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The collapse of a catenoidal soap film when the rings supporting it are moved beyond a critical
separation is a classic problem in interface motion in which there is a balance between surface
tension and the inertia of the surrounding air, with film viscosity playing only a minor role. Recently
[Goldstein, et al., Phys. Rev. E, 2021, 104, 035105], we introduced a variant of this problem in
which the catenoid is bisected by a glass plate located in a plane of symmetry perpendicular to
the rings, producing two identical hemicatenoids, each with a surface Plateau border (SPB) on the
glass plate. Beyond the critical ring separation, the hemicatenoids collapse in a manner qualitatively
similar to the bulk problem, but their motion is governed by the frictional forces arising from viscous
dissipation in the SPBs. Here we present numerical studies of a model that includes classical friction
laws for SPB motion on wet surfaces and show consistency with our experimental measurements of
the temporal evolution of this process. This study can help explain the fragmentation of bubbles
inside very confined geometries such as porous materials or microfluidic devices.

1 Introduction
Free-boundary problems involving the collapse of unstable min-
imal surfaces generally fall into two main categories: either the
ultimate singularity and surface reconnection occur in the bulk,
far from any supporting boundaries, or they occur at the bound-
ary itself. A bulk singularity is found in the classical problem
of a collapsing catenoid supported by two rings, which was first
studied by Plateau1 and Maxwell2 in the XIXth century, whereas
boundary singularities were only studied recently in the context
of collapsing soap films with more exotic topologies3–5. A typical
example of a boundary singularity is found in the collapse of a
Möbius strip soap film3, first studied by Courant6.

In all of these problems, the boundaries of the soap film are
rigid “frames" that are fixed in position or subjected to infinites-
imal changes to induce the collapse. In this paper, we study a
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Fig. 1 The full catenoid (left) vs the hemicatenoid (right). Stretching
the supporting rings of each catenoid vertically (black arrows) leads to
an instability in which the neck collapses inward. For the hemicatenoid,
that neck narrowing involves inwardly moving surface Plateau borders.

distinct class of dynamics where part of the boundary of the film
moves as a consequence of the surface evolution. In this context,
the moving boundary problem gives rise to a boundary singular-
ity. Specifically, we study a problem introduced briefly in earlier
work7 consisting of a catenoid film supported in the usual way
by two circular rings, but which is split into two hemicatenoids
by a glass plate oriented perpendicularly to the rings, as in Fig.
1. The closed boundary of each half of the film thus consists of
two rigid, stationary semicircular frames and two curved, mov-
able surface Plateau borders (SPBs) connecting the intersections
of those frames with the glass plate. As such, this is precisely
of the class of problems studied by Courant8 as a generalization
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Fig. 2 Momentum balance in a plane perpendicular to the surface Plateau
border (region inside dashed green square) in contact with the wall.

of the work of Douglas9,10 on the existence of minimal surfaces
bounded completely by Jordan curves. It is one of a class of prob-
lems involving capillary surfaces in contact with a wall, subject
to various boundary conditions11–13. As shown in cross section
in Fig. 2, the lateral balance of forces that occurs in the surface
Plateau borders involves the component of the force fγ parallel
to the wall due to surface tension γ and the frictional force fv

due to motion of the film at velocity v. In the case of a mini-
mal surface, we know from Plateau’s laws that the contact angle
Ψ = π/2 and corresponds to equilibrium, i.e. v = 0. The depen-
dence of fv on the sliding velocity v is a well-studied problem in
foam rheology14,15 and is strongly correlated with the nature of
the gas-liquid interfaces, whose properties lie between the lim-
iting cases of a stress-free surface and an incompressible surface
covered with surfactants16. Here, in contrast to the case of foams,
it is the three-dimensional shape of the soap film that drives the
surface Plateau border motion and thereby controls the dynamics.

The experimental setup in Fig. 1 is related to the general prob-
lem of a triple line that becomes unstable. Examples include the
collapse of liquid or air bridges during dewetting17,18 and air en-
trainment in dynamic wetting19–21. These situations are charac-
terized by small bubbles and droplets, respectively, that are left
behind on the substrate. The instability of liquid bridges is also
central to the detachment of droplets from moving drops22–25 or
liquid bridges26–28. In each case, the dynamics is essentially that
of a hemicatenoid in contact with a solid wall. For the case of
soap films, the dynamics of a collapsing hemicatenoid is also rel-
evant to bubble fragmentation inside foams confined in porous
media29,30 or in microfluidic devices31.

We study the collapse of hemicatenoids in the geometry of Fig.
1, and compare the experimental measurements with a numer-
ical model for the film evolution that incorporates the friction
laws for surface Plateau border motion. The model exploits the
separation of time scales between the fast film motion and the
slow creep of the SPBs. Given this time-scale separation, the film
can be approximated by a minimal surface that spans the support
rings and the Plateau borders, and its local contact angle with the
plate determines the SPB speed. This situation is similar to the
retraction of a soap films inside an elastic ring32, whose shape
and dynamics are linked to surface tension on one side as well as
on the elastic and inertial properties of the ring on the other side.
In that spirit, the properties of the ring are replaced here by the
frictional properties of the surface Plateau border.

In Section 2 of this paper we summarize the experimental
methods used both in the study of hemicatenoid collapse and also
in the related problem of SPB reconnection on surfaces described
in the Discussion. The main experimental results are presented
in Sec. 3, while the formulation of the dynamical model used in
numerical studies is given in Sec. 4. Section 5 presents results of
those studies and a comparison with experiments. The conclud-
ing Discussion section 6 connects these results to surface Plateau
border reconnection and other problems in foams.

2 Experimental methods
As in previous work7, soap solutions were obtained by dissolving
tetradecyl trimethyl ammonium bromide (TTAB) into deionized
water and adding glycerol in order to vary the viscosity. The con-
centration of TTAB was 3 g/l for the aqueous solution containing
no glycerol and was raised to 6 g/l for the solutions containing
glycerol to enhance the stability of the soap films. The viscosity
η varies from 1.0 to 77 mPa·s over the range of glycerol concen-
trations, while the surface tension is nearly constant at 35− 38
mPa·m33,34. Fluorescein was added to aid visualization.

In the experiments on hemicatenoids, a full catenoid is first
formed between two coaxial circular rings of radius R = 4cm,
whose distance apart is adjusted with a micrometric linear stage.
A glass plate of width slightly less than 2R and thickness of 1mm
was introduced and passes through the diameters of both rings.
In this way we create two independent hemicatenoids that be-
come unstable once the distance 2d between the rings becomes
larger than a critical value.

In separate experiments on SPB reconnection discussed in
Sec. 6, we used a different soap film chemistry to slow down
the dynamics3 for accurate visualization. We used deformable,
transparent tubing with a large diameter (6.4mm) and a
SLES/CAPB/SLES mixture35 known for its high dissipative prop-
erties36. We mixed 6.6% of sodium lauryl ether sulfate (SLES)
and 3.4% of cocamidopropylbetaine (CAPB) by weight in ultra
pure water, and then dissolved 0.4% by weight of myristic acid
(MAc), by stirring and heating at 60◦C for one hour. We then
diluted this solution by a factor of 20 with water containing fluo-
rescein at a concentration of 0.5 g/L.

The dynamics of the collapsing soap films were recorded using
a color high speed camera (Phantom V641, Ametek) at speeds up
to 4,000 frames per second while the films were illuminated from
multiple directions with arrays of cyan LEDs. The ESI† includes
a video of the collapse of a 3d catenoid and videos of collapsing
hemicatenoids with η = 9.6 and 77mPa·s.

3 Experimental results
As is well known, a full catenoid spanning two circular frames a
distance 2d apart becomes unstable when d/R exceeds the critical
value 0.663...7. Using the setup shown schematically in Figure
1, we found experimentally that essentially the same threshold
exists in the case of a hemicatenoid. In capturing images of this
process with a high-speed camera aimed along the normal to the
plate, we naturally see two hemicatenoids, one in front and the
other behind the plate. It is inevitable that they are slightly dif-
ferent due to imperfections in the setup, and therefore they tend
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Fig. 3 Experimental collapse sequence of a hemicatenoid stretched beyond criticality. Images are taken at times t − tp =-51 ms, -16 ms, -6 ms, 0
ms, 10 ms, 35 ms. Diagram indicates tangent angle θ of the interface at the upper wire frame. Cyan contours are tracings of the left-hand surface
Plateau border of the hemicatenoid facing the camera.

to collapse at slightly different times. We therefore introduced a
deliberate, infinitesimal bias in the position of the plate in order
to assure that the hemicatenoid facing the camera would collapse
last. The consequence of this is seen in Fig. 3, where the bubbles
in the central region of the images are the satellite bubbles left
over after the collapse of the hemicatenoid that was behind the
plate. The cyan tracings in Fig. 3 indicate one of the two surface
Plateau borders of the hemicatenoid facing the camera.

The sequence of shapes of the SPB is strikingly similar to the
equivalent sequence for three-dimensional catenoids obtained by
taking longitudinal cross-sections in the plane of symmetry7. We
note in particular the evolution toward a shape consisting of two
conical films connected by a quasi-cylindrical region (panel (c)),
with a characteristic angle θ∗ ≃ 67.5◦ at the pinchoff time tp

[panel (d)]. After pinchoff, the two disjoint films still attached
to the frame relax towards the two half discs spanning the wire
loops, while the remnants of the central cylinder slowly round up
to form satellite bubbles, as seen in panel (f).

In quantifying the observed film shapes, we label the SPB lo-
cation as ζ (z), and define7 the dimensionless radius r = ζ/a,
where a = 0.5524R is the critical catenoid waist radius. Similarly,
we use the half disc area to define the dimensionless film area
A = A/πR2, with A ≃ 1.199 . . . for the critical hemicatenoid and
A = 1 for the configuration with two hemidiscs. The area is cal-
culated from the catenoid contour assuming axisymmetry. This
requires that the contact angle on the glass is close to 90◦, as
observed in experiments. While we know that this is not strictly
fulfilled at all space-time points in the experiments, it is a con-
venient simplification for the measurements. We have used the
same assumption in the simulations to enable direct comparison
of the two; the error in this approximation increases as the con-
tact angle Ψ decreases away from 90◦ and pinchoff is approached.

From the measure SPB locations we determine the time evolu-
tion of A (t), the minimum neck radius ζn(t), and the neck con-
traction speed dζn/dt for hemicatenoids and full catenoids (also
with ring radius R = 4cm). The data for ζn shown in Fig. 4a illus-
trate how the contraction dynamics of even the least viscous hem-
icatenoids is slower than the 3d case, and that the hemicatenoid
dynamics progressively slows down with increasing viscosity. In
contrast, the 3d data shows little if any dependence on viscosity,
indicating that the 3d balance of forces is between surface tension
and air inertia.

Figure 4b plots the neck contraction speed as a function of the
neck radius. From this we see that all the data sets display a max-
imum contraction speed at a neck radius ζ ∗

n ≈ 4mm, independent
of the film viscosity. This is clearly associated with the incipient
formation of a central satellite droplet. The lack of variation with
η , and the presence of the central plate, indicates that it is a geo-
metric effect in the sense that ζ ∗

n should scale with the loop radius
R. This hypothesis is borne out by comparison with numerical
studies of inviscid capillary breakup37, where the maximum con-
traction speed is reached for ζn/R≈ 0.1. While the radius of maxi-
mum contraction speed is common to both 3d catenoids and hem-
icatenoids, the neck radius at which the speed vanishes for hem-
icatenoids is approximately one half of that for the 3d case. This
difference arises from the very different local geometries of the
collapsing necks in the two cases. Whereas the 3d catenoid main-
tains axisymmetry during collapse, the hemicatenoids do not, as
discussed in Section 4 below.

We can understand the crossover between inertial and viscous
effects in film collapse by means of a scaling argument for char-
acteristic film speeds U . Under inertial dynamics, we expect the
Keller-Miksis38 scaling U ∼ (γR/ρa)

1/2 to hold, where ρa is the
density of air, while in the viscous limit the speed U ∼ γ/η is as-
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Fig. 4 Time evolution of neck radius and contraction speed for three-dimensional catenoids and hemicatenoids. (a) The neck radius ζn as a function
of time relative to pinch time for the various cases as labelled. (b) Contraction speed versus neck radius.

sociated with the capillary number of order unity16. The ratio
of these velocities defines the Ohnesorge number of this prob-
lem Oh = η/

√
γρaR, where large (small) values correspond to

frictional (inertial) dynamics, respectively. The critical viscosity
ηc for a balance between the two effects is at Oh = 1, namely
ηc ≃ 40mPa·s, which is consistent with the observations in Fig. 4.

4 Model and simulations

A moving meniscus in contact with a wall (an SPB) experiences
a frictional force per unit length whose form depends on the spa-
tial distribution of dissipation, which itself depends on the stress
and physical chemistry at the liquid-air interface. This dissipation
can be written as the sum of two terms16, both of which depend
on the capillary number Ca = ηv/γ . The first term represents the
contribution from dissipation inside the wetting film, and scales
as Ca1/3, while the second is the contribution from dissipation
inside the SPB, and scales as Ca2/3. The latter contribution is as-
sociated with mobile surfactants and stress-free interfaces. Oth-
erwise, both contributions are present and over a large range of
Ca, this combined frictional law can be approximated as fv ∼Can

with n in the range 1/2−2/3. This empirical law holds for other
systems in which the frictional force is the dominant one in the
balance with the capillary driving force, such as liquid and air
bridges.

The model we study here rests on this assumption, namely that
the capillary forces are balanced by the viscous friction at the
contact between the soap film and the glass plate. That contact
consists of an SPB39 that connects the wetting film on the plate
to the soap film. A slice through a plane perpendicular to this
SPB (Fig. 2) shows that the driving force density is fγ cosΨ, with
fγ = 2γ. Balancing against the frictional force fv = Aγ Can, with A
a dimensionless constant, we obtain

v = v0 (cosΨ)1/n , (1)

where v0 = (γ/η)(2/A)1/n is a characteristic speed.

To apply this law to the evolution of hemicatenoids toward col-
lapse, we exploit the separation of time scales between the mo-
tion of the bulk surface, resisted only by the inertia of the sur-
rounding air, and that of the contact lines, and view the surface
spanning the moving contact lines and the two half-rings as in
quasi-equilibrium. It is therefore a minimal surface at any in-
stant of time, but does not necessarily meet the glass plate with
Ψ = π/2, as would be the case in static equilibrium in accordance
with Plateau’s laws. Instead, the contact line acts like a constrain-
ing wire, and the surface meets it at the angle that yields a min-
imal surface. Figure 5 shows an experimental realization of this
concept, where 3D printed frames, consisting of two half-circular
loops connected by contours obtained from the numerical studies
below, support minimal surfaces with contact angle Ψ < π/2.

(a) (b) (c)

Ψ

Fig. 5 Soap films spanning a 3D printed frame consisting of two semicir-
cles connected by a contour found in numerical studies of film evolution.
Note in panel (c) how the minimal surface meets the narrowest part of
the neck with a small angle Ψ.

The dynamics of evolving hemicatenoids obeying the laws spec-
ified above were obtained using Surface Evolver40. We nondi-
mensionalize lengths with the loop radius R and scale speeds
with v0, leaving R/v0 as a characteristic time scale in the motion.
Therefore, changing R in the initial conditions or v0 in (1) corre-
sponds to a dilation in time and all simulations can be rescaled
with respect to time. Hence, for a given power-law exponent n,
there is only a single simulation needed for each initial stretch-
ing factor. The updating algorithm involves advecting each part
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Fig. 6 Image sequence in simulation (n = 2/3, stretching factor 5%), corresponding to the times at which the images in Figure 3 were recorded.

of the SPB in the plane along its projected normal by a distance
dℓ = vdt, with v determined by the local angle Ψ. The updated
shape of the catenoid is obtained by finding a minimal surface
with the new position of the contact lines, which then yields the
updated Ψ along the SPBs, and the velocity for the next time step.

By symmetry, we need only simulate one quarter of the hem-
icatenoid. We fix the plate thickness at 0.008R and first create a
stable catenoid with d = 0.65R, close to the critical value for three-
dimensional catenoids, and a triangulation in which triangle edge
lengths lie in the range 0.004− 0.06. To begin the evolution, we
stretch the catenoid by a few percent and fix all points along the
SPB. Motion then proceeds in time steps of dt = 1× 10−3 using
the algorithm outlined above, where the relaxation to a minimal
surface is done to 7 significant figures. The initial stretching is
needed to match the initial area in experiments and in simula-
tion. It corresponds to 5 and 7.2% for the simulations of η = 9.6
and 77 mPa.s respectively.

In the numerics, several quantities are calculated as functions
of time: the dimensionless area A , the dimensionless neck radius
rn as defined in Sec. 3, and the tangent angle θ at the junction of
the contact line and the supporting half-ring. As in the presenta-
tion of the experimental results, we define the zero of time as the
moment when the apparent neck radius vanishes and the topo-
logical transition occurs. In simulations, a cutoff radius of 0.02R
is introduced to trigger the transition. This choice is not critical
in the analysis since the radius goes to zero in a finite time and
the transition is well defined, as seen in Fig. 7.

5 Comparison of Experimental and Numerical Re-
sults

We now describe the key results obtained with the numerical im-
plementation of the model described in Section 4. The full tempo-
ral evolution of a collapsing hemicatenoid is shown in Fig. 6 (and
in a video in the ESI†), while Fig. 7 shows the cross-sectional
shapes of the narrowest part of the neck. We observe that the ini-
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Fig. 7 Numerical results for cross-sectional profiles in the plane z =

0 for t < 0, color-coded from blue (early) to red (late). The initially
circular profile becomes extremely flattened, coincident with the contact
line speed reaching its maximum.

tial cross-section is nearly circular, with the angle Ψ ≈ π/2, as ex-
pected for a minimal surface. However, as the collapse sequence
progresses, the neck becomes ever flatter and Ψ tends to zero.
Within the assumptions of the model (1), this implies that the
neck contraction speed dζn/dt tends to the extremal value −v0

before pinchoff. As in collapsing three-dimensional catenoids7,
we observe that the film shape connecting the pinchoff region to
the supporting wire loops is close to a (half) cone.

The experimental data shown in Fig. 4 for the neck radius and
neck contraction speed, as well as the experimental film area are
plotted in Fig. 8 along with the numerical results obtained for
three different values of the exponent n of the friction law (1).
Simulations are rescaled with respect to experiments using the
curves of the neck contraction speed as a function of time. The
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Fig. 8 Rescaled area, neck radius and neck contraction rate as functions of time. Simulations were performed with force-law exponent n = 1 (black),
2/3 (blue) and 1/2 (red). Time has been scaled to match the maximum neck rate.

value of v0 in simulations is set, for each viscosity η , by the max-
imum contraction speed observed in experiments. This sets the
time axis up to an additive constant. There is a noticeable dif-
ference between experiments and simulations close to pinchoff.
In simulations, the neck contraction speed remains constant in
the last instants before pinchoff at its extremal value −v0. In ex-
periments, the neck contraction speed reaches a maximum, used
to infer v0, and decreases thereafter to zero. As mentioned pre-
viously, this is associated with the complex dynamics close to
pinchoff due to the air trapped in the neck, as observed in 3D
catenoids. As a consequence, we define t∗p as the hypothetical pin-
choff time assuming that the neck contraction speed maintains its
extremal value (note that t∗p = tp in simulations) and plot all the
data as a function of t − t∗p in Fig. 8. This allows a quantitative
comparison between experiments and simulations. For the two
viscosities studied in Fig. 8, we see a clear tendency to favour
the exponent 2/3 over 1/2 and 1. This nonlinear friction law thus
seems consistent not only with the presence of mobile surfactants
and stress-free interfaces, but also implies that dissipation occurs
within the SPBs.

The value of the prefactor A in the frictional force law (1) can
be inferred from the experimental measurements of v0, using the

Experiments
η (mPa.s) 1.0 4.3 9.6 77
θ∗ (deg) 68.0±1.0 68.0±1.0 67.5±1.0 66.6±1.0

Simulations
n 1/2 2/3 1

θ∗(deg) 65.8±0.6 68.2±0.7 72.1±1.1

Table 1 Apex angle of the Martini-glass configuration in simulation and
experiment.

exponent n = 2/3 that is most consistent with the data. For the
data of Fig. 8, we find for η = 9.6 and 77 mPa·s that v0 = 0.52 and
0.26m·s−1, respectively. These yield A ≈ 7.3 and 2.9, respectively,
in agreement with the prediction A∼ 5−7 from lubrication theory
in a simpler geometry16. For the two other viscosities (η = 1.0
and 4.3mPa·s), the dynamics can not be described with the same
approach since both viscous and inertial effects are present.

In previous work7, we have referred to the conical film shape
as the “Martini glass" configuration, and detailed a method to de-
termine its appearance based on the shape of the film near the
supporting ring. The method involves finding, within the time
sequence, that contour whose shape displays the minimum stan-
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Fig. 9 Surface Plateau border motion during a topological transition. Image sequence of the final stages of SPB reconnection as a soap film Möbius
strip transitions to a disc. Foreground and background segments of the SPB are displayed by solid magenta and dashed cyan curves respectively.
Frames (a)-(c) are at times −31ms, −12.5ms, and −5ms relative to the reconnection event in (d).

dard deviation in a fit to a straight line. The critical vertex angle is
then θ∗ = π/2− arctan(m), where m is the associated slope of the
line. For the case of 3D catenoids, whose dynamics are driven by
inertia, we found θ∗ = 68◦. For hemicatenoids bounded by a solid
wall, our measurements are reported in Table 1. In experiment,
this configuration is observed when the neck pinches. The stated
uncertainties are estimated either over repeated experiments or
by assuming a 10% allowance on the standard deviation to find
its minimum value. Both estimates give typical values around
1◦. In the simulations, this configuration occurs slightly after the
pinchoff time and for larger n this configuration occurs later, and
yields a larger θ∗. ‡ In the simulations, the error bars are deter-
mined with the same 10% criterion.

We find that θ∗ is almost constant in experiments and very close
to what was observed experimentally with 3D catenoids7, and
which was found to be a consequence of the fact that the first
few active modes dominate the dynamics near the rigid frames.
A slight decrease could be observed as the viscosity increases, but
it is difficult to give strong statements given the error bars. We
can notice that the value of θ∗ obtained with η = 9.6 mPa.s is
consistent with a 2/3 exponent. For η = 77 mPa.s, the value lies
between what is obtained with exponents 1/2 and 2/3 in simula-
tion, but this method to discuss the exponent is not as robust as
the comparison through the whole time sequence as presented in
Figure 8 and is more sensitive to the exact and complex dynamics
around the pinchoff time.

6 Discussion
In this work, we have studied the dynamics of surface Plateau
borders that are driven by unstable soap films. Unlike in the case
of collapsing three-dimensional catenoidal films, the motion of
hemicatenoids bounded by solid walls is dominated by dissipation
localized in the moving SPBs. Whereas the film viscosity plays es-
sentially no observable role in the collapse of 3d catenoids, we
observe a strong dependence on viscosity of the collapse dynam-
ics of hemicatenoids. Through comparisons between experimen-

‡ For n = 1 the local minimum is less pronounced. We have tested a simulation with
n = 4/3 (data not shown). In this case, the local minimum does not exist as em-
phasized by the absence of a curvature inversion in the corresponding movie/image
sequence (data not shown).

tal observations and numerical simulations of a model that in-
corporates the widely used nonlinear friction law f ∼Can for the
viscous force f as a function of capillary number Ca, we found
consistency with the exponent n = 2/3 associated with mobile
surfactants and stress-free interfaces. Despite this effect on the
dynamics, the large-scale shapes of the collapsing films are insen-
sitive to the film viscosity, a fact that highlights the crucial role
played by intrinsic geometric features.

Surface Plateau border motion is also present in certain exotic
topological transitions involving soap films. For example, in previ-
ous work3–5 we studied the interconversion of a soap-film Möbius
strip to a two-sided surface, and showed that the singularity asso-
ciated with that topological transition occurs at the boundary of
the film and involves reconnection of the SPB. Figure 9 shows a
close-up of the region of the incipient singularity, in which we see
that the film evolves in such a way as to make the SPB twist ever
more tightly around the tube, until two sections of the film touch
each other and reconnect. While this is similar to the neck of a
half catenoid, which collapses with the formation of a satellite
droplet, the detailed dynamics of the twist-driven reconnection
event and associated change in the orientation of the SPB in Fig.
9 remain to be understood.

The dynamics that we describe here, driven by the shape of
the interface and the motion of the associated SPB, is found more
widely during the motion of surfactant-laden interfaces. In flow
through porous media, for example during foam enhanced oil re-
covery39, lamellae are forced under a pressure gradient through
narrow pore throats between solid surfaces. The collision of two
SPBs leads to processes such as pinch-off31, in which two inter-
faces separate in the way that the hemicatenoid does, snap-off
and lamella-division30. These process lead to variations in bubble
size, which then requires an adjustment to the pressure gradient
required to mobilize the foam. SPB friction therefore controls the
rate at which foam is generated in porous media.
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