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Abstract
Here we find a mapping onto the Pauli equation of the first two balance
equations derived from the classical Boltzmann equation. The essence of this
mapping, which we previously used to obtain the particular case of the Sturm–
Liouville operator known as Schrödinger’s equation, consists of applying a
Fourier transform to the momentum coordinate of the distribution function. This
procedure introduces a natural parameter η with units of angular momentum.
The main difference between the two cases is the conditions imposed on the
probability distribution function, a difference most clearly understood at the
level of the hydrodynamic equations generated in the first steps of the mapping.
The case leading to the Sturm–Liouville operator corresponds to an irrotational
flow, while here the ansatz leading to the Pauli equation corresponds to a fluid
with non-zero vorticity. In the context of fluid dynamics, the magnitude of
the angular momentum associated with the vorticity is η/2. To perform the
mapping we follow the standard technique common in hydrodynamic problems,
namely writing the Lagrangian for the Euler equations with the corresponding
constraints expressed in terms of the Clebsch variables.

PACS numbers: 03.65.Ta, 05.20.Dd, 45.05.+x, 03.65.Sq

1. Introduction

One of the most intriguing aspects of quantum mechanics is the spin and its apparent lack of
a classical equivalent. Through the years, many attempts have been made to find a statistical
interpretation of this physical quantity, in some cases within fluid mechanics [1–4], in others
using the dynamics of a dipole [5], and more recently, within the context of many-body
physics [6]. As mentioned in a previous paper [7], the fact that fluid equations of motion
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are derivable from kinetic theory suggests that the same might be true of the hydrodynamic
description of quantum mechanics. In that work, we showed that such an underlying kinetic
approach exists for spinless quantum mechanics. Here we extend this work to show that it is
also possible to find such a kinetic description for the Pauli equation. The derivation relies upon
a Fourier transform on the momentum coordinate ( p) of the classical Boltzmann equation, and
leads to the fluid Euler equations in p-conjugate space. In the presence of vorticity, they are
more conveniently written in terms of a ‘new’ set of variables that associate themselves with
the spin in quite a natural way. The procedure we follow generates a unique free parameter
in the theory that we call η. This single parameter has the units of angular momentum, the
same as h̄. Not without optimism, we could view them as one and the same, given the striking
fact that the transformed Euler equations can generate either a term identical to the quantum
potential in the Madelung [8] representation of quantum mechanics or a term identical to the
stress tensor found by Takabayasi [1] to correspond to the quantum potential accompanied
by the presence of spin. If nothing else, the transformations we apply in this work, closely
following the methods developed previously [7], lead to a classical way of thinking about the
spin of a particle.

2. The mapping

It is well known that the motion of an ensemble of N classical particles governed by Liouville’s
equation can be recast in a hierarchy of nonlinear partial differential equations (PDEs) for the
reduced probability functions defined as follows:

fN(x1, p1, . . . , xN, pN) = D∫
�

D d�
(1)

and for 1 � j < N

fj (xj , pj ) =
∫

�

fN(xN, pN)

N∏
l=j+1

d xl d pl , (2)

where D represents the number density of points in phase space, � the volume in phase
space and (xN, pN) = (x1, p1, . . . , xN, pN). These functions correspond to the probability of
finding the subsystem of j < N particles in the phase volume

∏j

l=1 dxl dpl about the state
(x1, p1, . . . , xj , pj ). The N PDEs generated are known as the BBKGY hierarchy [9], the first
two members of which (i.e. the equations for f1 and f2) determine the kinetic and potential
energy of an aggregate of particles, and have a crucial role in fluid dynamics. One way to
attempt a solution of these equations is to decouple them through an ansatz with regard to the
properties of the functions fj . When the Bogoliubov ansatz is imposed, the resulting equation
for f1 = f1(x1, p1, t) is the Boltzmann equation:

∂f1

∂t
+

p1

m
· ∂f1

∂x1
+ F(x1, p1) · ∂f1

∂p1
= 2π

∫
r2 d r2g

∫
d p2[f1( p′

1)f1( p′
2) − f1( p1)f1( p2)] (3)

where F is the external force averaged over all other coordinates, g is the magnitude of
the relative velocity defined as g = ( p2 − p1)/m and where we used dx2 = r2 dr2 dφ dz.
The Boltzmann equation has the property that when integrated over the momentum coordinate
p1 it produces the conservation law for the number of particles, when multiplied by p1 and
integrated over p1 it gives the momentum balance equation and when multiplied by p2

1 it gives
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the energy balance equation after integration over the momentum. Moreover, the right-hand
side cancels out in all three cases [9]. Thus the result for our first two balance equations reads:∫ +∞

−∞
dp

(
∂f1

∂t
+

p
m

· ∂f1

∂x

)
= 0 (4)

and ∫ +∞

−∞
p dp

(
∂f1

∂t
+

p
m

· ∂f1

∂x
+ F(x, p) · ∂f1

∂p

)
= 0, (5)

where we have dropped the subindex 1 from x1 and p1 and have also assumed that any surface
terms vanish due to the convergence properties of f1. We will study the particular case in
which F corresponds to the electromagnetic force on particles with charge q and magnetic
moment m,

F = qE +
q

c

p
m

× B + (∇B)m. (6)

We now introduce into (4) and (5) the following representation for f1,

f1(x, p, t) = 1

(2πη)3

∫ +∞

−∞
exp

(
−i

p · y
η

)
f̂ (x, y, t) dy (7)

where f̂ (x, y, t) is of course given by

f̂ (x, y, t) =
∫ +∞

−∞
exp

(
i

p · y
η

)
f1(x, p, t) dp. (8)

With these definitions and some straightforward algebra, equations (4) and (5) can be written
as [7]

lim
y→0

[
∂f̂

∂t
+

η

im

∂

∂x
· ∂f̂

∂y

]
= 0 (9)

lim
y→0


 ∂

∂t

(
η

i

∂f̂

∂y

)
− η2

m

∂

∂x
·




←→
∂2f̂

∂y∂y


 − F · f̂


 = 0. (10)

It is interesting to note that two of the limits correspond to the following averages:

lim
y→0

f̂ = lim
y→0

∫ +∞

−∞
exp

(
i
p · y
η

)
f1(x, p, t)dp

=
∫ +∞

−∞
f1(x, p, t)dp = ρ(x, t)

m
, (11)

lim
y→0

∂f̂

∂y
= lim

y→0

∂

∂y

∫ +∞

−∞
exp

(
i
p · y
η

)
f1(x, p, t)dp

= i

η

∫ +∞

−∞
p f1(x, p, t)dp

= i

η
ρ(x, t)u(x, t), (12)

where we have defined the mean velocity u as the average, over the momentum p alone, of
p/m, with m the mass. We can see from these expressions that f̂ is the generating function
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for the averages with respect to p. Replacing these values into the balance equations we obtain
the fluid equations

∂ρ

∂t
+

∂(ρu)

∂x
= 0 (13)

and

1

m

∂(ρu)

∂t
− η2

m
lim
y→0

∂

∂x
·




←→
∂2f̂

∂y∂y


 − ρ

m
F = 0. (14)

To evaluate the tensor we introduce the canonical change of variables y = x′ − x′′ and
x = (x′ + x′′)/2, which satisfies the following relationships:

x′ = x +
y
2
, x′′ = x − y

2
,

∂

∂y
= 1

2

(
∂

∂x′ − ∂

∂x′′

)
,

∂

∂x
=

(
∂

∂x′ +
∂

∂x′′

)
.

(15)

Note that the limit y → 0 corresponds to x′ → x′′ and x′ = x′′ ≡ x. It has been pointed out
previously [7] that a subclass of solutions of these equations corresponds to the case in which f̂

is separable in the variables x′ and x′′. Since f̂ must be real in the limit y → 0, full separability
(i.e. f̂ (x′, x′′, t) = h′(x′, t)h′′(x′′, t)) corresponds to h′ and h′′ being complex conjugates of
each other, leaving only two independent real functions, and, as we will see below, this is not a
sufficient number of independent functions to consider vortical flows [10]. With this in mind,
we propose to take for f̂ an ansatz of the form

f̂ (x′, x′′, t) = h′(x′, t)h′′(x′′, t) + g′(x′, t)g′′(x′′, t), (16)

where h′(x′, t), h′′(x′′, t), g′(x′, t) and g′′(x′′, t) are complex functions, which effectively
correspond to eight real functions. This ansatz for f̂ is not a very general one, but is less
restrictive than considering full separability. The new ansatz for f̂ , on the other hand, gives
the minimum number of necessary variables to consider vortical flow still within the restrictive
subclass of linear combinations of separable solutions. In this case, requiring that f̂ be real
in the limit y → 0 leads to h′ and g′ being the complex conjugates of h′′ and g′′, respectively,
leaving four independent real functions to be found (corresponding to the three components
of the velocity and the fluid density). It could be argued, rightfully so, that this subclass of
solutions is a very particular one, since in most cases the initial and/or boundary conditions
of the problem to be solved will not be separable and thus neither will be the solution.
The relevance of these solutions lies in the fact that they are the ones that lead either to
the Schrödinger equation, when full separability is invoked, or to the Pauli equation, when the
extra freedom to consider vorticity is required. We are now ready to evaluate the tensor in the
momentum balance equation. First, write its k, l-component as

lim
y→0

∂

∂yk

∂

∂yl

f̂ (x′, x′′, t) = lim
x′,x′′→x

1

4

(
∂

∂x ′
k

− ∂

∂x ′′
k

) (
∂

∂x ′
l

− ∂

∂x ′′
l

)
[h′h′′ + g′g′′].

This yields the result

lim
y→0

∂

∂yk

∂

∂yl

mf̂ (x′, x′′, t) = 1

4

[
ψ∗

1
∂2ψ1

∂xk∂xl

+ ψ∗
2

∂2ψ2

∂xk∂xl

− ∂ψ1

∂xk

∂ψ∗
1

∂xl

− ∂ψ2

∂xk

∂ψ∗
2

∂xl

−∂ψ∗
1

∂xk

∂ψ1

∂xl

− ∂ψ∗
2

∂xk

∂ψ2

∂xl

+ ψ1
∂2ψ∗

1

∂xk∂xl

+ ψ2
∂2ψ∗

2

∂xk∂xl

]
,
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where we have defined

lim
y→0

√
m h′(x′, t) = ψ1(x, t),

lim
y→0

√
m h′′(x′′, t) = ψ∗

1 (x, t),

lim
y→0

√
m g′(x′, t) = ψ2(x, t),

lim
y→0

√
m g′′(x′′, t) = ψ∗

2 (x, t).

(17)

Introducing the notation

� =
(

ψ1

ψ2

)
�† = (ψ∗

1 , ψ∗
2 ), (18)

the expressions for the density ρ and the mean velocity u as given by (11) and (12) can be
rewritten as ρ = �†� and u = −(η/2mi)(�†∇� − (∇�†)�). These definitions also allow
us to rewrite (17) in a much more convenient and instructive way

lim
y→0

∂

∂yk

∂

∂yl

mf̂ (x′, x′′, t) = 1

4

[
ρ

∂2 ln ρ

∂xk∂xl

− 4ρ
m2

η2
ukul − ρ

∂	i

∂xk

∂	i

∂xl

]
, (19)

where repeated indices indicate a summation, uk and ul are the k and l-components of the
average velocity u(x, t) and the quantities 	i have been defined as

	i = �†σi�

�†�
(20)

and σi are the Pauli matrices.
Finally, our two balance equations in Fourier space read

∂ρ

∂t
+ ∇ · (ρu) = 0 (21)

and

∂

∂t
(mρuk) = −∂j

[
ρ

(
mukuj − η2

4m

∂2 ln ρ

∂xk∂xj

+
η2

4m

∂	i

∂xk

∂	i

∂xj

)]
− ρFk, (22)

where ∇ ≡ ∂/∂x. It is interesting to note that the only difference between this pair of
balance equations and the ones obtained with the usual method of averaging without Fourier
transforming is the presence of terms proportional to η2 instead of an arbitrary pressure tensor.
The tensor in equation (22) can be expressed in a more transparent and meaningful manner if
we pay careful attention to the term involving the magnitudes 	i . As they are written, they can
be thought of as the components of a dimensionless unit vector. We can absorb the constant
η2/4 into the vector product and define a new vector s with magnitude η/2 as

s = η

2
Σ = η

2

�†σ̂�

�†�
, (23)

where σ̂ is the vector whose components are the Pauli matrices. Given the units of η, this
choice allows us to associate s with an angular momentum. Recalling that m = (e/mc)L,
where L is a characteristic angular momentum, it is natural to identify L ≡ s. Then, when (22)
is transformed into the standard form of Euler’s equations by using the continuity relation to
eliminate the time derivative of ρ, it becomes

m(∂tuk + uj∂juk)− 1

mρ
∂j

[
ρ

(
η2

4

∂2 ln ρ

∂xk∂xj

− ∂ksi∂j si

)]
+qEk +

q

c
(u × B)k +

q

mc
sj ∂kBj =0,

(24)
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where we have used the notation ∂i ≡ ∂/∂xi . This is identical to the hydrodynamic equation
Takabayasi [1, 2] found by making a suitable change of variables on the Pauli equation.

If s = (η/2)(�∗σ̂�/�∗�) is considered to be a new variable, then it is necessary to find
its equation of motion. This is most easily done by observing that the term containing s can
be expressed as a gradient plus a contribution of the same form as the last term in (24),

m(∂tuk + uj∂juk) − ∂k

[
η2

2m

∂j∂jρ
1/2

ρ1/2
− 1

2m
∂jsi∂j si

]

+
1

m
∂k

[
1

ρ
∂j (ρ∂j si) +

q

c
Bi

]
si + qEk +

q

c
(u × B)k = 0. (25)

This rewriting of the momentum balance equation is the same as the one presented by
Takabayasi [2], and is very enlightening with regard to the role of s. As he observed, the extra
term plays the role of an ‘effective’ space-dependent magnetic field, and thus the equation of
motion for the variable s is given by

ds
dt

= 1

m
s × Ω

= q

mc
s × B +

1

mρ
s × ∂k(ρ∂ks)

= q

mc
s × Beff , (26)

where Ω = ∇ × u is the vorticity. The presence of a non-zero vorticity makes it harder
to find the Lagrangian of the system and its associated Hamilton–Jacobi equation. As noted
elsewhere [7], when f̂ is fully separable, and thus the vorticity Ω = 0, it is possible to use
the classical definition of the action S in terms of the momentum ( p = ∇S) and reduce
the equations of motion to a Hamilton–Jacobi equation. In the present case, this cannot
be done so straightforwardly. Not even with the introduction of the canonical momentum
p = ∇S − (q/c)A, where A is the vector potential, is it possible to rewrite (25) as a total
gradient. In the presence of the non-zero vorticity it is necessary to use a more general
expression for the true canonical momentum. In fact, the most general way to write the
canonical momentum in three dimensions when there is no helicity is [11]

p = ∇S − q

c
A + ζ∇ω. (27)

The new variables ζ and ω are known as Clebsch potentials [12]. In our particular case,
they have a very specific physical meaning as a consequence of representing s with the Pauli
matrices: ζ corresponds to the z-component of the vector s and ω corresponds to the azimuthal
angle, i.e. the canonical conjugate variable of sz. This correspondence can be seen when the
curl of (27) is taken

Ω = 1

m
∇ × p

= q

mc
B +

1

m
∇ζ × ∇ω

= q

mc
B +

1

mρ
∂k(ρ∂ks). (28)

Then, the expressions for ζ and ω as a function of s are

ζ = sz

ω = tan−1

(
sx

sy

)
.

(29)
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Since the equivalence between equations (13), (24) and (26) and the Pauli equation for a
non-relativistic particle with spin η/2 has already been proven by different authors [1, 4], in
what follows we will only summarize the procedure. As a first step we will write the action
that will give rise to the equations of motion when its variation is performed. Then, we
will introduce a change of variables into that action. This change of variables is such that its
variation with respect to the new coordinates yields Pauli’s equation. This is not a conceptually
complicated procedure; however, it involves lengthy calculations. The action that corresponds
to our equations of motion is

A =
∫

d3x
∫

dt

[
1

2
mρu2 − qρ +

q

c
ρA · u − q

mc
ρB · s

− η2

8m

(∇ρ)2

ρ
− ρ

2m

[
(∇sx)

2 + (∇sy)
2 + (∇sz)

2
]]

(30)

with the Lin constraints ∂ω/∂t + (u · ∇)ω = 0 and ∂S/∂t + (u · ∇)S = 0, and the Lagrange
multipliers ρζ and ρ, respectively. The first constraint is not conserved and this will lead
to its modification, by fixing the gauge of the Clebsch potentials [1]. The second constraint
corresponds to the continuity equation which is indeed conserved. This action can be fully
expressed as a function of the Clebsch potentials making use of the following identities [5]:

B · s =
(

η2

4
− ζ 2

)1/2 [
Bx sin ω + By cos ω

]
+ ζBz (31)

and

(∇sx)
2 + (∇sy)

2 + (∇sz)
2 = η2

4

[
(∇ζ )2

η2/4 − ζ 2
+

4

η2

(
η2

4
− ζ 2

)
(∇ω)2

]
. (32)

To obtain the equations of motion we need to calculate the variation of A with respect to u, ρ,
S, ζ and ω. Then,

δA
δu

: mu +
q

c
A − ζ∇ω − ∇S = 0,

δA
δρ

:
∂S

∂t
+ ζ

∂ω

∂t
+

1

2m

(
∇S + ζ∇ω − q

c
A

)2
− q

mc
B · s − q − η2

2m

∇2ρ1/2

ρ1/2

+
η2

8m

[
(∇ζ )2

(η2/4 − ζ 2)
+

4

η2

(
η2

4
− ζ 2

)
(∇ω)2

]
= 0,

δA
δS

:
∂ρ

∂t
+ ∇ · (ρu) = 0,

δA
δζ

:
∂ω

∂t
+ (u · ∇)ω − q

mc

[
ζ

(η2/4 − ζ 2)
(Bx sin ω + By cos ω) − Bz

]
(33)

−ζ
η2

4m

[
− (∇ζ )2

(η2/4 − ζ 2)2
+

4

η2
(∇ω)2

]
− η2

2m

1

ρ
∇ ·

(
ρ

∇ζ

(η2/4 − ζ 2)

)
= 0,

δA
δω

:
∂ζ

∂t
+ (u · ∇)ζ − q

mc

(
η2

4
− ζ 2

)1/2 [
Bx cos ω − By sin ω

]
+

1

mρ
∇ ·

[
ρ

(
η2

4
− ζ 2

)
∇ω

]
= 0.

The first three equations correspond to the canonical momentum, the equation of motion for
u and continuity, and the last two correspond to the equation of motion for s. The equation
of motion for u can be recast in the form (24) by taking its gradient and then replacing
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into it the expressions for dω/dt and dζ/dt obtained from the last two variations, where
d/dt ≡ ∂/∂t + (u · ∇).

Replacing the expression for the generalized momentum and the Lin constraints into the
action A, we find

A = −
∫

d3x
∫

dt ρ

[
1

2m

(
∇S + ζ∇ω − q

c
A

)2
+

∂S

∂t
+ ζ

∂ω

∂t
+

q

mc
B · s − q� +

η2

8m

(∇ρ)2

ρ2

+
1

2m

[
(∇sx)

2 + (∇sy)
2 + (∇sz)

2
]]

, (34)

where, in order to keep the equations more compact, we have not substituted the expressions
(31) and (32). Motivated by the fact that s is a vector with constant magnitude η/2, it can be
expressed as

s = η

2

[
sin θ sin ωx̂ + sin θ cos ωŷ + cos θ ẑ

]
. (35)

Now introducing the following change of variables into A

ζ = η

2
cos θ

� = Re(i/η)S

(
cos θ

2 eiω/2

i sin θ
2 e−iω/2

)
(36)

we obtain

A =
∫

d3x
∫

dt

[
iη

2

(
�† ∂�

∂t
− ∂�†

∂t
�

)
− 1

2m

(
iη∇�† − q

c
�†A

) (
−iη∇� − q

c
A�

)

−q��†� +
qη

2mc
�†σ̂ · B�

]
. (37)

Finally, when the variation of A with respect to �† is performed we obtain:

iη
∂�

∂t
= 1

2m

(
−iη∇ − e

c
A

)2
� + e�� − eη

2mc
σ̂ · B�, (38)

which is Pauli’s equation for a particle with spin η/2 and charge q = e. As shown by
Takabayasi [1], relation (36) along with the Kelvin–Helmholtz theorem for the hydrodynamic
equations leads to the usual quantization of s.

3. Conclusions

This work has been based on the premise of our previous study in which a Fourier transform
on the p (momentum) variable of the classical Boltzmann equation leads to a mapping onto
the particular subclass of Sturm–Liouville operators known as the Schrödinger equation. As
has been mentioned above, the mapping onto the Schrödinger equation is done by imposing
a separability condition on the Fourier transform of the one-particle distribution function.
Also in our previous work, we showed that the rules to calculate the averages of physical
quantities in the p-conjugate space read like the postulates of quantum mechanics, and that the
hydrodynamic equations that are generated as an intermediate step of the mapping present a
term identical to the quantum potential when our parameter η is replaced by h̄. Here we have
shown that changing the ansatz for f̂ leads to a new term in the hydrodynamic equations that
coincides, upon replacement of the parameter η by h̄, with the equations that map onto the
Pauli equation for a particle with spin h̄/2 ≡ η/2. Moreover, the value of the magnitude of the
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spin is naturally fixed to be η/2 and it is also a natural consequence of rewriting the equations
that the spin is an angular momentum. It is also apparent from the derivation that the ‘spin’
we find is an internal degree of freedom, introduced because of the need for more variables
to account for vorticity. It is an interesting question whether one might infer properties of
the underlying classical system associated with either one of the ansätzes for the distribution
function. An answer to this question might give insight into how the role of the measurement
apparatus in quantum mechanics might be understood.

Finally, we find the connection between Clebsch variables and s very appealing since
the method of choice in quantum mechanics to work efficiently with angular momentum is a
variant of the method of Clebsch, whose original intent was the representation of non-exact
differential forms and which was widely used in the late nineteenth century to study vortical
Eulerian flows.
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