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The response of a soap film to the continuous deformation of its wire boundary is
considered, with particular attention to the topological transitions that can occur at critical
stages of the deformation process. Two well-known examples that have been studied by
both theory and experiment are the catenoid suspended between circular wires in parallel
planes, and the Möbius-strip soap film spanning a wire that is twisted and folded back on
itself. In this latter case, we have shown in previous publications that, when the wire is
unfolded, the soap film undergoes a topological transition through a boundary singularity
to a two-sided film, with a corresponding jump in the linking number between the axis of
the wire and the Plateau boundary on its surface. Here, we review this particular aspect
of the problem, and propose a simplified model experiment through which the slipping
adjustment of a Plateau border on a solid surface may be investigated.
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I. INTRODUCTION

A soap film bounded by a closed wire loop (or by several such wires, which may be knotted
and/or linked) has minimum area with respect to small perturbations. This is because, under static
boundary conditions, the energy E of the film relaxes to a minimum compatible with the topology of
the configuration. Since E = σA, where σ is the surface tension of the film, the area A is therefore
minimized; in this equilibrium state, the Laplace pressure difference across the surface must vanish,
from which it follows that the mean curvature of the surface is everywhere zero.

If the wire boundary is slowly and continuously deformed, such a surface generally evolves in
a quasistatic manner, through a family of minimum-area states. However, at a certain stage it may
become unstable, and it then jumps to a different topological configuration. Such a jump requires
passage through a singularity. We have argued in a series of papers [1–4] that the collapse to a sin-
gularity is closely associated with a “systole” on the surface, i.e., a closed curve of locally minimum
length that cannot be contracted on the surface to a point (in simple terms, it “goes round a hole in
the surface”). If the systole is not linked with the boundary wire, then the singularity occurs at an
interior point of the surface; if it is so linked, then the singularity necessarily occurs on the boundary.

The prototype in the former case is the classical catenoidal soap film bounded by two circular wires
in parallel planes with a common axis; when these wires are slowly drawn apart, the minimum-area
catenoid becomes unstable at a critical separation, and collapses on the axis.

In the second case, the prototype is the nonorientable Möbius strip; in this case, the systole
encloses the hole through the strip and is linked with the wire boundary; the collapse is therefore to
a point on the boundary [the bright spot in Fig. 1(a)]. We have shown [1] that, in order to understand
the nature of the boundary singularity, it is necessary to take account of the finite radius of the wire.
It is on this aspect of the problem that we focus in the present paper.

There are some obvious similarities with the problem of reconnection of magnetic flux tubes
in a highly conducting fluid. Our study of soap-film dynamics has in part been motivated by the

*This paper is based on an invited lecture given by Keith Moffatt at the 68th Annual Meeting of the APS
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FIG. 1. Topological transition of a Möbius strip soap film, observed experimentally. Top (a) and side (c)
views of a one-sided surface before the transition, and corresponding views [(b) and (d)] of the two-sided
surface after the transition. Adapted from [1].

need to understand topological transitions in such (more complex) situations. The analogy with
magnetic flux tubes is most evident in the context of the solar corona; here, the lines of force of the
coronal field are anchored at “footpoints” on the solar photosphere, and the field evolves through
minimum-energy states in response to movement of these footpoints caused by subsurface convective
turbulence (for a recent review, see [5]). Under such forced evolution, the coronal field can collapse
to a singular force-free state with imbedded tangential discontinuities (i.e., current sheets), in which
Joule dissipation is largely responsible for the intense heating of the corona. For this scenario, we
have the following correspondences:

magnetic field anchored on the photosphere ⇐⇒ soap film with wire boundary,

movement of the footpoints ⇐⇒ distortion of the wire boundary,

minimum magnetic energy ⇐⇒ minimum surface area,

zero Lorentz force ⇐⇒ zero mean curvature,

dissipative current sheets ⇐⇒ viscous dissipation on the wire,

reconnection of field lines ⇐⇒ topological transition of soap film.

The analogy is by no means perfect, but is at least suggestive. The great advantage of the soap-film
model is that such topological transitions can be subjected to close experimental, as well as theoretical
and computational, investigation.
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FIG. 2. Stretch-twist-fold, as represented by the evolving curve C parametrized by Eq. (1). (a) t = 0.9,
(b) t = 0.4, and (c) t = 0.1.

II. STRETCH-TWIST-FOLD PROCESS

Further motivation comes from the “fast dynamo” mechanism conceived in Ref. [6] and treated
in detail in Ref. [7]. This mechanism is one by which, in a perfectly conducting incompressible
fluid, the intensity of a magnetic field may be doubled, and, by iteration on a constant time scale,
increased exponentially; this provides a somewhat simplistic manifestation of “fast” dynamo action,
so called because the growth rate is determined by the time scale of the flow, independent of magnetic
diffusivity η in the limit η → 0. Since we are dealing with quasistatic deformations, it suffices to
describe parametrically a sequence of coordinate transformations with t denoting the (slow) time.
The unfolding process may be parametrized [8] by the evolving curve C : x(s,t) = (x,y,z) with
parametric equations

x(s,t) = −t cos s + (1 − t) cos 2s,

y(s,t) = −t sin s + (1 − t) sin 2s, (1)

z(s,t) = −2t(1 − t) sin s,

where −π < s � π . As t increase from 0 to 1, the curve (1) “unfolds” from the double cover of a
circle of unit radius in the x,y plane to the same circle described once (Fig. 2) [9].

The projection of the curve on the x,y plane shows a change of character as t passes through
the value 2/3; Fig. 3 shows this projection near s = 0 for t = 0.65, 2/3, and 0.685. At the instant
t = 2/3, the projection has a cusp at s = 0, i.e., at the point (−1/3,0), and the three-dimensional
curve C has locally the form of a twisted cubic with parametric equations, at leading order,

x(s,t) ∼ − 1
3

(
1 + s2, s3, 4

3 s
)
. (2)

t = 0.685                  2/3                          0.65 

FIG. 3. Projection of the curve C on the x,y plane for t = 0.65, 2/3, and 0.685; this projection has a cusp
at s = 0 [i.e., at (x,y) = (−1/3,0)], when t = tc = 2/3, and the “hole” disappears as t increases through tc.
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FIG. 4. (a) Plot of the curvature function c(s,t), showing an isolated zero at s = 0,t = 0.8; (b) the function
c(0,t): as t passes through 0.8, the curve C passes through an inflexional configuration; also shown is the growth
of c(0,t)d(0,t) which reaches the level 4/3 at t ≈ 0.338.

For t > 2/3 the hole has disappeared, and the curve approaches a circle as t increases further
towards 1.

The curvature c(s,t) of C is given by

c(s,t) = |x′ × x′′|/|x′|3, (3)

where (′) ≡ ∂/∂s. This function is shown in Fig. 4(a), and it is evident from Fig. 4(b) that c(s,t) = 0
at s = 0, t = 4/5; in fact, at s = 0, (3) reduces to

c(0,t) = |4 − 5t |
4t4 − 8t3 + 13t2 − 12t + 4

; (4)

here, the quartic in the denominator is positive for all real t . The zero at t = 4/5 indicates an inflexion
point at s = 0; the curve C may be said to “pass through an inflexional configuration” as t passes
through 4/5.

The separation of opposite points of the wire with parameters s and s + π is given by the function
d(s,t) = |x(s + π,t) − x(s,t)|. This separation is maximal at s = 0, and increases relative to the
local radius of curvature c−1 as shown also in Fig. 4(b). The separation d reaches the level 4

3c−1 at
t ≈ 0.34; this is significant because it is the separation at which the catenoid collapses (see below).

It is interesting to compute the writhe Wr(t) and twist Tw(t) associated with this curve, which
satisfy the well-known relationship Wr(t) + Tw(t) = const. The writhe depends only on the geometry
of C, and is given by the Gauss integral

Wr(t) = 1

4π

∫
C

∫
C

(x − x′) · (dx × dx′)
|x − x′|3 . (5)

The twist requires consideration of a ribbon with edges C and an adjacent curve C∗; the twist (of
the ribbon) is then given by

Tw(t) = 1

2π

∮
C

[N′(s) × N(s)] · dx, (6)

where N(s) is the unit normal to C on the ribbon, from C to C∗. One contribution to this twist
involves the torsion τ (s,t) of the wire, given by the triple scalar product

τ (s,t) = [x′,x′′,x′′′]/|x′ × x′′|2. (7)

060503-4



INVITED ARTICLES

SOAP-FILM DYNAMICS AND TOPOLOGICAL . . .

Tw(t) 

Wr(t)

(a)                                                                      (b)

(t)

(t)

t                                                                              t

FIG. 5. (a) The integrated torsion T (t) (solid) showing the unit jump at t = 4/5 = 0.8 when C passes
through an inflexional configuration, and the compensating “internal twist” N (t) (dotted); (b) the twist Tw(t) =
T + N (solid), and the writhe Wr(t) (dashed) given by Eq. (5). Note that Wr(t) + Tw(t) ≡ 0.

If there are no inflexion points on C, and if the ribbon is twisted in such a way that N(s) makes a
constant angle with the unit principal normal n(s) on C, then the twist is obtained by integrating this
torsion round the curve:

Tw(t) = T (t) = 1

2π

∮
C

τ (s,t) |dx/ds| ds. (8)

More generally,

Tw(t) = T (t) + N , (9)

where N (an integer) is the number of turns of N(s) relative to the Frenet triad {t,n,b} in going
around C. If C does have an inflexion point, then at this point c = 0 and τ is singular; as shown in
[10], if C passes through an inflexional configuration, then T (t) is discontinuous by an amount ±1,
with a compensating discontinuity ∓1 in N .

For the curve C defined above, and with an untwisted ribbon at time t = 1, Wr(1) = 0 and Tw(1) =
0, and so Wr(t) + Tw(t) ≡ 0. Figure 5(a) shows the integrated torsion T (t) with the expected unit
jump as t goes through 0.8 = 4/5; and consequently N = 1 for 0 < t < 4/5, and N = 0 for
4/5 < t < 1. Figure 5(b) shows the twist Tw(t) rising continuously from 0 to 1 as t decreases from
1 to 0, and the writhe Wr(t) computed from (5), confirming that indeed Wr(t) + Tw(t) ≡ 0.

III. SOAP-FILM INSTABILITY

Recall first the situation when two equal circular wires r = (x2 + y2)1/2 = a in planes z = ±b(t),
bounding a catenoidal soap film, are gradually drawn apart. For any positive value of the ratio
β = b/a, there is a one-parameter family of catenoids bounded by these circles, this family being
described by the equation

r cosh λ = a cosh λz/b (0 � λ < ∞). (10)

The area A(β,λ) of these catenoids is easily calculated; this function is shown in Fig. 6. For
β < βc ≈ 0.6627, just slightly less than 2/3, the curve has two extrema, a minimum and a maximum
which move to coincidence at an inflexion point as β increases to the critical value βc. Thus a
minimum-area catenoidal soap film exists for β < βc, but becomes unstable at β = βc, and for
β > βc there is no smooth minimum-area solution of catenoidal form: for β > βc, the film collapses
to a viscous thread on the axis coupled with discs spanning each wire (the “Goldschmidt solution”
[11]). Details of the collapse process and the subsequent breakup of the thread have been described
in Refs. [12,13].
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FIG. 6. (a) The area A(β,λ)/4πab of catenoids bounded by wires r = a,z = ±b (with β = b/a) for
0.5 < β < 0.7, and 0 < λ < 2; (b) the same area function for β = 0.5, 0.6627, 0.8; there is an inflexion point
when β = βc ≈ 0.6627, at which stage the surface becomes unstable; for β > βc, there is no minimum area
solution.

Turning now to the one-sided Möbius strip, a soap film with this topology can be obtained by
dipping a wire, shaped as in Fig. 2(c) at parameter value t ≈ 0.1, in soap solution, and puncturing
the two-sided disc that usually forms; a one-sided soap film with the topology of a Möbius strip then
remains. If now the wire is slowly unfolded, then collapse occurs at a certain stage, actually around
t = 0.4; as shown in Fig. 4, the product d(0,t)c(0,t) exceeds the level 4/3 by this stage, admitting
comparison as indicated earlier with the catenoidal collapse. Here, the collapse indeed proceeds to
an apparent singularity on the boundary wire, through which the one-sided Möbius strip jumps to a
two-sided surface (topologically a disk) spanning the wire.

We can gain some understanding of this process through consideration of the ruled surface Sr

with parametric equations

x(s,μ,t) = μt cos s + (1 − t) cos 2s,

y(s,μ,t) = μt sin s + (1 − t) sin 2s, (11)

z(s,μ,t) = 2μt(1 − t) sin s,

for −1 � μ � 1,−π � s < π , as shown in Fig. 7(a) for parameter value t = 0.3. This is not a
minimal surface; it is rather a surface that can be formed by a rectangular strip of paper twisted

FIG. 7. (a) The ruled surface Sr described by (11) at parameter value t = 0.3. (b) The Meeks minimal
surface SM with parametric equations (12), at parameter value r0 = 0.7. (c) The Meeks surface at parameter
value r0 = 0.54, when it becomes unstable.
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through an angle π and with the ends joined to form a Möbius strip. Note that the section of this
surface at μ = 0 is a circle of radius 1 − t in the z plane.

A true minimal surface with the Möbius-strip topology, as found in Ref. [14], is given by
the (incomplete) “Meeks minimal surface” SM shown in Fig. 7(b), given in terms of functions
α(r)=r − 1/r, β(r)=r2 + 1/r2, γ (r)= 1

3 (r3 − 1/r3) by parametric equations

x(r,s,t) = −α sin s − β sin 2s − γ sin 3s,

y(r,s,t) = α cos s + β cos 2s + γ cos 3s, (12)

z(r,s,t) = 2α sin s,

for −π � s < π, r0 � r � 1/r0. The boundary curves in Figs. 7(a) and 7(b) are quite similar, but
the surfaces, although topologically equivalent, are geometrically quite different, in that the Meeks
surface contracts inwards in such a way as to achieve zero mean curvature at each point. This inward
contraction, resembling the contraction of the catenoid, is most marked where the normal separation
of the two strands of the wire is greatest, and it is in this neighborhood that the collapse process is
initiated with gradually increasing separation.

We note that the boundary curve r = r0 of SM evolves as r0 decreases from 1 to 0 from the
double cover of a circle of radius 2 at r0 = 1 to a triple cover of a “circle at infinity” at r0 = 0.
However, in the range 1 > r0 � 0.7, the evolution replicates quite well the early stage of the
unfold-untwist process; the parameter value r0 = 0.7 is chosen by way of illustration in Fig. 7(b).
As shown in Ref. [4], with further decrease of r0, the Meeks surface becomes unstable at the
critical value r0 ≈ 0.54 [Fig. 7(c)]; the influence of the γ terms in Eq. (12) is already evident at this
stage.

IV. INTERACTION OF SOAP FILM WITH WIRE SURFACE

It was already evident in our initial experiment [1] that account must be taken of the finite wire
radius, and of the Plateau boundary on the wire, in order to understand the nature of the collapse
singularity. The Plateau boundary is the curve where the continuation of the soap film intersects
the surface of the supporting wire; accumulation of fluid in the immediate neighborhood of this
curve allows visualization of the Plateau boundary in experiments. The wire itself was twisted in
a left-handed sense (positive writhe), and we observed that just before the singularity, the Plateau
boundary was locally twisted around the wire in a left-handed sense, and just after the singularity
in a right-handed sense. (If the wire is instead twisted in a right-handed sense, then all handedness
is reversed.) Figures 8(a) and 8(b) shows at least qualitatively (and that, after all, is what matters
here) the situation before and after the transition; the radius of the wire is deliberately expanded
to make the situation more visible. The configuration of the Plateau boundary before and after the
transition is shown (in green) in Figs. 8(c) and 8(d); before the transition, it is doubly linked with
the wire center line (shown in black), the successive crossings being “under, over, under, over.” The
first “under, over” pair here corresponds to the left-handed twist near the collapse region (where |s|
is small); the switch to a right-handed twist replaces this pair by “over, under” producing in total
“over, under, under, over.” The “under, under” pair can now be removed by sliding this portion of the
green curve across the black curve; then similarly the remaining “over, over” pair can be removed.
The net effect of the switch is therefore to replace the double linkage by a zero linkage, as shown in
Fig. 8(d), where the green and black curves are obviously unlinked.

There remains the problem of understanding exactly what happens when the soap film impacts
the wire boundary at the moment of collapse. This is difficult because of the three-dimensionality
of the interaction associated with the peculiar Möbius-strip geometry. In order to isolate some
salient features of the interaction between the soap film and the solid wire boundary, we propose the
following model problem, as illustrated schematically in Fig. 9.

Imagine a catenoidal soap film suspended between two circular wires of radius a, drawn apart to
separation 2b = 4a/3, i.e., just above the critical separation at which collapse first occurs. Imagine
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(a)                                                                         (b)

(c)                                                                           (d)

s = 0 

FIG. 8. (a) The one-sided Meeks minimal surface at parameter value r0 = 0.7, as in Fig. 7(b); collapse
is initiated in the direction of the arrow where the opposite strands of the wire are most separated. (b) A
two-sided surface of disk topology spanning the wire C of Eq. (1) at t = 0.6, well before its passage through
the inflexional configuration at t = 0.8; at this stage, Tw(t) ≈ 0.45 and the surface is strongly distorted near
s = 0, as observed in the experiment of [1] (cf. Fig. 2). (c) Plateau boundary (green) corresponding to (a),
showing double linkage “under, over, under, over” with the wire center line (black) before the jump. (d) Plateau
boundary corresponding to (b), now unlinked with the wire.

further that a cylindrical rod of radius δ (<a) is placed symmetrically on the axis. The catenoid must
collapse and impact the rod on a circular line of contact [Fig. 9(a)]; from this point on, the soap-film
area can decrease further by continuous contraction of the two “half films,” with limiting state two
annular discs between the wires and the rod [Fig. 9(b)—cf. the Goldschmidt solution]. Our interest
focuses on the associated migration of the two Plateau boundaries along the rod.

Considering just the upper soap film, suppose that the Plateau border is at z = Z(t) at time t

[with 0 < Z(t) < b], where we now measure t from the moment of impact. The area of the film is a
decreasing function of Z: A = A[Z(t)] [with A′(Z) < 0], and its surface-tension energy is E = σA;
hence

dE/dt = σA′(Z)dZ/dt. (13)
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FIG. 9. (a) Collapsing catenoidal soap film at the instant at which it impacts a rod on the axis of symmetry;
(b) subsequent collapse to two annular rings, with migration of Plateau boundaries along the rod.

Assuming for simplicity that δ � a, we have A(b) ≈ πa2 and A(0) ∼ 1.2A(b) and so, in order of
magnitude (with b = 2

3a), A′(Z) ∼ −0.2πa2/b ∼ −0.3πa. Hence

−dE/dt ∼ 0.3πσaU (t), (14)

where U (t) = dZ/dt , the speed of migration of the Plateau boundary.
The rate of decrease of energy (14) must presumably be accommodated by the total rate of viscous

dissipation of energy � due to the slipping of the Plateau boundary along the wire, assuming that
this is the dominant dissipative mechanism. Suppose that the rod is prewetted, and that the film
thickness on the rod is h(�δ). Then the strain rate in the neighborhood of the Plateau boundary is
of order U/h; this extends over a volume of order (2πδ)h2 and so, again in order of magnitude,
� ∼ μ(U/h)2(2πδ)h2 ∼ 2πμU 2δ. Hence

0.3πσaU ∼ 2πμU 2δ, (15)

and so, in order of magnitude,

U ∼ 0.15(σ/μ)(a/δ). (16)

A second (equivalent) method of obtaining this estimate involves consideration of the forces
acting on the soap film when it is in contact with the rod. Surface tension at the wire exerts on the
film a net upward force with vertical component Fz1 = 2πaσ cos α, where α is the angle between
the tangent to the film in any meridian plane and the vertical. Neglecting inertia, this force must be
compensated by a downward force Fz2, due to viscous drag exerted over the vertical scale h of the
Plateau boundary on the rod. The viscous stress τ in this region is of order τ ∼ μU/h and this is
exerted over an area of order 2πδ h; hence Fz2 ∼ 2πμδ U . The force balance Fz1 = Fz2 then gives

U ∼ 〈cos α〉(σ/μ)(a/δ), (17)

where 〈cos α〉 is an appropriate mean value. This estimate may be compared with (16). We note
that, for the configuration of Fig. 9, α increases from about 2π/5 (cos α ≈ 0.28) to π/2 (cos α = 0)
as the migration proceeds, so a mean value 〈cos α〉 ≈ 0.15 is not unreasonable; in other words, the
estimates (16) and (17) are entirely compatible.

These are admittedly crude arguments, and have obvious limitations, but they nevertheless provide
a preliminary order-of-magnitude estimate that can be subjected to experimental test. For a soap
solution with viscosity about five times that of water, σ/μ is of order 1 m/s, so that with a/δ about
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5 say, the velocity U will be of order 75 cm/s. If a ∼ 3 cm, the Plateau border should, for such a
system, relax to an annular disc in a time of order 10−2 s.

Details of this experiment, currently under development, will be provided in a future publication.

V. DISCUSSION

Soap-film dynamics offers a wealth of fascinating problems, which invite theoretical and
experimental investigation. First, there is the link with the great mathematical field of minimal
surfaces initiated by the early work of Euler on the catenoid. A huge literature exists on this subject,
but relatively little on the dynamics of soap films under continuous boundary deformation, and
particularly on the topological transitions that such deformation can provoke. As we have shown
in earlier publications, such transitions can occur through singularities at the soap-film boundary,
and the nature of the transitions can be understood by taking account of the finite radius of the
boundary wire. We are then faced with the problem of a minimal area surface bounded not by a
prescribed curve C, but rather by the surface Sw of the wire on which the Plateau boundary is free to
move in response to surface-tension forces, such motion being resisted by viscosity in the immediate
neighborhood of the wire surface.

The transition of the catenoid to the Goldschmidt solution involves a singularity in the interior of
the film, rather than on its boundary, and resolution of the singularity in a real fluid involves breakup
of a viscous thread into droplets on the axis of symmetry; here, surface tension, viscosity, and inertia
all play a part in the breakup process. Singularity problems of this kind are well described in the
recent book of Eggers and Fontalo [15].

There is also a wealth of problems involving the internal dynamics of soap films, both as regards
oscillations of the films in stable regimes, and as regards vortical flow within the film generated
again by viscous effects at the film boundary.

Singularity problems arise in many related fields of fluid mechanics, in particular problems of
key importance concerning vortex reconnection at high Reynolds number, or magnetic-flux tube
reconnection in high conductivity magnetohydrodynamics; these problems involve near singular
situations which are similarly resolved by viscous or finite conductivity effects at the moment of
topological transition. Soap-film transitions are similar in some respects, and easier to investigate
both theoretically and experimentally—a powerful motivation for continuing studies in this field!
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