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Abstract 

The mechanisms that determine bacterial shape are in many ways poorly 

understood.   A prime example is the Lyme disease spirochete, Borrelia 

burgdorferi, which mechanically couples its motility organelles, helical flagella, to 

its rod-shaped cell body, producing a striking flat-wave morphology.  A 

mathematical model is developed here that accounts for the elastic coupling of the 

flagella to the cell cylinder and shows that the flat-wave morphology is in fact a 

natural consequence of the geometrical and material properties of the components.  

Optical trapping experiments were used to measure directly the mechanical 

properties of these spirochetes.  We find the Young’s moduli of the periplasmic 

flagella and the cell cylinder to be 700 MPa and 0.1 MPa, respectively.  These 

results imply relative stiffnesses of the two components which confirm the 

predictions of the model and show that the morphology of B. burgdorferi is 

completely determined by the elastic properties of the flagella and cell body.  This 

approach is applicable to a variety of other structures in which the shape of the 

composite system is markedly different from that of the individual components.
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\body 

Introduction 

Spirochetes constitute a unique group of motile bacteria, with some members being 

highly virulent in humans.  While the flagella of these bacteria are structurally similar to 

those of other species, they are encased within the periplasmic space which lies between 

the cell wall complex (i.e., cell cylinder) and the outer membrane.  Although spirochetes 

vary tremendously with respect to habitat, size, number of periplasmic flagella attached 

at each end, and their mechanics of swimming, DNA sequence analysis indicates that 

they all evolved from a primordial protospirochete  (1-3).  Depending on the species, the 

final shape of a spirochete is either helical or a flat wave.  As in other bacteria, the 

flagella serve an obvious motile function as they are driven by rotary motors at their 

base – but in spirochetes these organelles rotate between the outer membrane and cell 

cylinder (3).  Species such as Spirochaeta aurantia and Treponema primitia swim by a 

mechanism in which the flagella do not deform the cell cylinder and do not influence 

cell shape (4, 5). In contrast, in other species, such as Leptospira interrogans and 

Borrelia burgdorferi, they are also skeletal organelles; cells lacking flagella or with 

straight flagella have altered shapes, and these mutants are also non-motile (6-10). 

Moreover, several models of spirochete locomotion indicate that the skeletal function of 

the periplasmic flagella is essential for their motility (3, 6, 11-13). 

The basis for spirochete shape remains elusive. In some spirochete species, 

genetic evidence indicates that the helical cell shape of the cell is associated with the 

cell wall and is independent of the periplasmic flagella (3, 6, 8-10, 14).  However, in 

others the final shape of the entire cell is due to complex interactions between the cell 
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cylinder and the periplasmic flagella.  Specifically, the Lyme disease spirochete B. 

burgdorferi, and possibly the syphilis spirochete Treponema pallidum (15), have flat-

wave morphologies.  B. burgdorferi has a periodically undulating, nearly planar shape 

(Figure 1a,b,e,f). Remarkably, cells lacking FlaB, the primary constituent of the left-

handed flagellar filament, are rod-shaped (3, 7, 12, 16) (Figure 1c,g). Thus, the 

periplasmic flagella play a major role in creating the flat-wave morphology in this 

species.  Because T. pallidum is unable to be continuously cultured in vitro, we know 

very little about the factors that influence its shape. 

The morphology and motility of B. burgdorferi has been characterized in detail.  

High voltage electron microscopy (13) has been used to determine the typical cell 

dimensions: the cell cylinder radius (a = 0.17 m), length (10-20 m), wavelength (  = 

2.83 m), and undulation amplitude (h = 0.78 m) (12, 13).  Attached subterminally to 

the ends of the cell are between 7 and 11 flagellar filaments with a diameter of  20-24 

nm (13, 17).  Each filament is connected to a rotary motor anchored in the inner 

membrane of the cell.  Spirochete flagellar motors, including those of B. burgdorferi, 

are similar to the motors found in other bacterial species (18, 19).   Rotation of the 

periplasmic flagella of B. burgdorferi induces travelling-wave deformations of the cell 

cylinder, which provide the thrust that drives the swimming of these bacteria (12).  

Periplasmic flagella that are not constrained by the cell cylinder are left-handed helical 

filaments with a helix radius R = 0.14 m and pitch P = 1.48 m (20) (Figure 1d,h).  In 

situ, the periplasmic flagella shape is dramatically different, due to its interaction with 

the cell cylinder.  Although the shape is still left-handed, the flagella are stretched with 

R = 0.19-0.20 m, and with a helical pitch of P = 2.83 m (note that P = cell’s .  

These observations suggest a model for the development of the flat-wave 

morphology in B. burgdorferi.  Enclosing the flagella inside the periplasmic space 

causes an elastic deformation of the cell cylinder, which in turn exerts a force back onto 
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the periplasmic flagella, causing them to deform as well.  To explore whether this 

conceptual picture is sufficient to explain the flat-wave morphology, we developed and 

tested a mathematical model that treats the cell cylinder and the periplasmic flagella as 

filamentary elastic objects, since the cell cylinder and the flagella are much longer than 

they are wide.  This approximation assumes that the cross sections of the filaments do 

not change appreciably during deformation, which is typically valid for long, thin 

objects that bend on length scales much longer than their diameter.   

Results and Discussion 

Theoretical Model. The energy required to twist or bend a filamentary elastic 

object is determined by two elastic moduli, each determined by a material property such 

as the Young’s modulus and the radius of the filament.  We denote the bending moduli 

of the cell cylinder and periplasmic flagella as Ac and Af, respectively, and their 

twisting moduli by Cc and Cf.  For most materials, the ratio of the twisting to bending 

modulus is between 2/3 and 1 (21).  The equilibrium shape of the composite system of 

cell cylinder and flagella is determined by force and moment balances which 

incorporate the twisting and bending energy of the cell cylinder and of the periplasmic 

flagella, with the constraint that the flagella reside at the radius of the cell cylinder.  Our 

model assumes that the flagella are localized at one position about the circumference of 

the cell cylinder (i.e., we treat all the flagella as a single filament) and that they are free 

to slide.  A complete description of the mathematical model is given in the Online 

Supplemental Material.  A similar, but simpler, version of this model was used 

previously to describe the shape and dynamics of the Leptospiraceae (22). 

We treat the cell cylinder as a filament which, if isolated, would be straight, and 

the periplasmic flagella as a filament whose configuration in isolation would be a helix 

of radius R and pitch P, given above.  We also assume that Cf/Af = Cc/Ac = 1.  Thus, 
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there are only two free parameters in the model, the radius a of the cell cylinder and the 

ratio  = Af/Ac; these were varied to determine the range of shapes predicted by the 

model.  When the cell cylinder is much stiffer than the flagella, the cell is nearly straight 

and the flagella wrap about it with a pitch that is larger than P.  As the ratio  increases, 

the cell cylinder deforms into a flat-wave shape whose deformation amplitude increases 

while the wavelength decreases (Figure 2a,b).  In this flat-wave shape, the model 

predicts that the periplasmic flagella should wrap about the cell cylinder in the opposite 

sense of their own handedness; i.e., a left-handed flagellum should wrap about the cell 

cylinder in a right-handed fashion, which agrees with previous experimental 

measurements (13). For values of  larger than 1.0, there is a noticeable axial rotation 

of the flat-wave morphology (Figure 2a), a precession about the cell axis that is often 

observed (12).  The extent of precession depends on the relative positions of flagellar 

attachment points at the two ends.  The amplitude of the morphology matches well with 

the experimental observations when  > 3.  For values of  < 5, the wavelength that we 

calculate from the model is somewhat less than what is observed experimentally and 

does not depend strongly on the value of  (Figure 2b).  Variation of the attachment 

positions of the flagella can increase or decrease the wavelength by roughly 10%.  For 

 >5, the wavelength approaches the pitch of the periplasmic flagella. Thus the model 

implies that the ratio  is approximately 3 - 5.  We also found that the shape of the cell 

did not depend strongly on the values of the twisting moduli (results not shown).  

The flat-wave shape of B. burgdorferi is thus due to a matching between the 

helical radius and pitch of the flagella and the radius of the cell cylinder.  Our 

mathematical model suggests that the flat wave shape arises when the radius of the cell, 

a, is roughly equal to the helix radius of the flagellum times the square of the ratio of 

the length of one turn of the flagellum to the pitch:  a ~ R (
2
R

2
 + P

2
)/P

2
. For B. 

burgdorferi, this implies that a is approximately 0. m.  When the cell cylinder’s 
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radius is much smaller than that of the flagella, the cell is also helical (Figure 2c).  

Increasing the radius of the cell leads to a flatter morphology (Figure 2c). 

Measurement of the elastic parameters confirms the model. To test the 

mathematical model, we measured the stiffness of the cell cylinder and the periplasmic 

flagella using optical trapping methods.  For studies of the cell cylinder, detergent was 

used to remove the outer membrane of cells of B. burgdorferi senso stricto strain B31A, 

which exposes the cell wall.  With the outer membrane removed, the flagella often 

remain intertwined about the cell cylinder.  Polylysine-coated silica beads (1 m 

diameter) were then attached to two points along the length of the cell.  One of the 

beads was then anchored to a coverslip by attachment to another bead (Figure 3a).  The 

second bead was positioned in an optical trap.  A quadrant photodiode was used to 

measure and align the position of the bead in the optical trap as well as to calibrate the 

spring constant of the trap; all calibrations were done in Metamorph using video 

tracking of trapped beads imaged with very short (1 ms) shutter speeds (23).  The 

microscope stage was oscillated and the displacement of the trapped bead with respect 

to the position of beads affixed to the coverslip was measured.  Using this procedure, 

the force required to stretch the cells was determined (Figure 3b).  The shape of B. 

burgdorferi is roughly sinusoidal (12, 13), and the force-displacement curves are well-

fit by assuming that the cell behaves like an elastic sine wave (See Online 

Supplemental Material for more details).  The effective bending modulus found using 

this fitting procedure is 42 ± 24 pN m
2
.  By stretching the cell, bent regions where the 

periplasmic flagella are still wrapped about the cell body are straightened.  Therefore, 

this bending modulus accounts for the combined effect of the cell cylinder and the 

periplasmic flagella.  Our mathematical model predicts that the bending modulus that is 

measured by this experiment is Ac + 0.6Af (see Online Supplemental Material). 
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Using a similar experimental procedure, we also measured the stiffness of the 

purified periplasmic flagella.  Figure 3c shows four representative force-displacement 

curves.  We fit these data to theoretical curves generated numerically for stretching and 

compressing an elastic helix.  From these fits, the bending modulus for the periplasmic 

flagellum was estimated to be 6.7 ± 3.7 pN m
2
.  This value is of the same order as 

measurements of the bending modulus of flagellar filaments from Salmonella enterica 

serovar Typhimurium performed using quasi-elastic scattering of light (24) and 

extensional flow (25, 26).  Using a flagellar diameter of 10 nm, we estimate the 

Young’s modulus of the flagellum to be 700 MPa. Therefore, if there are 8 periplasmic 

flagella along the length of B. burgdorferi, Af would be approximately 53 pN m
2
.  

From this result and the results from the cell stretching experiments, we estimate the 

bending modulus of the cell cylinder to be about 10 pN m
2
, which implies that ≈ 5, 

in good agreement with the results from the mathematical model.  For an elastic tube, 

such as the cell wall, the Young’s modulus, E, is related to the bending modulus as A ~ 

Ea
3
t.  Here t is the thickness of the cell wall, which we estimate to be about 6nm.  

Therefore, the Young’s modulus of the cell wall of B. burgdorferi is about 0.1 MPa, 

which is comparable to that measured for Magnetospirillum gryphiswaldense (27) and 

Myxococcus xanthus (28) but substantially lower than what has been estimated for 

Escherichia coli and Bacillus subtilis (29, 30). 

We have shown that the mechanical coupling of the helical periplasmic flagella to 

the rod-shaped cell cylinder is sufficient to determine the flat-wave morphology of B. 

burgdorferi.  In addition, we have measured the elastic parameters of both of these 

structures.  In spirochetes, because the interaction between the PFs and cell cylinder is 

quite intimate, these organelles may have co-evolved to achieve optimal motility and for 

survival in nature.  It is not clear why some spirochete species are helical, and others are 

flat waves. However, there are two obvious advantages to being a spirochete. First, all 

known spirochetes can swim efficiently in highly viscous gel-like media that slow down 
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or stop other species of bacteria (3, 31, 32).  Second, because the periplasmic flagella 

are intracellular, these organelles are protected from harsh environments including 

specific antibodies (3). Evidently, each species evolved in a manner that maintained 

these attributes in order to best adapt to its specific ecological niche.   

 

If the shape and dynamics of B. burgdorferi have evolved to allow for optimal 

motility and/or the ability to invade host tissue, then it is interesting to speculate about 

the physical consequences of our findings.  Our results suggest that there are two major 

factors that can be adjusted to modify B. burgdorferi’s cell morphology, the geometric 

parameters of the helical flagella and the ratio of the stiffness of the periplasmic flagella 

to that of the cell cylinder.  We find that the stiffness of an individual flagellum of B. 

burgdorferi is comparable to the stiffness that has been measured in other species, such 

as Salmonella enterica serovar Typhimurium (24-26).  Therefore, it may be that 

bacterial flagellar stiffness is not evolutionarily tunable.  However, some bacterial 

flagella have a sheath around the flagellum or have glycosylated or sulfated residues on 

the flagellum, which could be a method for increasing flagellar stiffness, but the 

stiffness of these flagella have not yet been measured (33-37).  

 

The other ways that a spirochete could modify the stiffness ratio would be to alter 

the number of the flagella or the stiffness of the cell cylinder. Indeed, bacterial cell wall 

stiffness varies dramatically between bacterial species, as does the number of 

periplasmic flagella in spirochetes.  Comparison of our measurements of the stiffness of 

the B. burgdorferi cell cylinder to theoretical estimates for Leptonema illini suggests 

that B. burgdorferi’s cell cylinder is considerably less stiff than that of L. illini (22).  
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Because the stiffness of a group of periplasmic flagella should increase with the number 

of filaments, this is another parameter that can be varied between species.  If this line of 

reasoning is correct, then an individual spirochete could adjust its number of flagella in 

response to physical parameters of the environment in order to optimize its motility.  

Although other explanations are possible, this hypothesis could explain why in vitro 

culturing of Borrelia garinii results in a decreased number of periplasmic flagella and 

decreased motility in gel-like media (38).  In fact, the flagella could even act as the 

regulatory sensor.  In Vibrio parahaemolyticus, the polar flagellum acts as a 

mechanosensor that is sensitive to fluid viscosity and triggers lateral flagella synthesis 

for efficient swimming in highly viscous environments and on surfaces (35, 39).   

Morphology of B. burgdorferi is implicitly connected with motility.  Moreover, 

motility is likely to be essential for these organisms to cause disease (3, 38, 40).  How 

rotation of the flagella produces the undulating motions that drive motility and enables 

translocation through host tissues remains unknown.  However, the description of the 

physical interaction between the flagella and the cell cylinder developed here provides a 

basis for a quantitative model of the mechanism of motility in B. burgdorferi and will 

likely serve as a foundation for eventually understanding the motility of T. pallidum.  

Many biological structures are composed of interconnected filamentary objects.  

At the single protein level,  helices often intertwine into helix bundles, such as the 

coiled-coil structure (41), and many receptor and motor proteins have large coiled-coil 

domains.  At the molecular level, DNA, F-actin, microtubules, and the bacterial 

flagellum are all composed of multiple connected polymer strands or protofilaments.  

And, at the cellular level, the axoneme, which is the primary component of eukaryotic 

cilia and flagella, is composed of a cylindrical array of 9 microtubule doublets, 

crosslinked by dynein motors (42, 43).   The mathematical model that is presented here 
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describes the complex physics of conjoined elastic filaments and should therefore be 

applicable to many of these structures.  Indeed, simplified models have already been 

used to describe the dynamics of cilia (44), the configuration of the bacterial flagellum 

(45), and the structure of alpha-helical bundle proteins (46, 47).  

Methods 

Mathematical Model and Data Fitting 

A complete description of the mathematical model and the method that we used 

to compute the elastic parameters from our data is given in the Online Supplemental 

Material. 

Bacterial Strains 

We used the high-passage B. burgdorferi senso stricto strain B31A, which has 

been previously described (7, 48). 

 

Cell Cylinder Preparation 

To remove the outer membrane of cells for use with the optical trapping 

experiments, we centrigued 25 ml of B. burgdorferi senso stricto strain B31A at 6000 X 

g for 20 min.  The cells were then washed in 20 ml of 150 mM phosphate buffered 

saline, pH 7.4 (PBS) and then centrifuged again at 6000 X g for 15 min. We 

resuspended the pellet in 10 ml of PBS with myristate detergent (final concentration 

1%), and the solution was shaken in a 37
o
 C water bath for 12 minutes and then 

centrifuged at 6000 X g for 15 min, washed, and re-centrifuged at 6000 X g for 15 

minutes.  Finally, the pellet was resuspended in 2-3 ml of water and a pipette was used 

to disperse the cells. 
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Measurement of the Cellular Morphology 

Darkfield images of B. burgdorferi strain B31A with and without the outer 

membrane were taken using a Zeiss Axioscope 2 (100 X oil immersion objective) 

connected to a Hamamatsu digital camera (C4742-95).  The peak-to-peak amplitude and 

wavelength were measured using the ``Line tool'' in Volocity 4 software (Improvision 

Inc., Coventry, UK).  At least 8-12 individual cells were measured. 

 

Purification of the Periplasmic Flagella 

Periplasmic flagella were purified using a method similar to that given in (18). 

Approximately 250 ml of late logarithmic phase cells (1 X 10
8
 cells/ml) were 

centrifuged at 6000 X g for 20 minutes (all centrifuation was done at 4
o
 C). The pellet 

was washed in 30 ml of sucrose solution (0.5M sucrose, 0.15M Tris-HCl, pH 8) and re 

centrifuged at 6000 X g for 15 minutes.  The pellet was then resuspended in 15 ml 

sucrose solution and stirred on ice for 10 minutes, 0.15 ml of lysozyme (10 mg/ml) was 

slowly added, and then the solution was stirred on ice for 5 minutes.  1.5 ml EDTA 

(stock 20 mM) was added to a final concentration of 2 mM and the solution was then 

stirred on ice for 20 min, and then stirred at room temperature for 40 min. 

Approximately 1.5 ml myristate detergent (stock 10% in PBS) was added to a final 

concentration of 1%, and then it was stirred at room temperature for 1 hour. 0.3 ml 

MgSO4 (stock 0.1M) was added and then the solution was stirred at room temperature 

for 5 min. 0.3 ml EDTA (stock 0.1M) was added, then the solution was stirred for 5 min 

and centrifuged at 17,000 X g for 15 min.  The soup was taken and 2 ml PEG solution 

(stock 20% PEG in 1M NaCl) was added, and then it was put on ice for 30 min. The 

solution was centrifuged at 27,000 X g for 20 min.  The pellet was resuspended in 5 ml 
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H2O and then recentrifuged at 85,000 X g for 30 min, and the pellet was resuspended in 

1 ml H2O and stored at 4
o
C. 

 

Coverslip Preparation 

m diameter polystyrene spheres were coated with poly-L-lysine and placed in 

a 100 mM NaCl solution.  The 2 m spheres were then flowed into a flowcell and let 

stand for approximately 10 minutes to allow them to settle and stick to the surface of the 

coverslip to provide reference points and spacers in the experiment.  The fluid was then 

exchanged with dionized H2O (ddH2O) to remove excess, non-stuck, spheres from the 

flowcell.  The experimental assay was then flowed into the chamber. 

 

Optical Trapping Experiments 

The flagellar assay consisted of a dilution of purified flagella from B. 

burgdorferi and 1 m silica spheres coated with poly-L-lysine in 0.6% methylcellulose 

solution with 100mM NaCl.   

 

The cell cylinder assay consisted of a dilution of spirochete cell cylinders and 1 

m silica spheres coated with poly-L-lysine in 0.6% methylcellulose solution with 50 

mM NaCl added.  The solution was pH adjusted to 7.5-8.9 using NaHCO3. 

 

For individual flagellum measurements, the sample was searched for bead 

flagellum pairs with one end of the flagellum spontaneously adherent to the surface.  

The tethered bead was trapped and brought to a height of 0.76 m off the surface of the 

coverslip. In the case of surface tethered flagella, the y position was adjusted in order to 

triangulate the point of attachment and determine the length of the flagella. 
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For cell cylinder measurements, cells were found that had a 1 m sphere 

attached somewhere along the length.  This sphere was attached to the surface.  A 

second bead was attached to the distal end of the cell and was brought to a known 

height off the surface of the coverslip. 

 

The piezo stage (MadCity Labs, Nano-H100) was driven with a triangle wave 

(Agilent 33220A). The y position of the stage was adjusted such that the stretching of 

the flagella or cell was purely in the x direction.  The amplitude, frequency, and offset 

position of the stage were adjusted so that the stretching event occurred at an 

appropriate rate for tracking and to ensure that the event included the unstressed 

configuration of the cell or flagellum (nominally 50-100 mV, @ 0.25 Hz). 

 

A quadrant photodiode (QPD) was used to image the trapped bead in the back 

focal plane of the condenser and was used to monitor and adjust the position of the bead 

in the trap. Trap calibration was done by taking 10 sets of 500 images of the trapped 

bead (at a specified height) with a 1ms physical shutter for calibration of the trap 

(Photometrics, Quantex 57).  This exposure time was necessary to match the 

characteristic time of a bead in the trap and minimize overestimation of the trap 

stiffness.  The calibration images were reduced to remove optical and electronic noise 

(49) using Image J (NIH).  The positions of the beads were then tracked using ``Track 

Particles'' in Metamorph (Molecular Devices) following the guidelines set out by Carter, 

et al. (50).  The bead tracks were then used to calibrate the trap stiffness, K, using the 

equipartition method (23). 

 

The stiffness K was calculated for each bead in the calibration set and averaged.  

The weighted average of all of the beads was then calculated giving the average trap 
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stiffness.  In the case of surface stretching experiments where the ``test'' bead could not 

be calibrated directly, the optical trap stiffness was determined by the weighted average 

of all the K values for a given height in a given experiment (n ~ 10). 

 

The stretching angle in z was taken into account for determining the 

cell/flagellum lengths and in the force calculations. 
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Figure Captions 

 

Figure 1  The morphology and architecture of B. burgdorferi, which has a planar, flat-

wave morphology.  (a,e) When viewed from one perspective, the cell body appears 

wave-like; (b,f) When rotated by 90 degrees, the cell shape appears straight.  (e,f)  

Schematic of the cell construction of B. burgdorferi.  The cell cylinder is shown in 

green and the perplasmic flagellar bundle in purple.  The outer membrane sheath is not 

shown.  The flagella wrap around the cell body, inducing a flat-wave shape, with a 

wavelength of  and amplitude h.  The shapes shown here were produced by the 

mathematical model with parameters a = 0.2 m and = 5.  (c) Mutants lacking FlaB 

do not produce flagella, and the cells are rod-shaped. Scale bar, 5 m.  Figure originally 

published in (3) and reproduced with permission. (g) Schematic of the cell cylinder.  

The radius of the cell cylinder is a.  (d)  Darkfield image of purified flagella from B. 

burgdorferi.  Scale bar, 2 m.  Image courtesy of S. Goldstein. (h) Purified flagella are 

helical with a pitch, P and diameter 2R. (a,b) Scale bars,1 m. Figures originally 

published in (12). 

 

Figure 2  Predictions of the mathematical model.  (a) Increasing the stiffness of the 

periplasmic flagella leads to larger deformations of the cell cylinder.  For values of  

between 1 and 5, the flat wave shape precesses about the long axis of the cell 

morphology, which leads to a non-planar waveform (bottom figure).  (b)  The model 

predicts that increasing the ratio  leads to a decrease in the wavelength of the cell 

cylinder deformation, (solid line), and an increase in the amplitude, h (dashed line).  

(c)  Effect of changes in the cell radius.  For small values of the cell radius, a, the shape 

of the cell is helical.  As the cell radius increases, the shape becomes more flattened.  

Here values for a are given in microns. 

Figure 3 Experimental measurement of the stiffness of the cell cylinder and the 

periplasmic flagella.  (a)  Schematic of the experimental setup.  Polystyrene beads are 

attached to two points on the cell cylinder of Triton X treated cells or a purified 

flagellum.  One of the beads is anchored to the coverslip via adhesion to another bead.  
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The other bead is trapped in an optical trap.  Oscillation of the microscope stage 

deforms the cell cylinder or flagellum.  A quadrant photodiode detector is used to 

measure displacement of the bead in the trap.  Video images are used to measure the 

displacement of the trapped bead with respect to fixed beads on the surface of the 

coverslip.  (b)  Six representative plots of the force vs. displacement of the cell cylinder 

(See text and online Experimental Procedure).  Different colors represent data from 

different experiments.  The black lines show the fits to the data.  (c)  Four representative 

experiments for stretching purified flagella.  Black circles are the experimental data.  

Solid lines show the fits to a model for deforming a linear elastic helix. 
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