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Confining surfaces play crucial roles in dynamics, transport and order in many physical systems,
but their effects on active matter, a broad class of dynamically self-organizing systems, are poorly
understood. We investigate here the influence of global confinement and surface curvature on collec-
tive motion by studying the flow and orientational order within small droplets of a dense bacterial
suspension. The competition between radial confinement, self-propulsion, steric interactions and
hydrodynamics robustly induces an intriguing steady single-vortex state, in which cells align in
inwardly-spiralling patterns accompanied by a thin counterrotating boundary layer. A minimal
continuum model is shown to be in good agreement with these observations.

PACS numbers: 87.18.Hf, 87.17.Jj, 47.63.Gd, 47.54.-r

Geometric boundaries and surface interactions are
known to have profound effects on transport and or-
der in condensed matter systems, with examples rang-
ing from nanoscale edge currents in quantum Hall de-
vices [1, 2] to macroscopic topological frustration in liquid
crystals (LCs) tuned by manipulating molecular align-
ment at confining surfaces [3]. By contrast, in spite of
considerable recent interest [4–8], the effects of external
geometric constraints and confining interfaces on collec-
tive dynamics of active biological matter [9, 10], such as
polar gels [11, 12] and bacterial [13–18] or algal suspen-
sions [19], are not yet well understood, not least owing
to a lack of well-controlled experimental systems.

At high concentrations, motile rod-like cells exhibit
self-organization akin to nematic LC ordering [13, 14, 20],
with the added facet of polar alignment driven by collec-
tive swimming [21, 22]. Unlike passive LCs, cellular sus-
pensions are in a constant state of flux: at scales between
10 µm and 1 mm, coherent structures (swirls, jets, and
plumes) continually emerge and persist for seconds at a
time [14–17, 23]. While the dynamics of dense bacterial
suspensions in bulk are fairly well understood [16, 18, 23–
25], microorganisms often live in porous habitats like soil,
where encounters with interfaces or three-phase contact
lines are common [13, 14, 26]. Recent work has clarified
how single cells interact with surfaces [27–30], but it re-
mains unclear how global geometric constraints influence
their collective motion.

Here we combine experiment and theory to investigate
how confinement and boundary curvature affect stabil-
ity and topology of collective dynamics in active sus-
pensions. The physical system we study is an oil emul-
sion containing droplets of a highly concentrated aque-
ous suspension of Bacillus subtilis (Fig. 1a). For drops
of diameter d = 30–70µm and height h ∼ 25µm, we find
that the suspension self-organizes into a single stable vor-
tex (Fig. 1b) that persists as long as oxygen is available.
This pattern is reminiscent of structures seen in colonies

on the surface of agar [31], spontaneously circulating
cytoplasmic extracts of algal cells [6], and the rotating
interior of fibroblasts on micropatterned surfaces [32].
The vortex flow described here is purely azimuthal and
accompanied by a thin counterrotating boundary layer,
consisting of cells swimming opposite to the bulk. Sur-
prisingly, we observe that the cells arrange in spirals with
a maximum pitch angle of up to 35◦ relative to the az-
imuthal bulk flow direction (Fig. 1b). We suggest that
this intriguing helical pattern results from the interplay
of boundary curvature and steric and hydrodynamic in-
teractions. Building on this hypothesis, we formulate a
simple continuum model and find good agreement be-
tween its predictions and experimental results.

B. subtilis (wild-type strain 168) were grown in stan-
dard Terrific Broth (TB, Sigma) at 35◦ C on a shaker.
An overnight culture was diluted 200× and grown for
5 h until the end of exponential growth when the pro-
portion of motile cells is maximal [33]. Cells were then
centrifuged at 1500g for 10 min. The pellet was gently
mixed and transferred to 4 volumes of mineral oil, with
10 mg/mL diphytanoyl phosphatidylcholine (DiPhyPC,
Avanti) added to prevent the emulsion from coalescing.

FIG. 1. (color online). Overview. (a) Experimental setup.
(b) Bright field image of a 40µm drop, and definition of cell
orientation angle relative to main circulation direction.
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FIG. 2. (color online). Steady-state circulation in highly concentrated B. subtilis droplet. (a) PIV flow field for a droplet with
a volume filling fraction ϕ ∼ 0.4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating
boundary layer. All PIV vectors are shown. (c-d) Vortex order parameter V for varying diameter d. (c) Drops of constant
height h ∼ 25µm. Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter Φ (5µm
bins) for h ∼ 15µm (red dashed line) and h ∼ 25µm (blue full line). Error bars indicate the standard deviation. (e) Azimuthal
flow vt(r) = 〈v · t〉θ profile for three different experiments (blue full lines), compared with continuum bulk flow model results
(red dashed lines). Negative flow indicates the counterrotating boundary layer.

Small drops were created by slowly pipetting the sus-
pension, 10µL of which was placed between two cover-
slips such that it spread by surface tension to the cov-
erslip edge. This procedure yields many flattened drops
with h ∼ 25µm and diameters ranging from 10–150µm,
and bacterial volume fraction ϕ ∼ 0.4. Bacteria re-
main active for several minutes in the largest drops and
up to 20 minutes for the smallest, reflecting the larger
diffusive influx of oxygen in the smaller drops. Cover-
slips were rendered hydrophobic with silane, resulting in
pancake-shaped drops that are wider at the midplane
of the chamber than at the top and bottom (Fig. 1a).
Movies were acquired at 125 fps with a high-speed cam-
era (Fastcam, Photron) on an inverted microscope (Cell
Observer, Zeiss), using a 100× oil-immersion objective
and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly ro-
tating vortices (Fig. 2 and Supplemental Video 1). To
quantify this effect, we determined the local bacterial ve-
locity field v(x), using a customized version of the parti-
cle image velocimetry (PIV) toolbox mPIV [34] that av-
erages pixel correlations over two seconds [35]. The PIV
algorithm yields the local mean velocity of the bacteria,
reflecting the locomotion due to swimming and advec-
tion by the fluid flow (Fig. 2a). The emergence of stable
azimuthal flow is captured by the vortex order parameter

Φ =

∑
i |vi · ti|/

∑
j ||vj || − 2/π

1− 2/π
, (1)

where vi is the in-plane velocity and ti the azimuthal unit
vector (Fig. 1b) at PIV grid point xi. Φ = 1 for steady

azimuthal circulation, Φ = 0 for disordered chaotic flows
and Φ < 0 for predominantly radial flows. Plotting Φ as
a function of drop diameter reveals that a highly-ordered
single-vortex state with Φ > 0.7 forms if d− < d < d+
with d− ∼ 30µm and d+ ∼ 70µm (Fig. 2c). Clockwise
and counterclockwise vortices occur with equal proba-
bility. The lower critical diameter d− depends on the
chamber height h (Fig. 2d). Lowering h restores the
quasi-2D nature of the confinement and allows for for-
mation of vortex states at smaller diameter d. The up-
per critical diameter d+ is consistent with the size of the
transient turbulent swirls observed in 3D bulk bacterial
suspensions [16, 18, 24]. In drops slightly larger than d+
flow is still azimuthal near the boundary regions but the
vortex order decreases toward the center. Drops with
d & 100µm show fully developed bacterial turbulence as
seen in quasi-infinite suspensions [14, 16, 18, 24].

The azimuthal flow speed in a vortex state is maxi-
mal at a distance ∼d/4 from the center (Fig. 2e). Across
experiments, the maximum speed increases with d, reach-
ing ∼ 40µm/s for d+, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis sus-
pensions [16, 17]. While our setup does not supply oxy-
gen, and the bacterial motility decreases [18] with time,
recent studies of quasi-infinite suspensions [18, 24] have
shown that the flow correlation length is independent of
swimming speed at high cell density, so we may neglect
oxygen depletion in the analysis of patterns. In the fol-
lowing, we focus on the properties of single-vortex states
with Φ > 0.7 and take the azimuthal unit vector t to
point in the direction of bulk flow, so that we may treat
clockwise and counterclockwise vortices equally (Fig. 1b).
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FIG. 3. (color online). Schematic cell organization in
droplets. (a) Dashed line indicates continuum model bound-
ary, where bulk flow begins. (b-d) Physical mechanisms driv-
ing boundary layer formation. (b) Shear flow reorients cells
to face upstream. (c) Contact angle θm decreases with the
drop diameter, restricted by steric interactions. (d) Ratchet-
like steric repulsion and inward flow (red arrows) created by
boundary cells force the next layer to move in the opposite
azimuthal direction, thereby setting the bulk flow direction.

Detailed flow field analysis reveals that highly ordered
vortex states are always accompanied by a thin layer
of cells swimming along the oil interface in the oppo-
site direction to the bulk flow (Fig. 2b). This surpris-
ing fact is reflected in the azimuthally-averaged circu-
lation velocity profile vt(r) = 〈v(x) · t〉θ, where x =
(r cos θ, r sin θ), which changes sign towards the edge of
the droplet (Fig. 2e). The basic form of vt(r) is pre-
served among well-ordered droplets (Φ > 0.7) with dif-
ferent diameters (Fig. 2e). To exclude the possibility
that the backflow arises from specific interactions be-
tween bacteria, DiPhyPC and oil, we performed control
experiments with dense suspensions in shallow cylindrical
polydimethylsiloxane chambers, and found qualitatively
similar behavior. This result suggests that the formation
of a thin counterflow boundary layer is a generic phe-
nomenon in bacterial suspensions confined by a higher-
viscosity medium. By determining the zeros of vt for all
ordered droplets, we find that the boundary layer thick-
ness b is independent of d (Fig. 2e). The average value
b̄ ≈ 4µm is slightly smaller than the length ` ≈ 5µm of
B. subtilis [23], suggesting that the counterflow region is
comprised of a single layer of cells. We tested this hy-
pothesis by imaging droplets in a plane near the bottom
cover slip in order to resolve vertical cell layers more eas-
ily, and confirmed that cells swimming in the direction
opposite to the bulk flow are in direct contact with the
oil interface (Fig. 3a and Supplemental Video 2).

The presence of this previously unreported counter-
flow layer can be understood by considering the main
forces that cause reorientation of cells near the boundary.
Since the oil viscosity is ten times that of water, the inter-
face acts as a nearly-no-slip boundary for the suspension.
Thus, circular bulk motion creates a shear flow that ex-
erts torque on the cells in the boundary layer (Fig. 3b).
As recently shown for dilute suspensions [36], bacteria
prefer to swim upstream when exposed to such flow gradi-

FIG. 4. (color online). Bacterial orientation. (a) Local orien-
tation, averaged over 2 s. External ring lies at the water/oil
interface and shows local azimuthal direction, and cellular
orientation appears in the central disc. Discontinuity in color
between ring and disc indicates the angle between cells and
the azimuthal direction. (b) Boundary angle (Fig. 3c) as a
function of drop diameter, Symbols denote different bacte-
rial concentrations; dashed black lines indicate geometric es-
timates of minimum packing angle Θ for different cell lengths.

ents, thereby favoring the formation of a counterrotating
layer. If the concentration of cells is sufficiently high, ne-
matic ordering due to steric interactions further stabilizes
this layer [10, 21, 22]. Once the layer has formed, cells
trapped in it form a steric ratchet-like structure and, be-
cause they are pusher-type swimmers [30], they generate
a backflow in the direction opposite to their orientation
(Fig. 3d). Both effects force cells in the second layer to
move in the other direction: the boundary monolayer sta-
bilizes the bulk flow and vice versa. The absence of such
counter-circulation in the free-boundary geometry stud-
ied by Czirok et al. [31] provides further evidence that
the backflow is a consequence of rigid boundary effects.

A dense suspension of rod-like bacteria locally aligns
through active nematic interactions [10, 21, 22]. We ob-
serve cell orientation that is not parallel to the flow di-
rection: in the bulk circulation the cells point inwards,
and in the boundary layer they point outwards (Fig. 3a).
We extract the local mean orientation from the bac-
terial speckle by computing the orientation tensor [37]
(Fig. 4a). As for the flow, we examine the azimuthally-
averaged orientation angle θ(r) relative to the circulation
direction t. Near the center of a drop, cells are aligned
roughly parallel to the bulk circulation (θ ≈ 0), and the
angle increases with r to a maximum value θm close to
the boundary. Viewing θm as a function of d, we find an
inverse correlation: the smaller the drop (and thus the
higher the boundary curvature), the larger the deviation
from the azimuthal direction, ranging from θm ∼ 10◦ for
d = 70µm to θm ∼ 35◦ for d = 30µm (Fig. 4b). To test
whether θm depends on the curvature or on the suspen-
sion size, we performed measurements with suspensions
diluted to ∼ 2/3 of the starting concentration. In such
a drop, cells concentrate at the boundary, leaving the
center almost empty (Supplemental Video 3). Yet, the
measured angles are comparable to those of fully con-
centrated suspensions (Fig. 4b), indicating that this is
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indeed an effect of boundary curvature.
To explain this phenomenon qualitatively, we con-

sider purely steric bacterial packing in the boundary
layer. This viewpoint is supported by the simulations of
Wensink and Löwen [5] which show that a group of self-
propelled particles does not align parallel to a boundary
but instead lies at an angle limited by steric repulsion.
Given a bacterial concentration, we model cells as thin
rectangles equally spaced around a circle of diameter d
and then calculate the minimum packing angle Θ with
the azimuthal direction at which the cells could lie in one
plane. A dilute suspension thus has edge-parallel pack-
ing (Θ = 0◦), while at some limiting concentration they
become boundary-perpendicular (Θ = 90◦). In the inter-
mediate regime, Θ decreases as drop diameter d increases
(i.e., as boundary curvature falls; Fig. 3c). Figure 4b il-
lustrates packing curves for two cell lengths, ` = 4µm
and ` = 8µm, at a volume fraction of 0.5. The measured
values of θm then lie between these two curves, indicating
that the scatter can be explained by variations in the cell
length ` (which are also observed across experiments).

While single-field phenomenological models can de-
scribe dense bacterial flow quantitatively [23, 24], they
do not incorporate the additional observable of cellular
orientation. Thus, as is typical in active suspension the-
ory [38] we describe the system by two functions: the
bacterial polar order parameter P, where |P| = 0 for
total disorder and |P| = 1 for total order in direction
P, and the suspending fluid flow u. The fluid obeys the
forced Stokes equations with friction,

−µ∇2u + νu +∇Π = −c0σ∇ · (PP),

and incompressibility ∇·u = 0. The viscosity µ and coef-
ficient of friction ν (from the effects of high bacterial den-
sity) control the fluid response to dipolar ‘pusher’ forcing
(strength σ) in a suspension of concentration c0. Defin-
ing the incompressible swimming field functional s[P],
∇ · s = 0, the polar order P evolves as

∂tP + (u + s) · ∇P = Ds∇2P−DrP + α(1− |P|2)P

+ ε(I−PP) · (γE + W) ·P.

On the l.h.s, cells are advected by a flow field u + s,
where in general, s is proportional to the incompressible
part of P. This ensures that concentration fluctuations
always dissipate, as appropriate for a highly dense sus-
pension. On the r.h.s., the terms are, in order: spatial
and rotational diffusion with respective constants Ds and
Dr; spontaneous polar ordering of strength α; and reori-
entation induced by solvent strain E = (∇u + ∇uT)/2
and vorticity W = (∇u − ∇uT)/2, with cell shape pa-
rameter γ ∈ [−1, 1] and effectiveness ε ≤ 1 (inhibited
by steric effects). The presence of a bacterial bound-
ary layer in a circular bulk flow is mimicked by imposed
boundary conditions at r = d0/2 of fixed orientation
P = t cos θb − r sin θb, where r is the outward radial unit

vector. A no-slip boundary condition is imposed on the
fluid flow. (A systematic treatment of this model with ap-
propriate nondimensionalizations will be presented else-
where; here we retain the fully dimensional parameters
for simpler connection with experiments.)

To model the steady vortex regime we reduce to ax-
isymmetry, where u = ut and s = st by incompress-
ibility. We then set s = VP · t for azimuthal swim-
ming at speed V . To model the results in Fig. 2d, we
fix appropriate parameter values [30] c0 = 0.1µm−3,
µ = 10−3 Pa s, ν = 10−4 Pa sµm−2, Ds = 103 µm2 s−1,
Dr = 0.057 s−1, α = 25 s−1, ε = 0.5, γ = 0.9, and
θb = 20◦. We then choose three bulk domain diam-
eters d0 = 24, 26, 30µm, and for each we pick V =
4, 7, 10µm s−1 and σ = 0.3, 0.525, 0.75 pNµm respec-
tively, reflecting varying oxygen availability. These yield
the steady-state curves of the lab frame bacterial flow
|u+s| shown in Fig. 2c, exhibiting good agreement in the
bulk flow regime. Additionally, the orientation angle θ(r)
decreases towards zero from its initial value θ(d0/2) = θb
as r decreases, as observed experimentally (Fig. 4a).

The overall bacterial arrangement we have observed is
reminiscent of rotating spirals predicted for totally or-
dered active gels [12], although that model describes the
actin-myosin cytoskeleton and lacks interactions partic-
ular to microswimmer suspensions [39]. A more appro-
priate representation could be derived from polar active
liquid crystals: the bacterial boundary layer could be re-
garded as a smectic structure [40] while the bulk behaves
as a chiral nematic phase [3]. Yet, it is only by consider-
ing the microscopic hydrodynamics near the oil interface
that the presence of the backflow layer can be inferred.
This lends a note of caution to continuum modeling of
microswimmer suspensions, suggesting that conditions at
boundaries, and microscopic effects in general, warrant
careful and deliberate consideration. Our combined ex-
perimental and theoretical results demonstrate that suit-
ably designed boundaries provide a means for stabilizing
and controlling order in active microbial systems.
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