝛽

[
(1 ± 𝜀ℎ±𝐻) 𝛿𝛽 𝛼 ∓ 𝜀𝜘𝛼𝛽ℎ±

]
𝑔

[
1 ∓ 2𝜀ℎ±𝐻 + 𝜀2 (ℎ±)2 𝐾

] . (A7b)

b. Deformed configuration of the shell

We take the same generalised coordinates to parameterise
the deformed midsurface S̃ of the shell. The tangent vectors at
a point 𝝆̃ on S̃ are thus 𝒆𝜶 = 𝜕 𝝆̃/𝜕𝛼. The metric g̃ of the mid-
surface has components 𝑔̃𝛼𝛽 = 𝒆𝜶 · 𝒆𝜷 , and we let 𝑔̃ = det g̃.
We extend the tangent basis of S̃ to a basis B̃ for the deformed
shell by adding the unit normal 𝒏̃, and introduce the (symmet-
ric) curvature tensor 𝜅𝛼𝛽 = −𝒆𝜶 · 𝒏̃,𝛽 . The Weingarten and
Gauß equations [51]

𝒏̃,𝛼 = −𝜅𝛼𝛽𝒆𝜷 , 𝒆̃𝜶,𝛽 = 𝜅𝛼𝛽 𝒏̃ + Γ̃𝛼𝛽
𝛾
𝒆𝜸 (A8)

express the derivatives of the normal and tangent vectors in
terms of the curvature tensor and Christoffel symbols associ-
ated with the deformed midsurface metric [51]. The position
of a point in the deformed configuration Ṽ of the shell is

𝒓 = 𝝆̃ + 𝜀
(
𝜁 𝒏̃ + 𝜍𝛼𝒆𝜶

)
, (A9)

where 𝜁 and 𝜍𝛼 are the transverse and parallel displacements
of this point relative to the midsurface, defined for axisymmet-
ric deformations in Fig. 2(e). In particular, the displacement
parallel to the midsurface is now no longer a scalar. Using the
Weingarten and Gauß equations (A8), we find

𝒓 ,𝛼 =

[
𝛿𝛼

𝛽 + 𝜀
(
𝜍𝛽 ;𝛼 − 𝜁𝜅𝛼𝛽

)]
𝒆𝜷 + 𝜀

(
𝜁,𝛼 + 𝜍𝛽𝜅𝛼𝛽

)
𝒏̃,

(A10a)
𝒓 ,𝜁 = 𝜀

(
𝜁,𝜁 𝒏̃ + 𝜍𝛼,𝜁 𝒆𝜶

)
, (A10b)

in which 𝜍𝛽 ;𝛼 = 𝜍𝛽 ,𝛼 + Γ̃𝛼𝛾
𝛽𝜍𝛾 is a covariant derivative. It

follows that the metric G̃ of Ṽ has components

𝐺̃𝜁 𝜁 = 𝜀2
[ (
𝜁,𝜁

)2 + 𝜍𝛼,𝜁 𝜍𝛼,𝜁

]
, (A11a)

𝐺̃𝛼𝜁 = 𝐺̃𝜁 𝛼 = 𝜀𝜍𝛼,𝜁 + 𝜀2
[
𝜁,𝜁

(
𝜁,𝛼 + 𝜍𝛽 𝜘̃𝛼𝛽

)
+ 𝜍𝛽,𝜁

(
𝜍𝛽 ;𝛼 − 𝜁𝜅𝛼𝛽

)]
, (A11b)

𝐺̃𝛼𝛽 = 𝑔̃𝛼𝛾

[
𝛿𝛾 𝛿+𝜀

(
𝜍 𝛿
;𝛾−𝜁𝜅𝛾 𝛿

)] [
𝛿𝛽

𝛿+𝜀
(
𝜍 𝛿
;𝛽−𝜁𝜅𝛽 𝛿

)]
+ 𝜀2

(
𝜁,𝛼 + 𝜍𝛾𝜅𝛼𝛾

) (
𝜁,𝛽 + 𝜍 𝛿𝜅𝛽𝛿

)
. (A11c)

c. Intrinsic configuration of the shell: Incompatibility

We define the intrinsic configuration of the shell by specify-
ing the symmetric positive-definite intrinsic metric 𝑔0𝛼𝛽 , the
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symmetric intrinsic curvature tensor 𝜅0𝛼𝛽 , and the intrinsic
transverse displacement 𝜁0, which is an increasing function
of 𝜁 . It follows from a local embedding theorem for Rieman-
nian metrics [30, 31] that the surface S0 with metric 𝑔0𝛼𝛽 can
be embedded into three-dimensional Euclidean space, and we
denote by B0 the corresponding intrinsic basis containing the
tangent vectors 𝑬𝜶 and the normal 𝑵 such that 𝑔0𝛼𝛽 = 𝑬𝜶 ·𝑬𝜷 .
The components of the curvature tensor 𝜘0𝛼𝛽 = −𝑬𝜶 · 𝑵 ,𝛽

associated with S0 are in general different from the intrinsic
curvatures 𝜅0𝛼𝛽 . This expresses the incompatibility of the
intrinsic metric G0 of the intrinsic configuration V0 of the
shell. This metric has components

𝐺0𝜁 𝜁 = 𝜀2
(
𝜁0 ,𝜁

)2
, 𝐺0𝛼𝜁 = 𝐺0𝜁 𝛼 = 𝜀2𝜁0 ,𝜁 𝜁

0
,𝛼, (A12a)

and

𝐺0𝛼𝛽 = 𝑔0𝛼𝛾

(
𝛿𝛾 𝛿 − 𝜀𝜁0𝜅0 𝛾 𝛿

) (
𝛿𝛿𝛽 − 𝜀𝜁0𝜅0𝛽 𝛿

)
+ 𝜀2𝜁0 ,𝛼𝜁0 ,𝛽 , (A12b)

that we write down by analogy with Eqs. (A11), assuming,
as we did in Section II, that there is no intrinsic displacement
parallel to the midsurface, 𝜍0 𝛼 = 0. We emphasise again
that, in contrast with the intrinsic metric 𝑔0𝛼𝛽 , the intrinsic
curvatures 𝜅0𝛼𝛽 and the intrinsic transverse displacement 𝜁0
remain without a direct geometric realisation.
As in Section II, we specify 𝜁0 by imposing intrinsic volume

conservation. The condition of intrinsic volume conservation
reads

√
detG0 =

√
detG, or, as we argue in what follows

and equivalently, det F0 = 1, where the intrinsic deformation
gradient F0 is given by Eq. (A17b) below. We shall integrate
the differential equation resulting from this condition under
the scaling assumptions of shell theory later, and we shall
again choose the midsurfaces S, S̃ , and S0 in such a way
that the shell surfaces 𝜁 = ±ℎ± and 𝜁 = ±ℎ̃± correspond to
𝜁0 = ±ℎ0/2. We recall that the intrinsic thickness ℎ0 also
lacks a direct geometric realisation.

d. Calculation of the deformation gradient tensors

The geometric deformation gradient is F̃ = Grad 𝒓, where,
by definition, Grad 𝒓 = 𝒓 ,𝛼 ⊗ 𝒓 ,𝛼 + 𝒓 ,𝜁 ⊗ 𝒓 ,𝜁 . Now, from
Eqs. (A4),

𝒓 ,𝛼 = 𝐺𝛼𝛾
(
𝑔𝛾𝛽 − 𝜀𝜁𝜘𝛾𝛽

)
𝒆𝜷 , 𝒓 ,𝜁 = 𝜀−1𝒏. (A13)

Using Eqs. (A10), it follows that

F̃ =
(
𝛿𝛼𝛾 − 𝜀𝜁𝜅𝛼𝛾 + 𝜀𝜍𝛼;𝛾

)
𝐺𝛾𝛿

(
𝑔𝛿𝛽 − 𝜀𝜁𝜘𝛿𝛽

)
𝒆𝜶 ⊗ 𝒆𝜷

+ 𝜀
(
𝜁 ,𝛼 + 𝜅𝛼𝜖 𝜍

𝜖
)
𝑔̃𝛼𝛿𝐺

𝛿𝛾
(
𝑔𝛾𝛽 − 𝜀𝜁𝜘𝛾𝛽

)
𝒏̃ ⊗ 𝒆𝜷

+ 𝜍𝛼,𝜁 𝒆𝜶 ⊗ 𝒏 + 𝜁,𝜁 𝒏̃ ⊗ 𝒏. (A14a)

or, in block matrix notation [52],

F̃ =

(
ÃH ς̃,𝜁

b̃>g̃H 𝜁,𝜁

) [
B̃ ⊗ B∗] , (A14b)

in which the asterisk denotes a dual basis, and where we have
introduced

𝐻𝛼
𝛽 = 𝐺𝛼𝛾𝑔𝛾𝛿𝐴

𝛿
𝛽 with 𝐴𝛼

𝛽 = 𝛿𝛼𝛽 − 𝜀𝜁𝜘𝛼𝛽 , (A15)

and where we have also let

𝐴̃𝛼
𝛽 = 𝛿𝛼𝛽 − 𝜀𝜁𝜅𝛼𝛽 + 𝜀𝜍𝛼;𝛽 , 𝑏̃𝛼 = 𝜀

(
𝜁 ,𝛼 + 𝜅𝛼𝛽𝜍

𝛽
)
.

(A16)

By analogywith Eqs. (A14), the intrinsic deformation gradient
tensor is

F0 =
(
𝛿𝛼𝛾 − 𝜀𝜁0𝜅0 𝛼𝛾

)
𝐺𝛾𝛿

(
𝑔𝛿𝛽 − 𝜀𝜁𝜘𝛿𝛽

)
𝑬𝜶 ⊗ 𝒆𝜷

+ 𝜀𝜁0 𝛼𝑔0𝛼𝛿𝐺
𝛿𝛾

(
𝑔𝛾𝛽 − 𝜀𝜁𝜘𝛾𝛽

)
𝑵 ⊗ 𝒆𝜷 + 𝜁0 ,𝜁 𝑵 ⊗ 𝒏,

(A17a)

or, in block matrix notation,

F0 =

(
A0H 0

b0>g0H 𝜁0 ,𝜁

) [
B0 ⊗ B∗] . (A17b)

Here we have again assumed that there is no intrinsic dis-
placement parallel to the midsurface, 𝜍0 𝛼 = 0, and we have
introduced

𝐴0 𝛼𝛽 = 𝛿𝛼𝛽 − 𝜀𝜁0𝜅0 𝛼𝛽 , 𝑏0 𝛼 = 𝜀𝜁0 ,𝛼 . (A18)

At this stage, we interrupt the computation of the deforma-
tion gradient tensors and we discuss the condition of intrinsic
volume conservation. From Eq. (A3b) and definition (A15),
𝐺𝛼𝛽 = 𝑔𝛼𝛾𝐴

𝛾
𝛿𝐴

𝛿
𝛽 . Now detMN = detM detN for matrices

M,N, so, from Eqs. (A3a),

detG = 𝜀2𝑔(detA)2, (A19a)

where we recall the definition 𝑔 = det g. Similarly, on in-
troducing 𝑔0 = det g0 and on evaluating the determinant of a
block matrix [53], Eqs. (A12) yield

detG0 = 𝜀2
(
𝜁0 ,𝜁

)2
𝑔0

(
detA0)2. (A19b)

Above, we have claimed that the intrinsic volume conservation
condition

√
detG0 =

√
detG is equivalent with the tensorial

condition det F0 = 1. Since Eq. (A17b) expresses the intrinsic
deformation gradient with respect to a mixed non-orthogonal
basis, we shall need the following observation to evaluate the
determinant and hence prove our claim:

Proposition 1. Let {𝒆𝜶} and {𝑬𝜷} be right-handed bases with
corresponding metrics 𝑔𝛼𝛽 = 𝒆𝜶 · 𝒆𝜷 , and𝐺𝛼𝛽 = 𝑬𝜶 ·𝑬𝜷 , and
let M = 𝑀𝛼

𝛽𝒆𝜶 ⊗ 𝑬𝜷 be a tensor represented by the matrix
M = (𝑀𝛼

𝛽) with respect to {𝒆𝜶} ⊗ {𝑬𝜷}. Let 𝑔 = det 𝑔𝛼𝛽
and 𝐺 = det𝐺𝛼𝛽 . Then

detM =

√︂
𝑔

𝐺
detM.

Proof. Let {𝑿𝒊} be the standard Cartesian basis, and write
𝒆𝜶 = 𝑒𝛼𝑖𝑿𝒊 , 𝑬𝜶 = 𝐸𝛼𝑖𝑿𝒊 . Let 𝑒 = det 𝑒𝛼𝑖 , 𝐸 = det 𝐸𝛼𝑖 . By
assumption, 𝑒, 𝐸 > 0. By definition, 𝑔𝛼𝛽 = 𝒆𝜶 · 𝒆𝜷 = 𝑒𝛼𝑖𝑒𝛽𝑖



17

as 𝑿𝒊 · 𝑿𝒋 = 𝛿𝑖 𝑗 . Since det 𝑒𝛽𝑖 = det 𝑒𝑖𝛽 , 𝑒2 = 𝑔. Similarly,
𝐸2 = 𝐺. Now

M = 𝑒𝛼𝑖𝑀
𝛼
𝛽𝐺

𝛽𝛾𝐸𝛾 𝑗𝑿𝒊 ⊗ 𝑿𝒋 ,

which implies, since detG−1 = 𝐺−1, detM = 𝑒(detM)𝐺−1𝐸 .
This completes the proof [54]. �

Since the normal vectors 𝒏 in B and 𝑵 in B0 are, by defini-
tion, unit vectors perpendicular to the remaining basis vectors,
Proposition 1 and Eq. (A17b) yield

det F0 =

√︄
𝑔0

𝑔
det F0 =

√︄
𝑔0

𝑔
𝜁0 ,𝜁 detA0 detH. (A20a)

Now definition (A15) implies, since𝐺𝛼𝛽 = 𝑔𝛼𝛾𝐴
𝛾
𝛿𝐴

𝛿
𝛽 , that

detH =
[
𝑔(detA)2

]−1
𝑔 detA =

1
detA

, (A20b)

Since we assume 𝜁0 ,𝜁 > 0, Eqs. (A19) and (A20) show that√
detG0 =

√
detG ⇐⇒ det F0 = 1, as claimed. Because we

have written down Eqs. (A12) and (A17) defining the incom-
patible metric of V0 and the intrinsic deformation gradient
F0 by analogy with the corresponding results for the defor-
mation configuration Ṽ , but have not derived them from an
embedding of V0, it is not a priori clear that these expressions
are consistent. This is why we needed to show, as we did in
Section II, that the expression for G0 is consistent with that
for F0 as far the only use of the former (i.e. intrinsic volume
conservation or the definition of the intrinsic volume element)
is concerned. Equivalently, intrinsic volume conservation can
be imposed without reference to the incompatible metric G0;
consequently, as also noted in Section II, the volume element
d𝑉0 of V0 can be also be defined with reference to F0 only.
We now return to the computation of the elastic deformation

gradient F = F̃
(
F0)−1. On inverting the block-lower triangular

matrix in Eq. (A17b), we find

(
F0)−1 = ©­­­«

H−1 (
A0)−1 0

−
b0>g0 (

A0)−1
𝜁0 ,𝜁

1
𝜁0 ,𝜁

ª®®®¬
[
B ⊗

(
B0

)∗]
. (A21)

From this and from Eq. (A14b), we obtain

F =
©­­«

(
Ã − ς̃,𝜁 0b0>g0

) (
A0)−1

ς̃,𝜁 0(
b̃>g̃ − 𝜁,𝜁 0b0>g0

) (
A0)−1 𝜁,𝜁 0

ª®®¬
[
B̃ ⊗

(
B0

)∗]
.

(A22)

2. Thin shell theory for large bending deformations

As in Section II, we assume that the shell is made of an
incompressible neo-Hookean material, with energy given by
Eq. (26). Eq. (28) still provides an expression for the stress
tensor Q, now with respect to B̃ ⊗

(
B0

)∗, and with the defor-
mation gradients F̃, F0, F now given by Eqs. (A14b), (A17b),
and (A22), respectively. Moreover, Eq. (29b) still applies.

a. Scaling assumptions

Again as in Section II, we rescale the intrinsic and deformed
curvature tensors, κ0 = 𝜅0 𝛼𝛽𝑬𝜶 ⊗ 𝑬𝜷 and κ̃ = 𝜅𝛼𝛽 𝒆̃𝜶 ⊗ 𝒆𝜷 ,
to introduce large bending deformations explicitly and absorb
the intrinsic stretching of the midsurface by writing

κ
0 =

√︄
𝑔0

𝑔

λ
0

𝜀
, κ̃ =

√︄
𝑔0

𝑔

λ̃

𝜀
, (A23)

In what follows, we shall need explicit representations of these
tensors, λ0 = 𝜆0 𝛼𝛽𝑬𝜶 ⊗ 𝑬𝜷 and λ̃ = 𝜆̃𝛼𝛽 𝒆̃𝜶 ⊗ 𝒆𝜷 , and shall
denote by λ0 and λ̃ the corresponding matrices of components.
Next, we make the standard scaling assumptions of shell

theory, that the elastic strains remain small. To this end, we in-
troduce the deformation gradient restricted to the midsurface,

f = 𝒆𝜶 ⊗ 𝑬𝜶 (A24)

First, we require that the shell strains be small: accordingly,
we define the shell strain tensor E by

2𝜀E = f>f − I. (A25)

Now f> = 𝑬𝜶⊗ 𝒆𝜶, so f>f = 𝑔̃𝛼𝛽𝑬𝜶⊗𝑬𝜷 = 𝑔0 𝛼𝛾 𝑔̃𝛾𝛽𝑬𝜶⊗𝑬𝜷 .
Hence, if we set E = 𝐸 𝛼

𝛽𝑬𝜶 ⊗ 𝑬𝜷 , then

2𝜀𝐸 𝛼
𝛽 = 𝑔0 𝛼𝛾𝑔𝛾𝛽 − 𝛿𝛼𝛽 or 2𝜀E =

(
g0)−1g̃ − I, (A26a)

in equivalent matrix notation. In the calculations that follow,
we shall need a consequence of this definition,

g̃ = g0 (I + 2𝜀E) . (A26b)

Second, we require that the curvature strains remain small:
we therefore introduce two different (scaled) curvature strain
tensors,

𝜀L = f−1λ̃f − λ0, 𝜀K = f>λ̃f − λ0. (A27)

Since f−1 = 𝑬𝜶 ⊗ 𝒆𝜶, f−1λ̃f = 𝜆̃𝛼𝛽𝑬𝜶 ⊗ 𝑬𝜷 , and hence, on
writing L = 𝐿𝛼

𝛽𝑬𝜶 ⊗ 𝑬𝜷 , we find [55]

𝜀𝐿𝛼
𝛽 = 𝜆̃𝛼𝛽 − 𝜆0 𝛼𝛽 or 𝜀L = λ̃ − λ0. (A28)

Similarly, f>λ̃f = 𝑔0 𝛼𝛾 𝑔̃𝛾𝛿𝜆̃
𝛿
𝛽𝑬𝜶 ⊗ 𝑬𝜷 , whence, on letting

K = 𝐾𝛼
𝛽𝑬𝜶 ⊗ 𝑬𝜷 and from Eqs. (A26a) and (A28),

𝐾𝛼
𝛽 = 𝐿𝛼

𝛽 + 2𝐸 𝛼
𝛾𝜆
0 𝛾

𝛽 +𝑂 (𝜀) or K = L + 2Eλ0 +𝑂 (𝜀).
(A29)

These scalings and definitions are consistent with the scal-
ings (30) and the definitions (31) and (32) of the shell and
curvature strains for the axisymmetric deformations analysed
in Section II. Indeed, for these axisymmetric deformations,

g =

(
1 0
0 𝑟2

)
, g̃ =

(
𝑓 2𝑠 0
0 𝑟2 𝑓 2

𝜙

)
, g0 =

( (
𝑓 0𝑠

)2 0
0 𝑟2

(
𝑓 0
𝜙

)2 )
,

(A30)
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from Eqs. (8), (19b), and (20b). In particular,
√︁
𝑔0/𝑔 = 𝑓 0𝑠 𝑓

0
𝜙 .

Moreover, Eq. (A26b) yields

𝑓𝑠 = 𝑓 0𝑠
√︁
1 + 2𝜀𝐸 𝑠

𝑠 = 𝑓 0𝑠
(
1 + 𝜀𝐸 𝑠

𝑠

)
+𝑂

(
𝜀2

)
, (A31a)

𝑓𝜙 = 𝑓 0𝜙
√︁
1 + 2𝜀𝐸 𝜙

𝜙 = 𝑓 0𝑠
(
1 + 𝜀𝐸 𝜙

𝜙

)
+𝑂

(
𝜀2

)
, (A31b)

while 𝐸 𝑠
𝜙 = 𝐸 𝜙

𝑠 = 0. Thus, identifying

𝐸𝑠 = 𝐸
𝑠
𝑠 , 𝐸𝜙 = 𝐸 𝜙

𝜙 , (A31c)

we conclude that Eqs. (31) are consistent with Eq. (A26b) at
leading order, i.e. at the order to which the shell theory will
be valid.
Direct computation relates the components of λ̃ to the prin-

cipal curvatures of S̃ defined in Eqs. (16), viz.

𝜆̃𝑠𝑠 =
𝜅𝑠

𝜀 𝑓 0𝑠 𝑓
0
𝜙

, 𝜆̃𝜙 𝜙 =
𝜅𝜙

𝜀 𝑓 0𝑠 𝑓
0
𝜙

, (A32a)

while 𝜆̃𝑠 𝜙 = 𝜆̃𝜙𝑠 = 0. Hence Eqs. (30) and (32) are consistent
with Eqs. (A23) and (A28) if we identify

𝜆0𝑠 = 𝜆
0 𝑠

𝑠 , 𝜀𝜆0𝜙 = 𝜆0 𝜙 𝜙 , 𝐿𝑠 = 𝐿
𝑠
𝑠 , 𝐿𝜙 = 𝐿𝜙

𝜙 ,

(A32b)

with the off-diagonal components vanishing. However, com-
paring Eqs. (61) and (A29) shows that the alternative cur-
vature strains defined here are different from those defined in
Eqs. (62): 𝐾𝑠

𝑠 = 𝐿𝑠 +2𝐸𝑠𝜆
0
𝑠 +𝑂 (𝜀) ≠ 𝐿𝑠 +𝐸𝑠𝜆

0
𝑠 +𝑂 (𝜀) = 𝐾𝑠 ,

using Eq. (59). We are not aware of a tensorial representation
of the alternative curvature strains introduced in Eqs. (62) and
that vanish for pure stretching deformations.
As in the axisymmetric calculations in Section II, it will

turn out to be convenient to scale the displacements parallel
and perpendicular to themidsurfaces by absorbing the intrinsic
stretching of the midsurface. We therefore introduce scaled
variables

𝑍0 =

√︄
𝑔0

𝑔
𝜁0, 𝑍 =

√︄
𝑔0

𝑔
𝜁, S =

√︄
𝑔0

𝑔
ς̃. (A33)

b. Boundary and incompressibility conditions

As in Section II, we solve the Cauchy equation (29b) subject
to the incompressibility condition det F = 1 and subject to
force-free boundary conditions.
Again as in Section II, these boundary conditions on the

shell surfaces read Q±𝒏± = 0, where Q± are evaluated on
the surfaces 𝜁 = ±ℎ± of V . The normal vectors 𝒏± to these
undeformed shell surfaces are given by Eqs. (A7), which yield
the expansion

𝒏± = 𝒏 ∓ 𝜀
ℎ± ,𝛼
𝑔

𝒆𝜶 +𝑂
(
𝜀2

)
. (A34)

The deformation gradient is given in Eq. (A22) with re-
spect to the mixed basis B̃ ⊗

(
B0

)∗. In what follows, we shall
therefore use Proposition 1 to evaluate the tensorial incom-
pressibility condition det F = 1.

c. Intrinsic volume conservation

We now impose volume conservation of the intrinsic config-
uration of the shell compared to the undeformed configuration.
We need one preliminary result:

Lemma 1. Let M be a 2 × 2 matrix, and 𝑥 be a scalar. Then

det
(
I + 𝑥M

)
= 1 + 𝑥 trM + 𝑥2 detM.

Proof. By direct computation,

det

(
1 + 𝑥𝑀11 𝑥𝑀12

𝑥𝑀21 1 + 𝑥𝑀22

)
= 1 + 𝑥(𝑀11 + 𝑀22) + 𝑥2 (𝑀11𝑀22 − 𝑀12𝑀21),

which proves the claim. �

Volume conservation between the undeformed and intrinsic
configurations of the shell requires equality of the volume
elements,

√
detG =

√
detG0. Now, from definition (A15),

𝐴𝛼
𝛽 = 𝛿𝛼𝛽 +𝑂 (𝜀), and so Eq. (A19a) yields

√
detG = 𝜀

√
𝑔 +𝑂

(
𝜀2

)
. (A35a)

Moreover, from Eqs. (A18) and (A19b) with the scalings in-
troduced above and invoking Lemma 1, we find√︁
detG0 = 𝜀

(√︂
𝑔

𝑔0
𝑍0 ,𝜁

) {√︃
𝑔0

[
1 − 2H0𝑍0 +K0

(
𝑍0

)2]}
+𝑂

(
𝜀2

)
, (A35b)

wherein H0 = 1
2𝜆
0
𝛼
𝛼 and K0 = det𝜆0𝛼𝛽 , which we think

of as (scaled) intrinsic mean and Gaussian curvatures [51].
Since these are not associated with an embedding of S0 into
three-dimensional Euclidean space, we must establish their
properties from first principles, based on the assumed symme-
try of the intrinsic metric and intrinsic curvature tensor. The
following results are undoubtedly folklore:

Proposition 2. If M is a symmetric matrix and N is a positive-
definite symmetric matrix, then MN has real eigenvalues.

Proof. Since N is positive-definite and symmetric, it has a
symmetric square root N1/2 [56]. Now

MN =
(
N1/2

)−1 (N1/2MN1/2
)
N1/2,

soMN is similar to and hence has the same eigenvalues [56] as
N1/2MN1/2. SinceM and N1/2 are symmetric, so is N1/2MN1/2,
which therefore has real eigenvalues [56]. Hence MN has real
eigenvalues, too, as claimed. �

Corollary 1. If M is a symmetric 2 × 2 matrix and N is a
positive-definite symmetric 2 × 2 matrix, then

[tr (MN)]2 > 4 det (MN).

Proof. By Proposition 2, the 2 × 2 matrix MN has real eigen-
values 𝜇1, 𝜇2. Hence

[tr (MN)]2−4 det (MN)= (𝜇1+𝜇2)2−4𝜇1𝜇2= (𝜇1−𝜇2)2 > 0,

which completes the proof. �
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Now 𝜆0𝛼𝛽 = 𝜆0𝛼𝛾𝑔
0 𝛾𝛽 . Since 𝜅0𝛼𝛽 is symmetric, so is its

rescaling 𝜆0𝛼𝛽 . As 𝑔0𝛼𝛽 is symmetric and positive definite,
so is its inverse 𝑔0 𝛼𝛽 . Hence the conditions of Corollary 1 are
satisfied; it implies the inequality

(
H0

)2
> K0.

Next, integrating the differential equation for 𝑍0 (𝜁) result-
ing from Eqs. (A35) and imposing 𝑍0 = 0 at 𝜁 = 0, we find

𝑍0 −H0
(
𝑍0

)2 + K0

3
(
𝑍0

)3
= 𝜁 . (A36)

Since Eqs. (A35) neglect 𝑂
(
𝜀2

)
corrections, this result holds

at leading order only.
We recall that, by definition, the shell surfaces are at

𝜁0 = ±ℎ0/2 in the intrinsic configuration, and at 𝜁 = ±ℎ± in
the undeformed configuration, so that ℎ+ + ℎ− = ℎ is the unde-
formed thickness of the cell sheet. On defining𝐻0 = ℎ0

√︁
𝑔0/𝑔,

so that the shell surfaces are at 𝑍0 = ±𝐻0/2 in the intrinsic
configuration, Eq. (A36) yields

ℎ± =
𝐻0

2

[
1 ∓ H0

2
𝐻0 + K0

12
(
𝐻0

)2]
, (A37a)

whence

ℎ = ℎ+ + ℎ− = 𝐻0 + K0

12
(
𝐻0

)3
, (A37b)

which is a depressed cubic equation for 𝐻0 (ℎ) that can be
solved in closed form. In particular, Eq. (A37b) has a unique

𝑍0𝑍0− 𝑍0+

K0>0
H0<0

��𝑍0+ ��>𝐻 0/2

𝑍0

𝑍0+𝑍0−

K0>0
H0>0

𝑍0− >𝐻 0/2

𝑍0𝑍0−

𝑍0+

K0<0

𝐻 0/2<
��𝑍0− ��, 𝑍0+

(a)

(b)

𝐻
0
(ℎ

)≯
0

(H0)2 � K0

− 169 𝜔= 649

√
𝜔= 83

−√𝜔

K0ℎ2

H0ℎ

FIG. 6. Intrinsic volume conservation. (a) Plot of 𝜁
(
𝑍0

)
defined in

Eq. (A36) for the cases K0 > 0, H0 < 0; K0 > 0, H0 > 0; K0 < 0.
The positions of the turning points at 𝑍0 = 𝑍0± are indicated, and
𝜁
(
𝑍0

)
must increase monotonically for

��𝑍0�� < 𝐻0/2. This condition
excludes the dotted parts of the graphs. (b) Intrinsic volume conserva-
tion in

(
K0ℎ2,H0ℎ

)
space: conservation of intrinsic volume is only

possible within the region of parameter space enclosed by the solid
curve, in which −16/9 < ℎ2K0 < 𝜔 = 64/9 and ℎ

��H0�� < √
𝜔 = 8/3.

The dashed lines delimit the regions of parameter space excluded by
the inequality

(
H0

)2 > K0 and the condition that Eq. (A37b) have a
positive real solution.

positive real solution if K0 > 0, but has no positive real solu-
tion if ℎ2K0 < −16/9. If 0 > ℎ2K0 > −16/9, two positive
real solutions exist; by continuity, the smaller must be chosen.
More generally, we require that 𝜁 increase with 𝑍0, for��𝑍0�� 6 𝐻0/2. As (

H0
)2
> K0, the cubic in Eq. (A36) has

two turning points [Fig. 6(a)], at 𝑍0 = 𝑍0±, where explicit ex-
pressions for 𝑍0− 6 𝑍0+ in terms of K0,H0 can be found by
solving a quadratic equation. The requirement that 𝜁 increase
with 𝑍0 translates to inequalities 𝑍0± ≷ 𝐻0 (ℎ)/2 depending on
the signs of K0,H0 [Fig. 6(a)]. These inequalities involving
ℎ,H0,K0 only depend onH0ℎ andK0ℎ2, since the curvatures
can be nondimensionalised with ℎ. The inequalities can then
be solved numerically to determine the region in

(
K0ℎ2,H0ℎ

)
parameter space for which intrinsic volume conservation is
possible [Fig. 6(b)]. In particular, Fig. 6(b) shows that in-
trinsic volume conservation requires −16/9 6 K0ℎ2 6 𝜔 and��H0ℎ�� 6 √

𝜔 , where 𝜔 is a numerical constant. An expres-
sion for the boundary of this region can also be determined in
closed form using Mathematica (Wolfram, Inc.); this can be
used to show that 𝜔 = 64/9.
For the axisymmetric deformations considered in Section II,

K0 = 𝜆0 𝑠𝑠𝜆0 𝜙 𝜙 = 𝑂 (𝜀) from Eqs. (A32b). For K0 = 0, the
condition derived here is

��ℎH0�� 6 1. But, using Eqs. (A32b)
again, ℎH0 = ℎ𝜆0𝑠/2 +𝑂 (𝜀) = 𝜂 +𝑂 (𝜀) on recalling defini-
tion (59), and so this condition is equivalent, as expected, to
the condition |𝜂 | 6 1 found in Section II.

d. Expansion of the boundary and incompressibility conditions

To avoid drowning in a bath of indices, we shall use the
block matrix notation for tensors [52] introduced above in
the expansions that follow below. This means, however, that
some care needs to be taken over distinguishing between tensor
and matrix transposes and, in particular, over the bases with
respect to which transposes of block matrices represent tensor
transposes [52]. We shall use the following results repeatedly:

Proposition 3. Let B and B′ be bases of three-dimensional
space with corresponding metrics g, G. A tensor M is repre-
sented by the matrix M with respect to B ⊗ (B′)∗. Then M> is
represented by G−1M>g with respect to B′ ⊗ B∗.

Proof. Let B = {𝒆𝜶}, B′ = {𝑬𝜶}, so that M = 𝑀𝛼
𝛽𝒆𝜶 ⊗ 𝑬𝜷 .

By definition, M> = 𝑀𝛽
𝛼𝑬

𝜶 ⊗ 𝒆𝜷 = 𝐺𝛼𝛾𝑀 𝛿
𝛾𝑔𝛿𝛽𝑬𝜶 ⊗ 𝒆𝜷 ,

as claimed. �

Corollary 2. Let B = {𝒆𝜶} ∪ {𝒏} and B′ = {𝑬𝜶} ∪ {𝑵} be
bases of three-dimensional space, where 𝒏, 𝑵 are the respec-
tive unit normals to the planes spanned by {𝒆𝜶}, {𝑬𝜶}. Let the
metrics g, G have components 𝑔𝛼𝛽 = 𝒆𝜶 · 𝒆𝜷 , 𝐺𝛼𝛽 = 𝑬𝜶 · 𝑬𝜷 .
If M is a tensor such that

M =

(
A b
c> 𝑑

) [
B ⊗ (B′)∗

]
,

then

M> =

(
G−1A>g G−1c

b>g 𝑑

)
[B′ ⊗ B∗] .
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Proof. Proposition 3 implies that M> is represented, with re-
spect to B′ ⊗ B∗, by(

G 0
0> 1

)−1 (
A b
c> 𝑑

)> (
g 0

0> 1

)
=

(
G−1A>g G−1c

b>g 𝑑

)
,

which completes the proof. �

To expand the boundary and incompressibility conditions,
we posit, analogously to Eqs. (37),

𝑍 = 𝑍 (0) + 𝜀𝑍 (1) +𝑂
(
𝜀2

)
, S = S(0) +𝑂 (𝜀). (A38)

Expansion at order 𝑂 (1). On inserting the rescal-
ings (A33) into Eqs. (A16) and (A18), we obtain

A0 = I − 𝑍0λ0, Ã = Ã(0) +𝑂 (𝜀) with Ã(0) = I − 𝑍 (0)λ
0,

(A39a)

and

b0 = 𝑂 (𝜀), b̃ = λ0S(0) +𝑂 (𝜀), (A39b)

and thence, from Eq. (A22),

F =

(
B v

w> 𝑐

)
+𝑂 (𝜀), (A40)

where, with dashes now denoting differentiation with respect
to 𝑍0,

B = Ã(0)
(
A0)−1, v = S′

(0) , w =
(
A0)−>g0

λ
0S(0) , 𝑐 = 𝑍

′
(0) ,

(A41)

since g̃ = g0+𝑂 (𝜀) from Eq. (A26b). Recalling the definitions
𝑔̃ = det g̃, 𝑔0 = det g0 introduced earlier, this also implies
𝑔̃/𝑔0 = 1 + 𝑂 (𝜀). Using Proposition 1 and on computing
the determinant of the block matrix [53] in Eq. (A40), the
incompressibility condition thus becomes

1 = det F = (detB)
(
𝑐 − w>B−1v

)
+𝑂 (𝜀). (A42)

Next, on substituting the first of Eqs. (A39b) into Eq. (A21)
and using Corollary 2,

(
F0)−> =

(
𝑂 (1) 𝑂 (𝜀)
𝑂 (1)

(
𝜁0 ,𝜁

)−1 )
. (A43)

Moreover, Eqs. (A15) yield H = I + 𝑂 (𝜀) using Eqs. (A3),
so, on substituting Eqs. (A39) into Eq. (A14b), and using
definitions (A41),

F̃ =

(
BA0 𝜁0 ,𝜁 v

w>A0 𝜁0 ,𝜁 𝑐

)
+𝑂 (𝜀). (A44a)

Hence, using further properties of block matrices [53] and,
again, g̃ = g0 +𝑂 (𝜀) and Corollary 2,

F̃−>
=

(
𝑂 (1) −

(
𝜁0 ,𝜁

)−1 (g0)−1B−>w
(
𝑐−w>B−1v

)−1
𝑂 (1)

(
𝜁0 ,𝜁

)−1 (
𝑐 − w>B−1v

)−1 )
+𝑂 (𝜀).

(A44b)

We now write, as we have done previously in Eqs. (38),

Q = Q(0) + 𝜀Q(1) +𝑂
(
𝜀2

)
, 𝑝 = 𝑝 (0) +𝑂 (𝜀). (A45)

Inserting Eqs. (A40), (A43), and (A44b) into definition (28),
we obtain

Q(0)𝒏 =
(
𝜁0 ,𝜁

)−1 (
v + 𝑝 (0)

(
g0)−1B−>w

(
𝑐 − w>B−1v

)−1
𝑐 − 𝑝 (0)

(
𝑐 − w>B−1v

)−1 )
.

(A46)

Now, as in Section II, the governing equation (29b) of three-
dimensional elasticity is, at leading order, (Q(0)𝒏),𝜁 = 0, and
hence Q(0)𝒏 is independent of 𝜁 . The boundary conditions
therefore become 0 = Q±𝒏± = Q(0)𝒏 + 𝑂 (𝜀), where we have
used Eq. (A34). It follows that Q(0)𝒏 ≡ 0 as in Section II.
From Eqs. (A41), w>B−1 = S>

(0)D with D =
(
λ

0)>g0Ã−1
(0) , so

that B−>w = D>S(0) . Eqs. (A42) and (A46) then yield the
leading-order incompressibility and boundary conditions,

𝑍 ′
(0) − S>

(0)DS′
(0) = (detB)−1 , (A47a)

and hence

S′
(0)+ 𝑝 (0) (detB)

(
g0)−1D>S(0) = 0, 𝑍 ′

(0)− 𝑝 (0) (detB) = 0.
(A47b)

In particular, noting that S′
(0)
>D>S(0) = S>

(0)DS′
(0) since this

expression is a scalar,

S′
(0)
>g0S′

(0) = −𝑝 (0) (detB)S′
(0)
>D>S(0)=−𝑝 (0) (detB)S>

(0)DS′
(0)

= −𝑝 (0) (detB)
[
𝑍 ′
(0)− (detB)−1

]
= 𝑝 (0)−

(
𝑍 ′
(0)

)2
.

(A48)

Moreover, from Eqs. (A39) and definition (A41) and using
Lemma 1, we obtain

detB =
det Ã(0)

detA0 =
1 − 2H0𝑍 (0) +K0

(
𝑍 (0)

)2
1 − 2H0𝑍0 +K0

(
𝑍0

)2 . (A49)

Substituting in the second of Eqs. (A47b) and integrating,

tanh−1
K0𝑍 (0) −H0√︃(

H0
)2 −K0

= 𝑝 (0) tanh−1
K0𝑍0 −H0√︃(
H0

)2 −K0
+ 𝑡,

(A50)

in which 𝑡 is a constant of integration; the singular cases
K0 = 0, K0 = H0 = 0, or K0 =

(
H0

)2 can be dealt with
similarly, but we will not discuss these in detail.
Next, by definition, on the midsurface 𝑍0 = 0, we have

𝑍 (0) = 0 and S(0) = 0. Thus detB = 1 on 𝑍0 = 0, and
hence, successively from Eqs. (A47), 𝑍 ′

(0) = 0, S′
(0) = 0 on

𝑍0 = 0, and hence 𝑝 (0) = 1 (which is constant). Then taking
𝑍0 = 𝑍 (0) = 0 in Eq. (A50) yields 𝑡 = 0; the same equation
then immediately yields 𝑍 (0) ≡ 𝑍0. Finally, Eq. (A48) yields
S′
(0)
>g0S′

(0) = 0, so S′
(0) ≡ 0 since g0 is positive definite.

Now S(0) = 0 on 𝑍0 = 0, so this implies that S(0) ≡ 0,
which proves the Kirchhoff “hypothesis” [15] for general large
bending deformations.
For axisymmetric deformations, this argument provides an

alternative to the direct integration of the leading-order equa-
tions in Section II.
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Expansion at order 𝑂 (𝜀). We now expand further. In
particular, extending Eqs. (A39a), we find

Ã = A0 − 𝜀
(
𝑍0L + 𝑍 (1)λ

0) +𝑂 (
𝜀2

)
. (A51)

The leading-order solution also shows that b0, b̃, ς̃ are all at
the most of order 𝑂 (𝜀), whence

F = I + 𝜀
(
−
(
𝑍0L + 𝑍 (1)λ

0) (A0)−1 𝑂 (1)
𝑂 (1) 𝑍 ′

(1)

)
+𝑂

(
𝜀2

)
, (A52)

from Eq. (A22). Using Lemma 1 and Eq. (A26b), we also find√︄
𝑔̃

𝑔0
=

(
1 + 2𝜀 trE + 4𝜀2 detE

)1/2
= 1 + 𝜀 trE + 𝜀

2

2
[
4 detE − (trE)2

]
+𝑂

(
𝜀3

)
. (A53)

Accordingly, from Proposition 1 and using Lemma 1 again,

det F = 1 + 𝜀
{
𝑍 ′
(1) + trE − tr

[ (
𝑍0L + 𝑍 (1)λ

0) (A0)−1]}
+𝑂

(
𝜀2

)
. (A54)

The incompressibility condition det F = 1 thus yields, at order
𝑂 (𝜀), an ordinary differential equation for 𝑍 (1) . To make
further progress, we shall need the following result:

Lemma 2. Let M be a 2 × 2 matrix, and 𝑥 be a scalar. Then

(I + 𝑥M)−1 = I + 𝑥 adjM
1 + 𝑥 trM + 𝑥2 detM

.

Proof. By definition of the adjugate matrix,

(I + 𝑥M)−1 = adj (I + 𝑥M)
det (I + 𝑥M) =

adj (I + 𝑥M)
1 + 𝑥 trM + 𝑥2 detM

,

using Lemma 1. But, by direct computation,

adj (I + 𝑥M) =
(
1 + 𝑥𝑀22 −𝑀12
−𝑀21 1 + 𝑥𝑀11

)
=

(
1 0
0 1

)
+ 𝑥

(
𝑀22 −𝑀12
−𝑀21 𝑀11

)
= I + 𝑥 adjM.

The result follows. �

On multiplying this result by a general 2 × 2 matrix N and
taking the trace on both sides, we obtain

Corollary 3. Let M,N be 2× 2 matrices, and let 𝑥 be a scalar.
The following equality holds:

tr
[
N(I + 𝑥M)−1

]
=
trN + 𝑥 tr (N adjM)
1 + 𝑥 trM + 𝑥2 detM

.

We shall also need the following observation:

Lemma 3. Let M,N be 2 × 2 matrices. Then

tr (N adjM) = trM trN − tr (MN) and tr (M adjM) = 2 detM.

Proof. Notice that M + adjM = (trM)I since(
𝑀11 𝑀12

𝑀21 𝑀22

)
+

(
𝑀22 −𝑀12
−𝑀21 𝑀11

)
= (𝑀11 + 𝑀22)

(
1 0
0 1

)
.

Hence NM+N adjM = (trM) N on multiplication by N. Taking
the trace gives the first result. The second result follows from
the definition of the adjugate, M adjM = (detM)I, by taking
the trace and noting that tr I = 2. �

Combining Corollary 3 and Lemma 3, and recalling the
definitions tr λ0 = 2H0, det λ0 = K0, we find the differential
equation for 𝑍 (1) resulting from Eq. (A54) to be

𝑍 ′
(1) +

(
−2H0 + 2K0𝑍0

1 − 2H0𝑍0 +K0
(
𝑍0

)2 ) 𝑍 (1) + trE −
𝑍0 tr L −

(
𝑍0

)2 [2H0 tr L − tr
(
Lλ0

) ]
1 − 2H0𝑍0 +K0

(
𝑍0

)2 = 0. (A55)

Integrating and imposing 𝑍 (1) = 0 at 𝑍0 = 0, we obtain

𝑍 (1) = −

[
𝑍0 −H0

(
𝑍0

)2 + 13K0 (𝑍0)3] trE − 1
2
(
𝑍0

)2 tr L + 13
(
𝑍0

)3 [2H0 tr L − tr
(
Lλ0

) ]
1 − 2H0𝑍0 +K0

(
𝑍0

)2 . (A56)

Expansion at order𝑂
(
𝜀2

)
. From Eq. (A52), we may write

F =

(
I+𝜀B(1)+𝜀2B(2) +𝑂

(
𝜀3

)
𝜀v(1) +𝑂

(
𝜀2

)
𝜀w>

(1) +𝑂
(
𝜀2

)
1+𝜀𝑐 (1)+𝜀2𝑐 (2) +𝑂

(
𝜀3

) )
,

(A57)
where, in particular and using Lemma 2,

B(1) = −
(
𝑍0L + 𝑍 (1)λ

0) (I − 𝑍0 adj λ0)
1 − 2H0𝑍0 +K0

(
𝑍0

)2 , (A58)

in which 𝑍 (1) is given by Eq. (A56). Explicit expressions
for the terms B(2) , v(1) ,w(1) , 𝑐 (1) , 𝑐 (2) of the formal expan-
sion (A57) could be obtained in terms of the expansions de-
fined in Eqs. (A38), but will turn out not to be required.
From the general expression for the determinant of block

matrices [53] and Eq. (A57),

det F =
(
1 + 𝜀𝑐 (1) + 𝜀2𝑐 (2)

)
det

[
I + 𝜀B(1) + 𝜀2B(2)

−
(
𝜀w>

(1)
) (
𝜀v(1)

) ]
+𝑂

(
𝜀3

)
. (A59a)
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Expanding this using Lemma 1, and using Proposition 1 and
Eq. (A53), we deduce that

det F = 1 + 𝜀
(
trB(1) + trE + 𝑐 (1)

)
+ 𝜀2

[
trB(2) + 𝑐 (2) + 𝑐 (1) trB(1) + detB(1) − w>

(1)v(1)
+

(
trB(1) + 𝑐 (1)

)
trE + 2 detE − 1

2 (trE)
2]

+𝑂
(
𝜀3

)
. (A59b)

Next we introduce a formal expansion of the intrinsic defor-
mation gradient,

F0 =

(
B0
(0) +𝑂 (𝜀) 0

𝜀w0
(1)
> +𝑂

(
𝜀2

)
𝑐0(0) +𝑂 (𝜀)

)
, (A60a)

from Eq. (A17b) and using the first of Eqs. (A39b). In this
expansion, 𝑐0(0) = 𝜁0 ,𝜁 , which is positive by assumption. The
values of the expansion terms B0

(0) and w0
(1) will turn out to be

of no consequence. In particular, using Corollary 2,

(
F0)−>= ©­­­­­«

(
g0)−1 (B0

(0)
)−>g

+𝑂 (𝜀)
−𝜀

(
g0)−1 (B0

(0)
)−>w0

(1)

𝑐0(0)
+𝑂

(
𝜀2

)
0>

1
𝑐0(0)

+𝑂 (𝜀)

ª®®®®®¬
.

(A60b)

Moreover, from Eqs. (A57) and (A60a),

F̃ =
©­«

B0
(0) +𝑂 (𝜀) 𝜀𝑐 (0)0 v(1) +𝑂

(
𝜀2

)
𝜀

(
w>
(1)B0

(0) + w0
(1)
>
)
+𝑂

(
𝜀2

)
𝑐 (0)0 +𝑂 (𝜀)

ª®¬ ,
(A61a)

so that, using the general expression for the inverse of a block
matrix [53] and, once again, Corollary 2 and g̃ = g0 +𝑂 (𝜀),

F̃−>
=

©­­­­­­­«

(
g0)−1 (B0

(0)
)−>g

+𝑂 (𝜀)
−𝜀

(
g0)−1
𝑐0(0)

(
w(1) +

(
B0
(0)

)−>w0
(1)

)
+𝑂

(
𝜀2

)
𝑂 (𝜀) 1

𝑐0(0)
+𝑂 (𝜀)

ª®®®®®®®¬
.

(A61b)

On substituting Eqs. (A57), (A60b), and (A61b) into defini-
tion (28) and recalling that 𝑝 = 1 +𝑂 (𝜀), we obtain

Q =

©­­­«
𝑂 (𝜀) 𝜀

v(1) +
(
g0)−1w(1)

𝑐0(0)
+𝑂

(
𝜀2

)
𝑂 (𝜀) 𝑂 (𝜀)

ª®®®¬ , (A62a)

and hence

Q(0) = O, Q(1)𝒏 =

©­­­«
v(1) +

(
g0)−1w(1)

𝑐0(0)

𝑂 (1)

ª®®®¬ . (A62b)

As in Section II, the fact that Q(0) = O implies that, at leading
order, Eq. (29b) is (Q(1)𝒏),𝜁 = 0, with boundary conditions
Q±

(1)𝒏
± = 0, which, as above, leads to Q(1)𝒏 ≡ 0. This and the

incompressibility condition det F = 1 yield, from Eqs. (A59b)
and (A62b),

𝑐 (1) = − trB(1) − trE, w(1) = −g0v(1) , (A63a)

and hence

𝑐 (2) = − trB(2) +
(
trB(1) + trE

)
trB(1) − detB(1)

− 2 detE + 32 (trE)
2 − v>(1)g

0v(1) . (A63b)

e. Asymptotic expansion of the constitutive relations

To expand the constitutive relations and hence obtain the
asymptotic expansion of the three-dimensional energy density,
we need one more result:

Lemma 4. Let M,N be 2 × 2 matrices. Then

(i) tr
(
M2

)
= (trM)2 − 2 detM,

(ii) tr
(
M2N

)
= trM tr (MN) − detM trN.

Proof. The Cayley–Hamilton theorem [53] for a 2 × 2 matrix
states that M2 = (trM)M − (detM)I. Taking the trace on both
sides of this relation and noting that tr I = 2, we obtain (i).
Multiplying the Cayley–Hamilton relation by N and taking the
trace yields (ii). �

We start by computing the expansion of the (left) Cauchy–
Green tensor C = F>F. From Eq. (A57), we obtain

F> =
©­«

I + 𝜀
[
2E +

(
g0)−1B>

(1)g0
]
+ 𝜀2

[
2
(
g0)−1B>

(1)g0E +
(
g0)−1B>

(2)g0
]
+𝑂

(
𝜀3

)
𝜀
(
g0)−1w(1) +𝑂

(
𝜀2

)
𝜀v>(1)g

0 +𝑂
(
𝜀2

)
1 + 𝜀𝑐 (1) + 𝜀2𝑐 (2) +𝑂

(
𝜀3

) ª®¬ , (A64)

using Corollary 2 and Eq. (A26b), and hence

C =

©­­­«
I + 𝜀

[
2E + B(1) +

(
g0)−1B>

(1)g0
]
+ 𝜀2

{
2
[
EB(1) +

(
g0)−1B>

(1)g0E
]

+ B(2) +
(
g0)−1B>

(2)g0 +
(
g0)−1B>

(1)g0B(1) +
(
g0)−1w(1)w>

(1)

}
+𝑂

(
𝜀3

) 𝑂 (𝜀)

𝑂 (𝜀) 1 + 2𝜀𝑐 (1)+ 𝜀2
(
2𝑐 (2)+ 𝑐2(1)+ v>(1)g0v(1)

)
+𝑂

(
𝜀3

)
ª®®®¬ .

(A65)
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We recall general properties of the trace operator: for matricesM,N, trM> = trM and trMN = trNM. Since Eq. (A65) representsC
with respect to B0 ⊗

(
B0

)∗, it follows that
I1 = 3 + 𝜀

[
2(trB(1) + trE + 𝑐 (1) )

]
+ 𝜀2

{
2
(
trB(2) + 𝑐 (2)

)
+

(
v>(1)g

0v(1) + w>
(1)

(
g0)−1w(1)

)
+ 𝑐2(1) + tr

( (
g0)−1B>

(1)g
0B(1)

)
+ 2

[
tr

(
EB(1)

)
+ tr

(
E
(
g0)−1B>

(1)g
0
)]}

+𝑂
(
𝜀3

)
= 3 + 𝜀2

{
2
(
trE + trB(1)

)2 + 2 trE2 + trB2(1) + tr ( (g0)−1B>
(1)g

0B(1)
)
+ 2

[
tr

(
EB(1)

)
+ tr

(
E
(
g0)−1B>

(1)g
0
)]}

+𝑂
(
𝜀3

)
,

(A66a)

using Eqs. (A63) and Lemma 4. Recasting this result into a more symmetric form,

I1 − 3 = 2𝜀2
[ (
tr Ê

)2 + tr Ê2] +𝑂 (
𝜀3

)
, where Ê = E + 1

2

[
B(1) +

(
g0)−1B>

(1)g
0
]
, (A66b)

so that Ê is the effective two-dimensional strain. Thus Eq. (A66b) determines the leading-order term in the expansion of the
three-dimensional energy density 𝑒 defined in Eq. (26), analogously to Eq. (55). This completes its asymptotic expansion in the
limit of a thin shell that undergoes general large bending deformations.
We are left to express the leading-order expansion of 𝑒 in terms of tensorial invariants of the midsurface, thereby emphasising

the tensorial nature of the shell theory. We substitute Eq. (A29) into Eq. (A58) to find

B(1) = −
𝑍0K − 2𝑍0Eλ0 + 𝑍 (1)λ

0 −
(
𝑍0

)2K adj λ0 + 2K0 (𝑍0)2E − 𝑍 (1)𝑍
0K0I

1 − 2H0𝑍0 +K0
(
𝑍0

)2 +𝑂 (𝜀). (A67a)

By assumption and definitions (A25) and (A27), tensors λ0,E,K are symmetric. We note that the curvature strain L is, from its
definition in Eq. (A27), not necessarily symmetric. Our choice to switch to a different measure of curvature strain at this stage is
therefore motivated by symmetry, and not geometric interpretation as in Section II. Now, using Proposition 3, it follows that

(
g0)−1B>

(1)g
0 = −

𝑍0K − 2𝑍0λ0E + 𝑍 (1)λ
0 −

(
𝑍0

)2 (adj λ0)K + 2K0
(
𝑍0

)2E − 𝑍 (1)𝑍
0K0I

1 − 2H0𝑍0 +K0
(
𝑍0

)2 +𝑂 (𝜀). (A67b)

Moreover, on substituting Eq. (A29) into Eq. (A56), and using Lemma 4, we find

𝑍 (1) = −
𝑍0

[
1 −H0𝑍0 − 1

3K
0 (𝑍0)2] trE − 1

2
(
𝑍0

)2 (
1 − 4

3H
0𝑍0

)
trK +

(
𝑍0

)2 trEλ0 − 1
3
(
𝑍0

)3 trKλ0
1 − 2H0𝑍0 +K0

(
𝑍0

)2 +𝑂 (𝜀). (A68)

We introduce the anticommutator 〈M,N〉 of twomatricesM,N by setting 〈M,N〉 = (MN+NM)/2. With this notation, substituting
Eq. (A68) into Eqs. (A67) and the result into the definition of Ê in Eq. (A66b) yields

Ê =

[
1 − 2H0𝑍0 −K0

(
𝑍0

)2] E − 𝑍0K + 2𝑍0
〈
E, λ0

〉
+

(
𝑍0

)2 〈K, adj λ0
〉

1 − 2H0𝑍0 +K0
(
𝑍0

)2
+
𝑍0

[
1 −H0𝑍0 − 1

3K
0 (𝑍0)2] trE − 1

2
(
𝑍0

)2 (
1 − 4

3H
0𝑍0

)
trK +

(
𝑍0

)2 tr 〈E, λ0
〉
− 1
3
(
𝑍0

)3 tr 〈K, λ0
〉[

1 − 2H0𝑍0 +K0
(
𝑍0

)2]2 (
λ

0 −K0𝑍0I
)
+𝑂 (𝜀).

(A69a)

For the axisymmetric deformations in Section II, using the
identifications (A31c) and (A32b) of the axisymmetric shell
and curvature strains in terms of the components of the general
shell and curvature strain tensors used here and Eq. (A29) to
switch between curvature strains, we find that 𝐸̂ 𝑠

𝑠 = 𝑎 (1) and
𝐸̂ 𝜙

𝜙 = 𝑏 (1) , where 𝑎 (1) , 𝑏 (1) are defined in Eqs. (47). Com-
paring Eqs. (A66b) and (55) then shows that the general result
derived here is consistent with the result for axisymmetric
deformations obtained in Section II.

The next step in the derivation is to substitute Eq. (A69a),
finally, into Eq. (A66b) and hence Eq. (26). To express the
resulting expansion of the energy density 𝑒 in terms of the
first- and second-order invariants that can be constructed from
λ

0,E,K only, we need to make two more general observations:

Lemma 5. Let A,B,C be 2 × 2 matrices. Then

2 tr (〈A,B〉 C) = tr (〈A,B〉) trC + tr (〈B,C〉) trA
+ tr (〈C,A〉) trB − trA trB trC.



24

Proof. The proof proceeds by direct calculation. We write

A =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
, B =

(
𝐵11 𝐵12

𝐵21 𝐵22

)
, C =

(
𝐶11 𝐶12

𝐶21 𝐶22

)
and compute

2 tr (〈A,B〉 C)
= 𝐴11𝐵11𝐶11 + 𝐴21𝐵12𝐶11 + 𝐴12𝐵21𝐶11 + 𝐴21𝐵11𝐶12

+ 𝐴11𝐵21𝐶12 + 𝐴22𝐵21𝐶12 + 𝐴21𝐵22𝐶12 + 𝐴12𝐵11𝐶21
+ 𝐴11𝐵12𝐶21 + 𝐴22𝐵12𝐶21 + 𝐴12𝐵22𝐶21 + 𝐴21𝐵12𝐶22
+ 𝐴12𝐵21𝐶22 + 2𝐴22𝐵22𝐶22

= (𝐴11𝐵11 + 𝐴21𝐵12 + 𝐴12𝐵21 + 𝐴22𝐵22) (𝐶11 + 𝐶22)
+ (𝐵11𝐶11 + 𝐵21𝐶12 + 𝐵12𝐶21 + 𝐵22𝐶22) (𝐴11 + 𝐴22)
+ (𝐴11𝐶11 + 𝐴21𝐶12 + 𝐴12𝐶21 + 𝐴22𝐶22) (𝐵11 + 𝐵22)
− (𝐴11 + 𝐴22) (𝐵11 + 𝐵22) (𝐶11 + 𝐶22)

= tr (AB) trC + tr (BC) trA + tr (AC) trB − trA trB trC.

By the symmetry of trace, this completes the proof. �

Corollary 4. Let A,B,C be 2 × 2 matrices. Then

tr (〈AB,CB〉) = tr (〈A,B〉) tr (〈B,C〉)
− detB [tr (〈A,C〉) − trA trC] .

Proof. Using Lemmata 4 and 5, we find

tr (〈AB,CB〉) = 2 tr [(〈A,B〉) CB] − tr
[
B2 (AC)

]
= {tr (AB) tr (CB) + tr [A(CB)] trB

+ tr [B(CB)] trA − trA trB tr (CB)}
− {trB tr [B(AC)] − detB tr (AC)}

= tr (AB) tr (CB) + [trB tr (BC)−detB trC] trA
− trA trB tr (CB) + detB tr (AC)

= tr (AB) tr (CB) + detB [tr (AC) − trA trC] ,

which, again by the symmetry of trace, finishes the proof. �

To simplify expressions in subsequent calculations, it will
be convient to rewrite the expression for the effective strain Ê
in Eq. (A69a) as

Ê = 𝑒1E + 𝑒2K + 𝑒3
〈
E, λ0

〉
+ 𝑒4

〈
K, adj λ0

〉
+ 𝐸

(
λ

0 −K0𝑍0I
)
+𝑂 (𝜀), (A69b)

in which 𝑒1, 𝑒2, 𝑒3, 𝑒4 are functions of 𝑍0 andH0,K0 only, and 𝐸 additionally depends on trE, trK, tr
〈
E, λ0

〉
, tr

〈
K, λ0

〉
. Explicit

expressions for 𝑒1, 𝑒2, 𝑒3, 𝑒4 are easily extracted from Eq. (A69a). It follows that

tr Ê = 𝑒1 trE + 𝑒2 trK + 𝑒3 tr
〈
E, λ0

〉
+ 𝑒4 tr

〈
K, adj λ0

〉
+ 2𝐸

(
H0 −K0𝑍0

)
+𝑂 (𝜀), (A70a)

tr Ê2 = 𝑒21 trE
2 + 𝑒22 trK

2 + 𝑒23 tr
〈
E, λ0

〉2 + 𝑒24 tr 〈K, adj λ0
〉2 + 𝐸2 [

tr
(
λ

0)2 − 4H0K0𝑍0 + 2(K0𝑍0)2] + 2𝑒1𝑒2 tr 〈E,K〉
+ 2𝑒1𝑒3 tr

〈
E,

〈
E, λ0

〉〉
+ 2𝑒1𝑒4 tr

〈
E,

〈
K, adj λ0

〉〉
+ 2𝑒1𝐸

(
tr

〈
E, λ0

〉
−K0𝑍0 trE

)
+ 2𝑒2𝑒3 tr

〈
K,

〈
E, λ0

〉〉
+ 2𝑒2𝑒4 tr

〈
K,

〈
K, adj λ0

〉〉
+ 2𝑒2𝐸

(
tr

〈
K, λ0

〉
−K0𝑍0 trK

)
+ 2𝑒3𝑒4 tr

〈〈
E, λ0

〉
,
〈
K, adj λ0

〉〉
+ 2𝑒3𝐸

(
tr

〈
λ

0,
〈
E, λ0

〉〉
−K0𝑍0 tr

〈
E, λ0

〉)
+ 2𝑒4𝐸

(
tr

〈
λ

0,
〈
K, adj λ0

〉〉
−K0𝑍0 tr

〈
K, adj λ0

〉)
+𝑂 (𝜀). (A70b)

Expressing Eqs. (A66b) and hence (26) in terms of first- and second-order invariants only requires simplifying the different traces
of higher-order expressions appearing in Eqs. (A70). We do so by applying Lemmata 3, 4, 5 and Corollary 4 repeatedly to find

tr
〈
K, adj λ0

〉
= 2H0 trK − tr

〈
K, λ0

〉
, tr

(
λ

0)2 = 4(H0)2 − 2K0, (A71a)
tr

〈
E,

〈
E, λ0

〉〉
= trE tr

〈
E, λ0

〉
+H0

[
trE2 − (trE)2

]
, tr

〈
K,

〈
K, adj λ0

〉〉
= H0

[
trK2 + (trK)2

]
− trK tr

〈
K, λ0

〉
, (A71b)

tr
〈
λ

0,
〈
E, λ0

〉〉
= 2H0 tr

〈
E, λ0

〉
−K0 trE, tr

〈
λ

0,
〈
K, adj λ0

〉〉
= K0 trK, (A71c)

and

tr
〈
E, λ0

〉2
=

(
H0

)2 trE2 +H0 trE tr
〈
E, λ0

〉
−

[ (
H0

)2 + 12K0] (trE)2 + 12 [
tr

〈
E, λ0

〉]2
, (A71d)

tr
〈
K, adj λ0

〉2
=

(
H0

)2 trK2 − 3H0 trK tr 〈K, λ0
〉
+

[
3
(
H0

)2 − 1
2K
0
]
(trK)2 + 12

[
tr

〈
K, λ0

〉]2
, (A71e)

tr
〈
E,

〈
K, adj λ0

〉〉
= H0

(
tr 〈E,K〉 + trE trK

)
− 1
2

(
tr

〈
E, λ0

〉
trK + tr

〈
K, λ0

〉
trE

)
, (A71f)

tr
〈
K,

〈
E, λ0

〉〉
= H0

(
tr 〈E,K〉 − trE trK

)
+ 12

(
tr

〈
E, λ0

〉
trK + tr

〈
K, λ0

〉
trE

)
, (A71g)

tr
〈〈

E, λ0
〉
,
〈
K, adj λ0

〉〉
=

[ (
H0

)2 +K0
]
tr 〈E,K〉 −

[ (
H0

)2 + 12K0] trE trK + 12H
0
(
tr

〈
E, λ0

〉
trK + tr

〈
K, λ0

〉
trE

)
− 1
2 tr

〈
E, λ0

〉
tr

〈
K, λ0

〉
. (A71h)
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Inserting Eqs. (A71) into Eqs. (A70), and the result into Eqs. (A66b) and (26) as announced, we finally obtain

𝑒 = 𝐶𝜀2
{(
𝛼1 trE2 + 𝛼2 (trE)2 + 𝛼3 trE tr

〈
E, λ0〉 + 𝛼4 [

tr
〈
E, λ0〉]2) + (

𝛽1 tr 〈E,K〉 + 𝛽2 trE trK + 𝛽3 trE tr
〈
K, λ0〉

+ 𝛽4 trK tr
〈
E, λ0〉 + 𝛽5 tr 〈E, λ0〉 tr 〈K, λ0〉) + (

𝛾1 trK2 + 𝛾2 (trK)2 + 𝛾3 trK tr
〈
K, λ0〉 + 𝛾4 [

tr
〈
K, λ0〉]2)} +𝑂 (

𝜀3
)
,

(A72)

in which the stretching coefficients 𝛼1, 𝛼2, 𝛼3, 𝛼4, the cou-
pling coefficients 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, and the bending coeffi-
cients 𝛾1, 𝛾2, 𝛾3, 𝛾4 are rational functions of 𝑍0 and H0,K0,
so depend on the intrinsic configuration only. The explicit ex-
pressions for these coefficients are not edifying, and therefore
not presented here.
We have been able to use tensor traces rather than matrix

traces in this expressions since λ0,E,K represent λ0,E,K with
respect to B0 ⊗

(
B0

)∗. This stresses the tensorial invariance of
the theory. The anticommutators in Eq. (A72) could of course
be simplified using the symmetry of trace, but we have not
done so to emphasise their symmetry.

f. Averaging over the transverse coordinate

The volume element in the intrinsic configuration V0 is,
by definition and using intrinsic volume conservation and
Eq. (A35b),

d𝑉0 =
√︂
detG0

detG
d𝑉 =

√︁
detG0

(
d𝑆
√
𝑔

)
d𝜁

= 𝜀

[
1 + 2H0𝑍0 +K0

(
𝑍0

)2] d𝑆 d𝑍0 +𝑂 (
𝜀2

)
, (A73)

where d𝑉 is the volume element of the undeformed config-
uration V and d𝑆 is the surface element of the undeformed
midsurface S. From Eq. (26), the elastic energy of the shell is
therefore

E =

∫
S
𝑒 d𝑆, (A74a)

in which, at leading order,

𝑒 = 𝜀

∫ 𝐻 0/2

−𝐻 0/2
𝑒
(
𝑍0

) [
1 + 2H0𝑍0 +K0

(
𝑍0

)2] d𝑍0 (A74b)

is the effective two-dimensional energy density. In the integral
limits, 𝐻0 is determined in terms of the undeformed thickness
ℎ of the shell by Eq. (A37b).
Since the coefficient functions 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3, 𝛽4,

𝛽5, and 𝛾1, 𝛾2, 𝛾3, 𝛾4 that appear in Eq. (A72) are rational func-
tions of 𝑍0, the integral with respect to 𝑍0 in Eq. (A74b) can
be performed in closed form, but the resulting expressions are
extremely cumbersome and therefore again not presented here.
For this reason, the theory for large bending deformations is
likely to be most useful for deformations with some additional
symmetry, such as the axisymmetric deformations discussed
in Section II.

3. Limit of small bending deformations

We conclude our calculations by discussing the limit of
small bending deformations. In this limit, λ0 → O, and hence
H0,K0 → 0, and the effective strain in Eq. (A69a) reduces to
the rather simpler form

Ê = E − 𝑍0K +𝑂 (𝜀), (A75)

and so Eqs. (A66b) and (26) yield

𝑒 = 𝐶𝜀2
{[
trE2 + (trE)2

]
− 2𝑍0

(
tr 〈E,K〉 + trE trK

)
+

(
𝑍0

)2 [
trK2 + (trK)2

]}
, (A76)

where we have again replaced matrix traces with the corre-
sponding tensor traces. Moreover, Eq. (A37b) shows that, in
this limit, 𝐻0 = ℎ, and so Eq. (A74b) becomes

𝑒 = 𝜀

∫ ℎ/2

−ℎ/2
𝑒
(
𝑍0

)
d𝑍0

= 𝜀3
{
𝐶ℎ

[
trE2 + (trE)2

]
+ 𝐶ℎ

3

12
[
trK2 + (trK)2

]}
+𝑂

(
𝜀4

)
,

(A77)

which recovers the tensorial form of the incompressible limit
of Koiter’s shell theory [57].

APPENDIX B: DERIVATION OF THE GOVERNING EQUA-
TIONS FOR AXISYMMETRIC DEFORMATIONS

In this Appendix, we derive the governing equations for ax-
isymmetric deformations, by varying the elastic energy (57a).
Similar derivations are given in our previous work [9, 10] for
the elastic theories considered there, but here, we will keep the
explicit asymptotic scalings in the derivation. From Eq. (63)
and considering leading-order terms only,

𝛿𝑒 = 𝜀
(
𝑛𝑠 𝛿𝐸𝑠 + 𝑛𝜙 𝛿𝐸𝜙

)
+ 𝑚𝑠 𝛿𝐾𝑠 + 𝑚𝜙 𝛿𝐾𝜙 , (B1)

wherein the shell stresses and shell moments are

𝑛𝑠 = 𝐶𝜀
2ℎ

[
𝛼̄𝑠𝑠𝐸𝑠 + 𝛼̄𝑠𝜙𝐸𝜙 + ℎ

(
𝛽𝑠𝑠𝐾𝑠 + 𝛽𝑠𝜙𝐾𝜙

) ]
,

(B2a)
𝑛𝜙 = 𝐶𝜀2ℎ

[
𝛼̄𝜙𝑠𝐸𝑠 + 𝛼𝜙𝜙𝐸𝜙 + ℎ

(
𝛽𝜙𝑠𝐾𝑠 + 𝛽𝜙𝜙𝐾𝜙

) ]
,

(B2b)
𝑚𝑠 = 𝐶𝜀

3ℎ2
[
𝛽𝑠𝑠𝐸𝑠 + 𝛽𝜙𝑠𝐸𝜙 + ℎ

(
𝛾𝑠𝑠𝐾𝑠 + 𝛾𝑠𝜙𝐾𝜙

) ]
,

(B2c)
𝑚𝜙 = 𝐶𝜀3ℎ2

[
𝛽𝑠𝜙𝐸𝑠 + 𝛽𝜙𝜙𝐸𝜙 + ℎ

(
𝛾𝜙𝑠𝐾𝑠 + 𝛾𝜙𝜙𝐾𝜙

) ]
,

(B2d)
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since 𝛼̄𝑠𝜙 = 𝛼̄𝜙𝑠 , 𝛾𝑠𝜙 = 𝛾𝜙𝑠 . Now, from the definitions of the
shell and curvature strains in Eqs. (60) and (62),

𝛿𝐸𝑠 =
sec 𝜓̃ 𝛿𝑟 ′ + 𝑓𝑠 tan 𝜓̃ 𝛿𝜓̃

𝜀 𝑓 0𝑠
, 𝛿𝐸𝜙 =

1
𝜀 𝑓 0

𝜙

(
𝛿𝑟

𝑟

)
, (B3a)

and

𝛿𝐾𝑠 =
𝛿𝜓̃ ′(
𝑓 0𝑠

)2
𝑓 0
𝜙

, 𝛿𝐾𝜙 =
1

𝑓 0𝑠
(
𝑓 0
𝜙

)2 (
cos𝜓
𝑟

𝛿𝜓

)
. (B3b)

Hence, on letting

𝑁𝑠 =
𝑛𝑠

𝑓𝜙 𝑓
0
𝑠

, 𝑁𝜙 =
𝑛𝜙

𝑓𝑠 𝑓
0
𝜙

, (B4a)

𝑀𝑠 =
𝑚𝑠

𝑓𝜙
(
𝑓 0𝑠

)2
𝑓 0
𝜙

, 𝑀𝜙 =
𝑚𝜙

𝑓𝑠 𝑓
0
𝑠

(
𝑓 0
𝜙

)2 , (B4b)

we obtain, from Eq. (57a) and using Eqs. (12),

𝛿E
2π

=
q
𝑟𝑁𝑠 sec 𝜓̃ 𝛿𝑟 + 𝑟𝑀𝑠 𝛿𝜓̃

y

−
∫
C

[(
d
d𝑠

(𝑟𝑀𝑠) − 𝑟 𝑓𝑠𝑁𝑠 tan 𝜓̃ − 𝑓𝑠𝑀𝜙 cos 𝜓̃
)
𝛿𝜓̃

]
d𝑠

−
∫
C

[(
d
d𝑠

(
𝑟𝑁𝑠 sec 𝜓̃

)
− 𝑓𝑠𝑁𝜙

)
𝛿𝑟

]
d𝑠, (B5)

from which we read off the governing equations and boundary
conditions.
As in standard shell theories [26], the apparent singular-

ity in the resulting equations is removed by introducing the
transverse shear tension, 𝑇 = −𝑁𝑠 tan 𝜓̃, and we obtain, using
Eqs. (13) and (16),

d𝑁𝑠

d𝑠
= 𝑓𝑠

(
𝑁𝜙 − 𝑁𝑠

𝑟
cos 𝜓̃ + 𝜅𝑠𝑇

)
, (B6a)

d𝑀𝑠

d𝑠
= 𝑓𝑠

(
𝑀𝜙 − 𝑀𝑠

𝑟
cos 𝜓̃ − 𝑇

)
. (B6b)

Moreover, by differentiating the definition of 𝑇 and using
Eq. (B6a), we find

d𝑇
d𝑠

= − 𝑓𝑠
(
𝜅𝑠𝑁𝑠 + 𝜅𝜙𝑁𝜙 + 𝑇 cos 𝜓̃

𝑟

)
. (B6c)

Together with the relations

d𝑟
d𝑠

= 𝑓𝑠 cos 𝜓̃,
d𝜓̃
d𝑠

= 𝑓𝑠𝜅𝑠 (B7)

from Eqs. (13) and (16), Eqs. (B6) determine the deformed
configuration of the shell. Having solved these equations, in-
tegrating the otherwise redundant shape equation 𝑧′ = 𝑓𝑠 sin 𝜓̃
from Eqs. (13) determines the shape of the shell completely.

Numerical solution of Eqs. (B6)

We conclude the derivation of the governing equations for
axisymmetric deformationswith two remarks on the numerical
solution of Eqs. (B6).

First, we note that Eqs. (B6) are singular where 𝑟 = 0. At
such a point, geometric continuity implies 𝜓̃ = 0. Hence𝑇 = 0
there by definition, and 𝑁𝜙 = 𝑁𝑠 for regularity in Eq. (B6a).
Moreover, by applying l’Hôpital’s rule to the definitions in
Eqs. (12) and (16), 𝑓𝑠 = 𝑓𝜙 , 𝜅𝑠 = 𝜅𝜙 . Hence Eqs. (B6) are
replaced with

d𝑁𝑠

d𝑠
= 0,

d𝑀𝑠

d𝑠
= 0,

d𝑇
d𝑠

= − 𝑓𝑠𝜅𝑠𝑁𝑠 , (B8)

of which the first two follow by reflection across the axis of
symmetry, and the last follows by applying l’Hôpital’s rule to
Eq. (B6c) and using the previous observations and Eqs. (B7).
Second, as discussed in Refs. [9, 10], too, at each stage

of the numerical solution, 𝑓𝑠 , 𝑓𝜙 , 𝜅𝑠 , 𝜅𝜙 must be determined
from 𝑟, 𝜓̃, 𝑀𝑠 , 𝑁𝑠 . To begin with, 𝑓𝜙 , 𝜅𝜙 and hence 𝐸𝜙 , 𝐾𝜙

are computed directly from 𝑟, 𝜓̃ using their definitions (60)
and (62). We can then compute 𝑓𝑠 , 𝜅𝑠 by noting that, once
𝑓𝜙 , 𝐸𝜙 , 𝐾𝜙 are known, the definitions of 𝑁𝑠 , 𝑀𝑠 in Eqs. (B2a),
(B2c), and (B4) define a system of linear equations for 𝐸𝑠 , 𝐾𝑠 .
Its solution and definitions (60) and (62) yield 𝑓𝑠 and finally 𝜅𝑠 .
We can then compute 𝑁𝜙 , 𝑀𝜙 using Eqs. (B2b), (B2d), and
(B4), and thus continue the numerical integration. Moreover, if
𝑟 = 0, we similarly obtain two linear equations for 𝑓 = 𝑓𝑠 = 𝑓𝜙
and 𝑘̃ = 𝑓𝑠𝜅𝑠 = 𝑓𝜙𝜅𝜙 , from the solution ofwhich the numerical
integration can be continued.
Varying the energy with respect to geometric variables, as

we have done above, obviates the problem of elastic com-
patibility. This is the question—independent of the problem
of incompatibility of the intrinsic configuration [17] that we
have discussed when setting up the geometry of the intrinsic
configuration—whether a deformation exists that produces a
given set of strains and that provides one of the Föppl–von
Kármán equations of plate theory [15]. In this context, this
discussion of the numerical approach to solving Eqs. (B6)
shows explicitly how they give rise to a compatible config-
uration, and therefore how they avoid the problem of elastic
compatibility.

APPENDIX C: NEO-HOOKEAN RELATIONS AS THE THIN
SHELL LIMIT OF GENERAL CONSTITUTIVE RELATIONS

In this final Appendix, we show that the effective two-
dimensional constitutive relations resulting from Eq. (A66b),

𝑒 = 𝐶𝜀2
[ (
tr Ê

)2 + tr Ê2] +𝑂 (
𝜀3

)
, (C1)

are general and therefore do not only apply to the incompress-
ible neo-Hookean three-dimensional constitutive relations as-
sumed in Eq. (26). To prove this, we consider, following
Ref. [21], incompressible isotropic energy densities express-
ible as a general power series

𝑒 =
1
2

∞∑︁
𝑚=0

∞∑︁
𝑛=0
𝐶𝑚𝑛 (I1 − 3)𝑚 (I2 − 3)𝑛, (C2)

where I1 = trC and I2 =
(
I21 − trC2

)
/2 are the first two

invariants of the Cauchy–Green tensor C = F>F. We may
set 𝐶00 = 0 without loss of generality. The requirement that
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𝑒 > 0 for small, linearly elastic deformations [32] then leads
to 𝐶10 +𝐶01 > 0. For 𝐶10 +𝐶01 = 0, the material has no linear
elastic response (i.e. zero bulk modulus); we do not consider
that case, and therefore assume that 𝐶10 + 𝐶01 > 0.
Using a result of Ref. [21] and the notation of Appendix A,

the Cauchy stress tensor for this material is

T = 2
[
𝑒,I1F + 𝑒,I2 (I1F − FC)

]
F> − 𝑃I, (C3a)

and hence the morphoelastic Piola–Kirchhoff tensor intro-
duced in Eq. (28) is

P = TF̃−>
= 2

[
𝑒,I1F + 𝑒,I2 (I1F − FC)

] (
F0)−> − 𝑃F̃−>

.

(C3b)

In Eqs. (C3), F̃, F0, and F = F̃
(
F0)−1 are given by Eqs. (A14b),

(A17b), and (A22), respectively, and 𝑃 = 𝑃(0) +𝑂 (𝜀) is pres-
sure. (We now use an uppercase letter to denote pressure to
emphasise that it is scaled differently to Appendix A; in the
notation used there, 𝑃 = 𝐶𝑝.)

Expansion and partial solution at order 𝑂 (1). From the
leading-order expansion of F in Eq. (A40) and using Corol-
lary 2 and g̃ = g0 +𝑂 (𝜀) from Eq. (A26b), we compute

F> =

( (
g0)−1B>g0 (

g0)−1w
v>g0 𝑐

)
+𝑂 (𝜀), (C4)

in which B, v,w, 𝑐 are given by Eqs. (A41), and thence

C =

( (
g0)−1B>g0B +

(
g0)−1ww> (

g0)−1B>g0v + 𝑐
(
g0)−1w

v>g0B + 𝑐w> v>g0v + 𝑐2

)
+𝑂 (𝜀), (C5)

In particular,

I1 = tr
( (

g0)−1B>g0B
)
+ w> (

g0)−1w + v>g0v + 𝑐2 +𝑂 (𝜀).
(C6)

Since the incompressibility condition is independent of the
constitutive relations, its leading-order expansion (A42) still
holds true. Using this and the leading-order expansions (A43)
and (A44b) and writing 𝑒,I1 = 𝐸1 + 𝑂 (𝜀), 𝑒,I2 = 𝐸2 + 𝑂 (𝜀),
Eq. (C3b) yields

P =
1
𝜁0 ,𝜁

©­­­­­­­­­­­­«

𝑂 (1)

2
{
𝐸1 + 𝐸2

[
tr

( (
g0)−1B>g0B

)
+ w> (

g0)−1w]}
v

− 2𝐸2
(
B
(
g0)−1B>g0v + 𝑐B

(
g0)−1w)

+ 𝑃(0) (detB)
(
g0)−1B−>w

𝑂 (1) 2𝑐
[
𝐸1 + 𝐸2 tr

( (
g0)−1B>g0B

)]
− 2𝐸2w> (

g0)−1B>g0v − 𝑃(0) detB

ª®®®®®®®®®®®®¬
+𝑂 (𝜀). (C7)

Writing P = P(0) + 𝜀P(1) +𝑂
(
𝜀2

)
, the leading-order boundary

condition is P(0)𝒏 ≡ 0, similary to Appendix A. Hence, from
Eqs. (A42) and (C7), the leading-order problem is

𝑐 − w>B−1v = (detB)−1, (C8a)

2
{
𝐸1 + 𝐸2

[
tr

( (
g0)−1B>g0B

)
+ w> (

g0)−1w]}
v

− 2𝐸2
(
B
(
g0)−1B>g0v + 𝑐B

(
g0)−1w)

+ 𝑃(0) (detB)
(
g0)−1B−>w = 0, (C8b)

2𝑐
[
𝐸1 + 𝐸2 tr

( (
g0)−1B>g0B

)]
− 2𝐸2w> (

g0)−1B>g0v

− 𝑃(0) detB = 0. (C8c)

These equations have a trivial solution

𝑍 (0) ≡ 𝑍0, S(0) ≡ 0, 𝑃(0) = 𝐶10 + 2𝐶01, (C9)

analogous to the leading-order solution found in Appendix A
and for which, from Eqs. (A41), B = I, v = w = 0, 𝑐 = 1,
and hence C = I + 𝑂 (𝜀), so that I1 = I2 = 3 + 𝑂 (𝜀) and thus
𝐸1 = 𝐶10/2, 𝐸2 = 𝐶01/2 from Eq. (C2). We were not however
able to show that this is the only solution of the nonlinear first-
order differential equations for 𝑍 (0) , S(0) as functions of 𝑍0
provided by Eqs. (C8) that satisfies the conditions 𝑍 (0) = 0,
S(0) = 0 on themidsurface 𝑍0 = 0. In this respect, our solution
of the leading-order problem remains partial.
Our failure to solve Eqs. (C8) emphasises once again that

what distinguishes these problems of large bending deforma-
tions from classical problems in elastic shell theories is the fact
that the leading-order problem for large bending deformations
is not trivial. In fact, were a second solution of Eqs. (C8) to
exist, global energy considerations would select the solution;
this would open a new can of worms in the analysis.

Expansion at order𝑂 (𝜀). At this stage, we take Eqs. (C9)
as the solution of the leading-order problem (C8) and proceed
thence. In particular, the deformation gradient still has an
expansion of the form in Eq. (A57). Hence Eq. (A64) still
holds true, and we compute

C =
©­«

I + 𝜀
(
2E+B(1)+

(
g0)−1B>

(1)g0
)
𝜀

(
v(1)+

(
g0)−1w(1)

)
𝜀
(
v>(1)g0 + w>

(1)
)

1 + 2𝜀𝑐 (1)

ª®¬
+𝑂

(
𝜀2

)
, (C10a)

C2 = ©­«
I + 2𝜀

(
2E+B(1)+

(
g0)−1B>

(1)g0
)

𝑂 (𝜀)

𝑂 (𝜀) 1 + 4𝜀𝑐 (1)

ª®¬ +𝑂
(
𝜀2

)
,

(C10b)

whence

I1 = 3 + 𝜀
[
2
(
trE + trB(1) + 𝑐 (1)

) ]
+𝑂

(
𝜀2

)
, (C11a)

I2 = 3 + 𝜀
[
4
(
trE + trB(1) + 𝑐 (1)

) ]
+𝑂

(
𝜀2

)
. (C11b)

The incompressibility condition being independent of the con-
stitutive relations, Eq. (A59b) and hence the first of Eqs. (A63a)
still hold. The latter implies I1 = I2 = 3 +𝑂

(
𝜀2

)
. Thus

𝑒 =
1
2
[
𝐶10 (I1 − 3) + 𝐶01 (I2 − 3)

]
+𝑂

(
𝜀4

)
, (C12)

and, in particular, 𝑒,I1 = 𝐶10/2+𝑂
(
𝜀2

)
, 𝑒,I2 = 𝐶01/2 +𝑂

(
𝜀2

)
.

In this way, the constitutive relations have reduced, up to
smaller corrections, to those of a Mooney–Rivlin solid [17].
Moreover, Eq. (A60a) and hence Eqs. (A60b) and (A61b) still
hold. Since 𝑃 = 𝐶10 + 2𝐶01 +𝑂 (𝜀), it follows that
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P =

©­­­«
𝑂 (𝜀) 𝜀

𝐶10 + 𝐶01
𝑐0(0)

(
v(1) +

(
g0)−1w(1)

)
+𝑂

(
𝜀2

)
𝑂 (𝜀) 𝑂 (𝜀)

ª®®®¬ =⇒ P(0) = O, P(1)𝒏 =
©­­«
𝐶10 + 𝐶01
𝑐0(0)

(
v(1) +

(
g0)−1w(1)

)
𝑂 (1)

ª®®¬ . (C13)
Similarly to Appendix A, the boundary conditions now imply P(1)𝒏 ≡ 0, so, noting that 𝑐0(0) > 0 and 𝐶10 + 𝐶01 > 0, the second
of Eqs. (A63a) also still holds.

Expansion at order 𝑂
(
𝜀2

)
. Since the expansion (A59b) of the incompressibility condition still holds, Eqs. (A63a) still imply

Eq. (A63b) and hence Eq. (A66a). Meanwhile, Eqs. (A63a) and (C10a) show that the off-diagonal terms in Eq. (A65) are in fact
of order 𝑂

(
𝜀2

)
, so it follows from Eq. (A65) that

trC2 = tr
{
I + 𝜀

(
2E + B(1) +

(
g0)−1B>

(1)g
0
)
+ 𝜀2

[
2
(
EB(1) +

(
g0)−1B>

(1)g
0E

)
+ B(2) +

(
g0)−1B>

(2)g
0 +

(
g0)−1B>

(1)g
0B(1)

+
(
g0)−1w(1)w>

(1)

]
+𝑂

(
𝜀3

)}2
+

[
1 + 2𝜀𝑐 (1) + 𝜀2

(
2𝑐 (2) + 𝑐2(1) + v>(1)g

0v(1)
)
+𝑂

(
𝜀3

) ]2 +𝑂 (
𝜀4

)
= 3 + 4𝜀

(
𝑐 (1) + trE + trB(1)

)
+ 2𝜀2

[
2 trE2 + 4 tr

(
EB(1)

)
+ 4 tr

(
E
(
g0)−1B>

(1)g
0
)
+ trB21 + 2 tr

(
B(1)

(
g0)−1B>

(1)g
0
)

+ 2 trB(2) + w>
(1)

(
g0)−1w(1) + 3𝑐2(1) + 2𝑐 (2) + v>(1)g

0v(1)
]
+𝑂

(
𝜀3

)
= 3 + 4𝜀2

{
2
(
trE + trB(1)

)2 + 2 trE2 + trB2(1) + tr ( (g0)−1B>
(1)g

0B(1)
)
+ 2

[
tr

(
EB(1)

)
+ tr

(
E
(
g0)−1B>

(1)g
0
)]}

+𝑂
(
𝜀3

)
,

(C14)

using Eqs. (A63) and Lemma 4, similarly to the calculations
leading up to Eq. (A66a).
Finally, if we write I1 = 3+𝜀2𝐼 (2) +𝑂

(
𝜀3

)
using Eq. (A66a),

then Eq. (C14) shows that trC2 = 3 + 4𝜀2𝐼 (2) +𝑂
(
𝜀3

)
. These

expansions imply that I2 = 3 + 𝜀2𝐼 (2) +𝑂
(
𝜀3

)
. Equivalently,

I2 − 3 = I1 − 3 +𝑂
(
𝜀3

)
. Hence, from Eq. (C12),

𝑒 =
𝐶

2
(I1 − 3) +𝑂

(
𝜀3

)
, with 𝐶 = 𝐶10 + 𝐶01 > 0. (C15)

Up to smaller corrections, these are the neo-Hookean consti-
tutive relations assumed in Eq. (26) and throughout Section II
and Appendix A, and which, as shown there, indeed reduce
at order 𝑂

(
𝜀2

)
to the effective two-dimensional constitutive

relations in Eq. (C1). Assuming that the trivial solution (C9)
of the leading-order problem defined by Eqs. (C8) is unique,
this proves our claim in Section IV, that these effective two-
dimensional constitutive relations are general.
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