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Abstract.

Here we find a mapping onto the Pauli equation of the first two balance
equations derived from the classical Boltzmann equation. The essence of this
mapping, which we previously used to obtain the particular case of the Sturm-
Liouville operator known as Schrödinger’s equation, consists of applying a Fourier
transform to the momentum coordinate of the distribution function. This
procedure introduces a natural parameter η with units of angular momentum.
The main differences between the two cases are the conditions imposed on the
probability distribution function, a difference most clearly understood at the level
of the hydrodynamic equations generated in the first steps of the mapping. The
case leading to the Sturm-Liouville operator corresponds to an irrotational flow,
while here the ansatz leading to the Pauli equation corresponds to a fluid with
non-zero vorticity. In the context of the fluid dynamics the magnitude of the
angular momentum associated with the vorticity is η/2. To perform the mapping
we follow the standard technique common in hydrodynamic problems, namely
writing the Lagrangian for the Euler equations with the corresponding constraints
expressed in terms of Clebsch variables.
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1. Introduction

One of the most intriguing aspects of quantum mechanics is the spin and its apparent
lack of a classical equivalent. Through the years many attempts have been made to
find a statistical interpretation of this physical quantity, in some cases within fluid
mechanics [1, 2, 3, 4], in others using the dynamics of a dipole [5], and more recently
within the context of many body physics [6]. As mentioned in a previous paper [7],
the fact that fluid equations of motion are derivable from kinetic theory suggests that
the same might be true of the hydrodynamic description of quantum mechanics. In
that work, we showed that such an underlying kinetic approach exists for spinless
quantum mechanics. Here we extend this work to show that it is also possible to find
such a kinetic description for the Pauli equation. The derivation relies upon a Fourier
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transform on the momentum coordinate (p) of the classical Boltzmann equation, and
leads to the fluid Euler equations in p-conjugate space. In the presence of vorticity
they are more conveniently written in terms of a “new” set of variables that associate
themselves with the spin in quite a natural way. The procedure we follow generates a
unique free parameter in the theory that we call η. This single parameter has the units
of angular momentum, the same as ~. Not without optimism we could view them
as one and the same, given the striking fact that the transformed Euler equations
can generate either a term identical to the quantum potential in the Madelung [8]
representation of quantum mechanics or a term identical to the stress tensor found by
Takabayasi [1] to correspond to the quantum potential accompanied by the presence
of spin. If nothing else, the transformations we apply in this work, closely following
the methods developed previously [7], lead to a classical way of thinking about the
spin of a particle.

2. The Mapping

It is well known that the motion of an ensemble of N classical particles governed
by Liouville’s equation can be recast in a hierarchy of non-linear partial differential
equations (PDEs) for the reduced probability functions defined as follows:

fN (x1,p1, . . . ,xN ,pN ) =
D

∫

Ω
DdΩ

(1)

and for 1 ≤ j < N

fj(x
j ,pj) =

∫

Ω

fN (xN ,pN )

N
∏

l=j+1

dxldpl (2)

where D represents the number density of points in phase space, Ω the volume in
phase space and (xN ,pN ) = (x1,p1, . . . ,xN ,pN ). These functions correspond to
the probability of finding the subsystem of j < N particles in the phase volume
∏j

l=1 dxldpl about the state (x1,p1, . . . ,xj ,pj) . The N PDEs generated are known
as the BBKGY hierarchy [9], the first two members of which (i.e. the equations for
f1 and f2) determine the kinetic and potential energy of an aggregate of particles,
and have a crucial role in fluid dynamics. One way to attempt a solution of these
equations is to decouple them through an ansatz with regard to the properties of
the functions fj . When the Bogoliubov ansatz is imposed, the resulting equation for
f1 = f1(x1,p1, t) is the Boltzmann equation:

∂f1
∂t

+
p1

m
· ∂f1
∂x1

+ F(x1,p1) ·
∂f1
∂p1

=

∫

r2dr2g

∫

dp2 [f1(p
′
1)f1(p

′
2)− f1(p1)f1(p2)] (3)

where F is the external force averaged over all other coordinates, g is the magnitude of
the relative velocity defined as g = (p2−p1)/m and where we used dx2 = r2dr2dφdz.
The Boltzmann equation has the property that when integrated over the momentum
coordinate p1 it produces the conservation law for the number of particles, when
multiplied by p1 and integrated over p1 it gives the momentum balance equation and
when multiplied by p21 it gives the energy balance equation after integration over the
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momentum. Moreover, the right-hand-side cancels out in all three cases [9]. Thus the
result for our first two balance equations reads:

∫ +∞

−∞

dp

(

∂f1
∂t

+
p

m
· ∂f1
∂x

)

= 0 (4)

and
∫ +∞

−∞

p dp

(

∂f1
∂t

+
p

m
· ∂f1
∂x

+ F(x,p) · ∂f1
∂p

)

= 0 (5)

where we have dropped the subindex 1 from x1 and p1 and also have assumed that
any surface terms vanish due to the convergence properties of f1. We will study the
particular case for which F corresponds to the electromagnetic force on particles with
charge q and magnetic moment m,

F = qE+
q

c

p

m
×B+ (∇B)m . (6)

We now introduce into (4) and (5) the following representation for f1,

f1(x,p, t) =
1

(2πη)3

∫ +∞

−∞

exp

(

−ip · y
η

)

f̂(x,y, t)dy (7)

where f̂(x,y, t) is of course given by

f̂(x,y, t) =

∫ +∞

−∞

exp

(

i
p · y
η

)

f1(x,p, t)dp . (8)

With these definitions and some straightforward algebra, equations 4 and 5 can be
written as [7]

lim
y→0

[

∂f̂

∂t
+

η

im

∂

∂x
· ∂f̂
∂y

]

= 0 (9)

lim
y→0





∂

∂t

(

η

i

∂f̂

∂y

)

− η2

m

∂

∂x
·





←→
∂2f̂

∂y∂y



− F · f̂



 = 0 . (10)

It is interesting to notice that two of the limits correspond to the following averages:

lim
y→0

f̂ = lim
y→0

∫ +∞

−∞

exp

(

i
p · y
η

)

f1(x,p, t)dp

=

∫ +∞

−∞

f1(x,p, t) dp =
ρ(x, t)

m
(11)

lim
y→0

∂f̂

∂y
= lim

y→0

∂

∂y

∫ +∞

−∞

exp

(

i
p · y
η

)

f1(x,p, t)dp

=
i

η

∫ +∞

−∞

p f1(x,p, t)dp

=
i

η
ρ(x, t)u(x, t) (12)

where we have defined the mean velocity u as the average, over the momentum p

alone, of p/m, with m the mass. We can see from these expressions that f̂ is the
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generating function for the averages with respect to p. Replacing these values into
the balance equations we obtain the fluid equations

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (13)

and

1

m

∂(ρu)

∂t
− η2

m
lim
y→0

∂

∂x
·





←→
∂2f̂

∂y∂y



− ρ

m
F = 0 . (14)

To evaluate the tensor we introduce the canonical change of variables y = x′−x′′
and x = (x′ + x′′)/2, which satisfies the following relationships:

x′ = x+
y

2
, x′′ = x− y

2
(15)

∂

∂y
=

1

2

(

∂

∂x′
− ∂

∂x′′

)

,
∂

∂x
=

(

∂

∂x′
+

∂

∂x′′

)

.

Notice that the limit y→ 0 corresponds to x′ → x′′, x′ = x′′ ≡ x. It has been pointed
out previously [7] that a subclass of solutions of this equations corresponds to the case

in which f̂ is separable in the variables x′ and x′′. Since f̂ must be real in the limit
y→ 0 full separability, (i.e. f̂(x′,x′′, t) = h′(x′, t)h′′(x′′, t)) corresponds to h′ and h′′

being complex conjugate of each other, leaving only two independent real functions,
and, as we will see below, this is not a sufficient number of independent functions to
consider vortical flows [10]. With this in mind we propose that f̂ is of the form

f̂(x′,x′′, t) = h′(x′, t)h′′(x′′, t) + g′(x′, t)g′′(x′′, t) (16)

where h′(x′, t), h′′(x′′, t), g′(x′, t) and g′′(x′′, t) are complex functions, which effectively

correspond to eight real functions. This ansatz for f̂ is not a very general one, but is
less restrictive than considering full separability. The new ansatz for f̂ on the other
hand gives the minimum number of necessary variables to consider vortical flow still
within the restrictive subclass of linear combinations of separable solutions. In this
case, requiring that f̂ be real in the limit y→ 0 leads to h′ and g′ being the complex
conjugate of h′′ and g′′, respectively, leaving four independent real functions to be
found (corresponding to the three components of the velocity and the fluid density).
It could be argued, rightfully so, that this subclass of solutions is a very particular one,
since in most cases the initial and/or boundary conditions of the problem to be solved
will not be separable and thus neither will be the solution. The relevance of these
solutions lies in the fact that they are the ones that lead either to the Schrödinger
equation, when full separability is invoked, or to the Pauli equation, when the extra
freedom to consider vorticity is required. We are now ready to evaluate the tensor in
the momentum balance equation. First, write its k, l-component as

lim
y→0

∂

∂yk

∂

∂yl
f̂(x′,x′′, t)

= lim
x′,x′′→x

1

4

(

∂

∂x′k
− ∂

∂x′′k

)(

∂

∂x′l
− ∂

∂x′′l

)

[h′h′′ + g′g′′] .
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This yields the result

lim
y→0

∂

∂yk

∂

∂yl
mf̂(x′,x′′, t)

=
1

4

[

ψ∗
1

∂2ψ1
∂xk∂xl

+ ψ∗
2

∂2ψ2
∂xk∂xl

− ∂ψ1
∂xk

∂ψ∗
1

∂xl
− ∂ψ2
∂xk

∂ψ∗
2

∂xl

−∂ψ
∗
1

∂xk

∂ψ1
∂xl
− ∂ψ∗

2

∂xk

∂ψ2
∂xl

+ ψ1
∂2ψ∗

1

∂xk∂xl
+ ψ2

∂2ψ∗
2

∂xk∂xl

]

where we have defined

lim
y→0

√
m h′(x′, t) = ψ1(x, t)

lim
y→0

√
m h′′(x′′, t) = ψ∗

1(x, t)

lim
y→0

√
m g′(x′, t) = ψ2(x, t)

lim
y→0

√
m g′′(x′′, t) = ψ∗

2(x, t) . (17)

Introducing the notation

Ψ =

(

ψ1
ψ2

)

Ψ† = (ψ∗
1 , ψ

∗
2) (18)

the expressions for the density ρ and the mean velocity u as given by (11) and (12)
can be rewritten as ρ = Ψ†Ψ and u = −(η/2mi)(Ψ†∇Ψ− (∇Ψ†)Ψ). These definitions
allows us also to rewrite (17) in a much more convenient and instructive way

lim
y→0

∂

∂yk

∂

∂yl
mf̂(x′,x′′, t) =

1

4

[

ρ
∂2 ln ρ

∂xk∂xl
− 4ρ

m2

η2
ukul − ρ

∂Σi

∂xk

∂Σi

∂xl

]

(19)

where repeated indices indicate a summation, uk and ul are the k and l components
of the average velocity u(x, t) and the quantities Σi have been defined as

Σi =
Ψ†σiΨ

Ψ†Ψ
(20)

and σi are the Pauli matrices.
Finally, our two balance equations in Fourier space read

∂ρ

∂t
+ ∇ · (ρu) = 0 (21)

and
∂

∂t
(mρuk) = −∂j

[

ρ

(

mukuj −
η2

4m

∂2 ln ρ

∂xk∂xj
+

η2

4m

∂Σi

∂xk

∂Σi

∂xj

)]

− ρFk (22)

where ∇ ≡ ∂/∂x. It is interesting to notice that the only difference between this
pair of balance equations and the ones obtained with the usual method of averaging
without Fourier transforming is the presence of terms proportional to η2 instead of
an arbitrary pressure tensor. The tensor in equation 22 can be expressed in a more
transparent and meaningful manner if we pay careful attention to the term involving
the magnitudes Σi. As they are written, they can be thought of as the components of
a dimensionless unit vector. We can absorb the constant η2/4 into the vector product
and define a new vector s with magnitude η/2 as

s =
η

2
Σ =

η

2

Ψ†σ̂Ψ

Ψ†Ψ
(23)
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where σ̂ is the vector whose components are the Pauli matrices. Given the units of
η, this choice allows us to associate s with an angular momentum. Recalling that
m = (e/mc)L, where L is a characteristic angular momentum, it is natural to identify
L ≡ s. Then, when (22) is transformed into the standard form of Euler’s equations
by using the continuity relation to eliminate the time derivative of ρ, it becomes

m(∂tuk + uj∂juk)−
1

mρ
∂j

[

ρ

(

η2

4

∂2 ln ρ

∂xk∂xj
− ∂ksi∂jsi

)]

+ qEk +
q

c
(u×B)k +

q

mc
sj∂kBj = 0 (24)

where we have used the notation ∂i ≡ ∂/∂xi. This is identical to the hydrodynamic
equation Takabayasi [1, 2] found by making a suitable change of variables on the Pauli
equation.

If s = (η/2)(Ψ∗σ̂Ψ/Ψ∗Ψ) is considered to be a new variable, then it is necessary
to find its equation of motion. This is most easily done by observing that the term
containing s can be expressed as a gradient plus a contribution of the same form as
the last term in (24),

m(∂tuk + uj∂juk)− ∂k
[

η2

2m

∂j∂jρ
1/2

ρ1/2
− 1

2m
∂jsi∂jsi

]

+
1

m
∂k

[

1

ρ
∂j(ρ∂jsi) +

q

c
Bi

]

si + qEk +
q

c
(u×B)k = 0 . (25)

This rewriting of the momentum balance equation is the same as the one presented by
Takabayasi [2], and is very enlightening with regard to the role of s. As he observed,
the extra term plays the role of an “effective” space dependent magnetic field, and
thus the equation of motion for the variable s is given by

ds

dt
=

1

m
s×Ω

=
q

mc
s×B+

1

mρ
s× ∂k(ρ∂ks)

=
q

mc
s×Beff (26)

where Ω = ∇×u is the vorticity. The presence of a non-zero vorticity makes it harder
to find the Lagrangian of the system and its associated Hamilton-Jacobi equation. As
noted elsewhere [7], when f̂ is fully separable, and thus the vorticity Ω = 0, it is
possible to use the classical definition of the action S in terms of the momentum
(p = ∇S) and reduce the equations of motion to a Hamilton-Jacobi equation. In the
present case, this is not possible anymore in so simple a fashion. Not even with the
introduction of the canonical momentum p = ∇S − (q/c)A, where A is the vector
potential, is it possible to rewrite (25) as a total gradient. In the presence of the non-
zero vorticity it is necessary to use a more general expression for the true canonical
momentum. In fact, the most general way to write the canonical momentum in three
dimensions when there is no helicity [11] is

p = ∇S − q

c
A+ ζ∇ω . (27)

The new variables ζ and ω are known as Clebsch potentials [12]. In our particular case,
they have a very specific physical meaning as a consequence of representing s with the
Pauli matrices: ζ corresponds the z-component of the vector s and ω corresponds to
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the azimuthal angle, i.e, the canonical conjugate variable of sz. This correspondence
can be seen when the curl of (27) is taken

Ω =
1

m
∇× p

=
q

mc
B+

1

m
∇ζ ×∇ω

=
q

mc
B+

1

mρ
∂k(ρ∂ks) . (28)

Then, the expressions for ζ and ω as a function s are

ζ = sz

ω = tan−1
(

sx
sy

)

. (29)

Since the equivalence between equations 13, 24 and 26 and the Pauli equation for a
non-relativistic particle with spin η/2 has already been proven by different authors
[1, 4] in what follows we will only summarize the procedure. As a first step we will write
the action that will give rise to the equations of motion when its variation is performed.
Then, we will introduce a change of variables into that action. This change of variables
is such that its variation respect of the new coordinates yields Pauli’s equation. This
is not a conceptually complicated procedure, however it involves lengthy calculations.
The action that corresponds to our equations of motion is

A =

∫

d3x

∫

dt

[

1

2
mρu2 − qρΦ+

q

c
ρA · u− q

mc
ρB · s

− η2

8m

(∇ρ)2

ρ
− ρ

2m

[

(∇sx)
2+(∇sy)

2+(∇sz)
2
]

]

(30)

with the Lin constraints ∂ω/∂t+(u ·∇)ω = 0 and ∂S/∂t+(u ·∇)S = 0, and Lagrange
multipliers ρζ and ρ respectively. The first constraint is not conserved and this will
lead to its modification, by fixing the gauge of the Clebsch potentials [1]. The second
constrain corresponds to the continuity equation which is indeed conserved. This
action can be fully expressed as a function of the Clebsch potentials making use of the
following identities [5]:

B · s =
(

η2

4
− ζ2

)1/2

[Bx sinω +By cosω] + ζBz (31)

and

(∇sx)
2 + (∇sy)

2 + (∇sz)
2 =

η2

4

[

(∇ζ)2

(η2/4− ζ2) +
4

η2

(

η2

4
− ζ2

)

(∇ω)2
]

. (32)

To obtain the equations of motion we need to calculate the variation of A respect of
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u, ρ, S, ζ and ω. Then,

δA
δu

: mu+
q

c
A− ζ∇ω −∇S = 0

δA
δρ

:
∂S

∂t
+ ζ

∂ω

∂t
+

1

2m

(

∇S + ζ∇ω − q

c
A
)2

− q

mc
B · s− qΦ− η2

2m

∇2ρ1/2

ρ1/2

+
η2

8m

[

(∇ζ)2

(η2/4− ζ2) +
4

η2

(

η2

4
− ζ2

)

(∇ω)2
]

= 0

δA
δS

:
∂ρ

∂t
+ ∇ · (ρu) = 0

δA
δζ

:
∂ω

∂t
+ (u ·∇)ω

− q

mc

[

ζ

(η2/4− ζ2) (Bx sinω +By cosω)−Bz

]

− ζ η
2

4m

[

− (∇ζ)2

(η2/4− ζ2)2
+

4

η2
(∇ω)2

]

− η2

2m

1

ρ
∇

(

ρ
(∇ζ)2

(η2/4− ζ2)

)

= 0

δA
δω

:
∂ζ

∂t
+ (u ·∇)ζ

− q

mc

(

η2

4
− ζ2

)1/2

[Bx cosω −By sinω]

+
1

mρ
∇

[

ρ

(

η2

4
− ζ2

)

∇ω

]

= 0 . (33)

The first three equations correspond to the canonical momentum, the equation of
motion for u and continuity and the last two correspond to the equation of motion for
s. The equation of motion for u can be recast in the form (24) by taking its gradient
and then replacing into it the expressions for dω/dt and dζ/dt obtained from the last
two variations, where d/dt ≡ ∂/∂t+ (u ·∇).

Replacing the expression for the generalized momentum and the Lin constraints
into the action A, we find

A = −
∫

d3x

∫

dt ρ

[

1

2m
(∇S + ζ∇ω − q

c
A)2

+
∂S

∂t
+ ζ

∂ω

∂t
+

q

mc
B · s− qΦ+

η2

8m

(∇ρ)2

ρ2

+
1

2m

[

(∇sx)
2+(∇sy)

2+(∇sz)
2
]

]

(34)

where, in order to keep the equations more compact, we have not substituted the
expressions (31) and (32). Motivated by the fact that s is a vector with constant
magnitude η/2, it can be expressed as

s =
η

2
[sin θ sinωx̂+ sin θ cosωŷ + cos θẑ] . (35)
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Now introducing the following change of variables into A
ζ =

η

2
cos θ

Ψ = Re(i/η)S
(

cos θ
2e

iω/2

i sin θ
2e

−iω/2

)

(36)

we obtain

A =

∫

d3x

∫

dt

[

iη

2

(

Ψ† ∂Ψ

∂t
− ∂Ψ†

∂t
Ψ

)

− 1

2m

(

iη∇Ψ† − q

c
Ψ†A

)(

−iη∇Ψ− q

c
AΨ

)

− qΦΨ†Ψ+
qη

2mc
Ψ†σ̂ ·BΨ

]

(37)

Finally when the variation of A respect of Ψ† is performed we obtain:

iη
∂Ψ

∂t
=

1

2m

(

−iη∇− e

c
A
)2

Ψ+ eΦΨ− eη

2mc
σ̂ ·BΨ (38)

which is Pauli’s equation for a particle with spin η/2 and charge q = e. As shown
by Takabayasi [1], the relation (36) along with the Kelvin-Helmholtz theorem for the
hydrodynamic equations leads to the usual quantization of s.

3. Conclusions

This work has been based on the premise of our previous study in which a Fourier
transform on the p (momentum) variable of the classical Boltzmann equation leads
to a mapping onto the particular subclass of Sturm-Liouville operators known as
the Schrödinger equation. As has been mentioned above, the mapping onto the
Schrödinger equation is done by imposing a separability condition on the Fourier
transform of the one particle distribution function. Also in our previous work, we
showed that the rules to calculate the averages of physical quantities in the p-conjugate
space read like the postulates of quantum mechanics, and that the hydrodynamic
equations that are generated as an intermediate step of the mapping present a term
identical to the quantum potential when our parameter η is replaced by ~. Here we
have shown that changing the ansatz for f̂ leads to a new term in the hydrodynamic
equations that coincides, upon replacement of the parameter η by ~, with the equations
that map onto the Pauli equation for a particle with spin ~/2 ≡ η/2. Moreover, the
value of the magnitude of the spin is naturally fixed to be η/2 and it is also a natural
consequence of the rewriting of the equations that the spin is an angular momentum.
It is also apparent from the derivation that the “spin” we find is an internal degree of
freedom, introduced because of the need for more variables to account for vorticity. It
is an interesting question whether one might infer properties of the underlying classical
system associated with either one of the ansatzes for the distribution function. An
answer to this question might give insight into how the role of the measurement
apparatus in quantum mechanics might be understood.

Finally, we find very appealing the connection between Clebsch variables and s
since the method of choice in quantum mechanics to work efficiently with angular
momentum is a variant of the method of Clebsch, whose original intent was the
representation of non-exact differential forms and which was widely used in the late
19th century to study vortical Eulerian flows.
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