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Colonies of the green alga Volvox are spheres that swim through the beating of pairs
of flagella on their surface somatic cells. The somatic cells themselves are mounted
rigidly in a polymeric extracellular matrix, fixing the orientation of the flagella so
that they beat approximately in a meridional plane, with axis of symmetry in the
swimming direction, but with a roughly 20◦ azimuthal offset which results in the
eponymous rotation of the colonies about a body-fixed axis. Experiments on colonies
of Volvox carteri held stationary on a micropipette show that the beating pattern takes
the form of a symplectic metachronal wave (Brumley et al. Phys. Rev. Lett., vol. 109,
2012, 268102). Here we extend the Lighthill/Blake axisymmetric, Stokes-flow model
of a free-swimming spherical squirmer (Lighthill Commun. Pure Appl. Maths, vol. 5,
1952, pp. 109–118; Blake J. Fluid Mech., vol. 46, 1971b, pp. 199–208) to include
azimuthal swirl. The measured kinematics of the metachronal wave for 60 different
colonies are used to calculate the coefficients in the eigenfunction expansions and
hence predict the mean swimming speeds and rotation rates, proportional to the square
of the beating amplitude, as functions of colony radius. As a test of the squirmer
model, the results are compared with measurements (Drescher et al. Phys. Rev. Lett.,
vol. 102, 2009, 168101) of the mean swimming speeds and angular velocities of a
different set of 220 colonies, also given as functions of colony radius. The predicted
variation with radius is qualitatively correct, but the model underestimates both the
mean swimming speed and the mean angular velocity unless the amplitude of the
flagellar beat is taken to be larger than previously thought. The reasons for this
discrepancy are discussed.
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1. Introduction
Volvox is a genus of algae with spherical, free-swimming colonies consisting of

up to 50 000 surface somatic cells embedded in an extracellular matrix and a small
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FIGURE 1. A colony of Volvox carteri. Small green dots are the somatic cells on
the outside (2000–6000 for V. carteri); larger green spheroids are the interior daughter
colonies. The photograph is taken from above, as the colony swims upwards towards the
camera.

number of interior germ cells which develop to become the next generation (figure 1).
Discovered by van Leeuwenhoek (1700), who marvelled at their graceful swimming,
it was named by Linnaeus (1758) for its characteristic spinning motion. The colony
swims in a direction parallel to its anterior–posterior axis thanks to the beating of a
pair of flagella on each somatic cell. All flagella exhibit an approximately coplanar,
meridional beat, with the power stroke directed towards the rear, i.e. from the north
pole towards the south pole, except that the plane of beating is in fact offset from a
purely meridional plane by an angle of 10–20◦. It is believed that this offset causes
the observed rotation (Hoops 1993, 1997). The colonies are about 0.3 % denser than
water, and swim upwards in still water; this is because the relatively dense interior
cells are clustered towards the rear, so when the anterior–posterior axis is deflected
from vertical, the colony experiences a restoring gravitational torque that competes
with a viscous torque to right the colony on a timescale of ∼10 s. It is remarkable
that a typical, free-swimming Volvox colony swims in a constant (vertical) direction,
suggesting axially symmetric coordination of the flagellar beating, and that it clearly
rotates about the axis of symmetry.

1.1. Experimental background
During its 48-h life cycle, the size of a Volvox colony increases, though the number
and size of somatic cells do not. Thus one would expect the sedimentation speed
V of a colony whose swimming was arrested to increase with colony radius a0,
while its upswimming speed U1 would decrease, both because of the increase in V
and because, even if it were neutrally buoyant, one would expect the viscous drag
to increase with size and hence the swimming speed U to decrease. Presumably
the angular velocity about the axis, Ω , would also decrease. Drescher et al. (2009)
measured the swimming speeds, sedimentation speeds, and angular velocities of 78,
81 and 61 colonies of V. carteri, respectively, ranging in radius from about 100 µm
to about 500 µm. The results are shown in figure 2, where indeed both U1 and Ω
are seen to decrease with a0, while V increases. The expected swimming speed if
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FIGURE 2. Swimming properties of V. carteri as a function of colony radius a0. Measured
values of the (a) upswimming speed U1, (b) angular velocity Ω and (c) sedimentation
speed V , as well as (d) the deduced density offset 1ρ = 9µV/2ga2

0 compared with the
surrounding medium. Adapted from Drescher et al. (2009).

the colony were neutrally buoyant would be U =U1 + V (Solari et al. 2006), where
linearity is expected because the Reynolds number of even the largest colony is less
than 0.1, so the fluid dynamics will be governed by the Stokes equations.

The purpose of this paper is to describe a model for Volvox swimming from
which both U and Ω can be predicted, and to compare the predictions with the
experiments of figure 2. The input to the model will be the fluid velocities generated
by the flagellar beating as measured by Brumley et al. (2012, 2015a,b). Detailed
measurements were made of the time-dependent flow fields produced by the beating
flagella of numerous V. carteri colonies. Individual colonies were held in place on a
micro-pipette in a 25 mm× 25 mm× 5 mm glass observation chamber; the colonies
were attached at the equator and arranged so that the symmetry axis of a colony
was perpendicular both to the pipette and to the field of view of the observing
microscope. The projection of the flow field onto the focal plane of the microscope
was visualised by seeding the fluid medium with 0.5 µm polystyrene microspheres
at a volume fraction of 2× 10−4, and 30-second-long high-speed movies were taken.
The (projected) velocity field was measured using particle image velocimetry (PIV);
a total of 60 different colonies were investigated, ranging in radius from 48 µm to
251 µm (mean 144± 43 µm), the distribution of which is shown in figure 3.

One example of the time-averaged magnitude of the velocity distribution is shown
in figure 4(a). This is a maximum near the equator because the flagellar beating drives
a non-zero mean flow past the colony, parallel to the axis of symmetry and directed
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FIGURE 3. Distribution of colonies by radius, for which the metachronal wave properties
are characterised. Adapted from figure 1(b) of Brumley et al. (2015a).
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FIGURE 4. Experimental flow fields. (a) Magnitude (colour) and direction (arrows) of
the time-averaged velocity field measured with PIV. Radial u′r (b) and tangential u′θ (c)
components of the unsteady fluid velocity field shown at various times through one
flagellar beating cycle. Parts (a) and (b) are adapted from figures 1(c) and (d), respectively,
of Brumley et al. (2015a).

from front to back. This is consistent with the fact that untethered colonies swim
forwards, parallel to the axis.

More interesting are the perturbations to this mean flow. Time-dependent details
of the velocity field can be seen in movies S1 and S2 which are available at
http://dx.doi.org/10.1017/jfm.2016.306. Close to the colony surface, backwards and
forwards motion, driven by the beating flagella, can be clearly seen; further away
the flow is nearly steady. Figure 4 contains a series of snapshots showing unsteady

http://dx.doi.org/10.1017/jfm.2016.306
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FIGURE 5. Kymographs of radial u′r (a) and tangential u′θ (b) velocity around Volvox
colonies, measured at a radius of r= 1.3× a0.

components of (b) the radial velocity, u′r, and (c) the tangential velocity, u′θ . It is
immediately evident that the maximum of radial velocity propagates as a wave from
front to back, in the same direction as the power stroke of the flagellar beat: a
symplectic metachronal wave (Sleigh 1962). This is further demonstrated in figure 5
which shows kymographs of ur and uθ measured at a distance r= 1.3× a0 from the
colony surface: the propagating wave is clearly seen in figure 5(a), which includes
evidence of an interesting phase defect, while figure 5(b) suggests that the tangential
velocity behaves more like a standing wave, dominated by the power stroke near the
equator. (The mechanism underlying the coordination of the flagellar beats between
the thousands of quite widely spaced somatic cells is itself thought to stem from
the fluid mechanical interaction between them. Brumley et al. (2015a) developed a
model for this coordination, as well as for phase defects; it will not be expanded on
here.)

Each set of velocity measurements by Brumley et al. (2012) are projections onto
a single meridional plane. However, the clear axial symmetry of a Volvox colony,
freely swimming and spinning, indicates that it is reasonable to assume that the
flagellar displacement and the consequent velocity fields are also axisymmetric. The
fact that the colonies were held fixed means that a force and torque were applied
to them while the measurements were being made. This may mean that the flagellar
displacements, relative to the colony surface, differed from those for the same colony
when swimming freely. The same goes for any constraints felt by a pinned colony
due to the proximity of the chamber walls, though this effect is probably small since
the largest colonies have diameter around 500 µm, about one tenth of the minimum
chamber dimension. We have no direct evidence on these questions, and will assume
that the two flagellar beats are the same.

The results of Brumley et al. (2012) show that a good fit to the observations of the
radial velocity perturbations is given by the following simple form:

u′r|r=1.3a0 = σa0ε cos (kθ0 − σ t), (1.1)

where θ0 is the polar angle, k, σ are the wavenumber and frequency of the wave, and ε
is an amplitude parameter. The mean values of k, σ , ε over all of the colonies observed
were k = 4.7, σ = 203 rad s−1, ε ≈ 0.035. Such data for each colony measured will
make up the full input to our model below.

1.2. Theoretical background
The model will be an extension to the swirling case of the spherical envelope
(or ‘squirmer’) model for the propulsion of ciliated protozoa introduced by Lighthill
(1952) and Blake (1971b). When the surface of a cell is densely covered with beating
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FIGURE 6. (a) Schematic diagram of a spherical Volvox colony at one instant in time, with
beating flagella and the envelope of flagellar tips. The radius of the extracellular matrix in
which the flagella are embedded is a0. The mean radius of the envelope is a; (R, θ) are the
coordinates of a surface element whose average position is (a, θ0). (Adapted from Blake
(1971b), but replotted with the experimentally determined metachronal wavenumber.) (b)
Measured tip trajectory over multiple beats of a single Volvox flagellum. The trajectory
is fitted with an ellipse, which is rotated at an angle ψ with respect to the local colony
surface.

cilia, as for the protist Opalina for example, it is a very good approximation to treat
the flow around it as being driven by the displacement of a stretching flexible sheet,
attached to the tips of all of the cilia and moving with them. The sheet will undergo
radial and tangential wave-like displacements, and it needs to stretch to accommodate
temporal variations between the displacements of neighbouring cilia tips (figure 6a).
In the case of Volvox carteri the tips of the beating flagella are not very close
together; for a colony of radius 200 µm, the average spacing between somatic cells
is ∼20 µm, comparable with the flagellar length, 〈L〉 = 19.9 µm (Brumley et al.
2014), so the envelope model may well be somewhat inaccurate. As indicated above,
the new feature of our model is the introduction of azimuthal swirl to the envelope
model.

The theory will be given in the next two sections, first extending the Lighthill–Blake
model to include swirl, and second applying the model to Volvox on the basis of
the data of Brumley et al. (2012). The objective is to calculate the mean swimming
speed Ū and mean angular velocity Ω̄ , and test the model by comparison with the
measurements of Drescher et al. (2009). The final section will include a discussion of
discrepancies and the model’s limitations.

2. Theory for squirmers with swirl
In the original, zero-Reynolds-number, spherical-envelope model of ciliated

micro-organisms (Lighthill 1952; Blake 1971b), the radial and tangential Eulerian
velocity components (ur, uθ) are written as infinite series of eigensolutions of the
Stokes equation:
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assuming axial symmetry. Here (r, θ0) are spherical polar coordinates, the Pn(cos θ0)
are Legendre polynomials, and

Vn(cos θ0)= 2
n(n+ 1)

sin θ0P′n(cos θ0). (2.2)

A trace of a typical flagellar beat is shown in figure 6(b), adapted from Brumley
et al. (2014), where it can be seen that the trajectory of the tip is approximately
elliptical, with centre about two-thirds of the flagellar length from the surface of the
extracellular medium. Thus, a is taken to be the mean radius of a flagellar tip, so
we take a ≈ a0 + 2L/3, where L is the length of a flagellum. With the origin fixed
at the centre of the sphere, −U(t) is the speed of the flow at infinity (i.e. U is the
instantaneous swimming speed of the sphere). If the sphere is taken to be neutrally
buoyant, it experiences no external force, so the Stokeslet term must be zero, and

U = 2
3 B1 − 1

3 A1 (2.3)

(Blake 1971b). Corresponding to the velocity field (2.1), the velocity components on
the sphere r= a are

ur(a, θ0)=
∞∑

n=0

An(t)Pn(cos θ0), uθ(a, θ0)=
∞∑

n=1

Bn(t)Vn(cos θ0). (2.4a,b)

From this we can see that A1 should be zero, because it corresponds to longitudinal
translation of the centre, which is incorporated into U. However, we follow Lighthill
(1952) and not Blake (1971b) in retaining a non-zero A0. Blake wished to prohibit
any volume change in his squirmers, which is of course physically correct, although
if there really were an impenetrable membrane covering the flagellar tips and if, say,
all of the flagella beat synchronously, the envelope of their tips would experience a
small variation in volume, so A0 should not be zero. Our choice of sinusoidal velocity
and displacement wave, equations (1.1) and (3.1) below, in fact requires a non-zero A0.
It turns out that for the parameter values applicable to Volvox the presence or absence
of this term makes little difference to the predictions of mean swimming speed, and
it does not affect the angular velocity anyway.

The surface velocities in (2.4) must in fact be generated by the motion of material
elements of the spherical envelope, representing the tips of the beating flagella. In the
Lighthill–Blake analysis, the envelope is represented by the following expressions for
the Lagrangian coordinates (R, θ) of the material elements:

R− a= aε
∞∑

n=0

αn(t)Pn(cos θ0), (2.5a)
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θ − θ0 = ε
∞∑

n=1

βn(t)Vn(cos θ0). (2.5b)

The functions αn(t) and βn(t) are supposed to be oscillatory functions of time with
zero mean, and the amplitude of the oscillations, ε, is taken to be small. The most
intricate part of the theory is the calculation of the An and Bn in (2.4) in terms of the
αn and βn in (2.5). This will be outlined below.

The new feature that we introduce in this paper is to add axisymmetric swirl
velocities and azimuthal (φ) displacements to the above. The φ component of the
Stokes equation is

∇2uφ − uφ
r2 sin2 θ0

= 0 (2.6)

and the general axisymmetric solution that tends to zero at infinity is

uφ(r, θ0)=
∞∑

n=1

aCn
an+1

rn+1
Vn(cos θ0), (2.7)

equal to

uφ(a, θ0)=
∞∑

n=1

aCnVn(cos θ0) (2.8)

on r = a. Now the total torque about the axis of symmetry is −8πµa3C1 and, since
the sphere is our model for a free-swimming Volvox colony, this, like the total force,
must be zero, i.e.

C1 ≡ 0. (2.9)

Analogous to (2.5), the φ displacement of the material point (R, θ, φ) on the spherical
envelope is taken to be φ − φ0 where

(φ − φ0) sin θ0 =
∫
Ω dt sin θ0 + ε

∞∑
n=1

γn(t)Vn(cos θ0). (2.10)

Here φ0 is fixed on the rotating sphere, and Ω is the instantaneous angular velocity of
the sphere. The general solution for a squirmer with non-axisymmetric (φ-dependent)
squirming and swirling has been given in terms of vector spherical harmonics by
Ghose & Adhikari (2014), Pak & Lauga (2014), Felderhof (2016) and Felderhof
& Jones (2016). They all calculated the body’s translational and angular velocities
corresponding to an arbitrary distribution of velocities on r = a, but only Felderhof
related the surface velocities to Lagrangian displacements of surface elements.

The relations between the Eulerian velocities (2.1), (2.7) and the Lagrangian
displacements (2.5), (2.10), from which An, Bn, Cn and U, Ω are to be derived from
αn, βn, γn, are

ur(R, θ)= Ṙ, uθ(R, θ)= Rθ̇ , uφ(R, θ)= R sin θφ̇, (2.11a−c)

where an overdot represents the time derivative. Blake (1971b) performed the analysis
for the r and θ velocities; here we illustrate the method by deriving the relation
between the Cn and the γn.
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The analysis is developed in powers of the amplitude ε, so we take

Cn = εC(1)
n + ε2C(2)

n + · · · , (2.12a)

Ω = εΩ (1) + ε2Ω (2) + · · · . (2.12b)

At leading order, O(ε), equations (2.11c) and (2.10) give

C(1)
1 =Ω (1) + γ̇1, C(1)

n = γ̇n (n> 1). (2.13a,b)

Immediately, therefore, we see from (2.9) that Ω (1) =−γ̇1, which has zero mean, so
the mean angular velocity, like the mean translational speed, is O(ε2). At second order,
the fact that (R, θ) 6= (a, θ0) is important in the expression for the velocity field:

uφ(R, θ) = uφ(a, θ0)+ (R− a)
∂uφ
∂r

∣∣∣∣
a,θ0

+ (θ − θ0)
∂uφ
∂θ0

∣∣∣∣
a,θ0

+ · · ·

= R sin θφ̇. (2.14)

Substituting for R, θ, φ gives

∞∑
n=1

(εC(1)
n + ε2C(2)

n )Vn − ε2
∞∑

n=0

αnPn

∞∑
m=2

(m+ 1)γ̇mVm

+ ε2
∞∑

n=1

βnVn

∞∑
m=2

γ̇m

(
2Pm − cos θ0

sin θ0
Vm

)

= ε sin θ0

(
1+ ε

∞∑
n=0

αnPn + ε cos θ0

sin θ0

∞∑
n=1

βnVn

)

×
(
Ω (1) + εΩ (2) + 1

sin θ0

∞∑
m=1

γ̇mVm

)
. (2.15)

Taking the O(ε2) terms in this equation, multiplying by sin2 θ0 and integrating from
θ0 = 0 to θ0 = π (recalling that C(2)

1 = 0), gives the following explicit expression for
Ω (2):

Ω (2) =−4
5
β1γ̇2 +

∞∑
n=2

3
(2n+ 1)(2n+ 3)

[−(n+ 3)αnγ̇n+1 + (n+ 2)αn+1γ̇n]

+
∞∑

n=2

6
(2n+ 1)(2n+ 3)(n+ 1)

[−(n+ 3)βnγ̇n+1 + (n− 1)βn+1γ̇n]. (2.16)

(Some of the required integrals of products of Pn and Vm are given in appendix A.)
The corresponding result for the second-order term in the translational velocity is

U(2)/a = 2
3
α0β̇1 − 8

15
α2β̇1 − 2

5
α̇2β1

+
∞∑

n=2

(2n+ 4)αnβ̇n+1 − 2nα̇nβn+1 − (6n+ 4)αn+1β̇n − (2n+ 4)α̇n+1βn

(2n+ 1)(2n+ 3)



174 T. J. Pedley, D. R. Brumley and R. E. Goldstein

+
∞∑

n=1

4(n+ 2)βnβ̇n+1 − 4nβ̇nβn+1

(n+ 1)(2n+ 1)(2n+ 3)

−
∞∑

n=2

(n+ 1)2αnα̇n+1 − (n2 − 4n− 2)αn+1α̇n

(2n+ 1)(2n+ 3)
. (2.17)

This is the formula given by Blake (1971b), except that he omitted the term involving
α0 which Lighthill (1952) included; Lighthill omitted some of the other terms.

A shortcut to predicting U and Ω was proposed by Stone & Samuel (1996),
following Anderson & Prieve (1991). They used the reciprocal theorem for Stokes
flow to relate the translation and rotation speeds of a deformable body with non-zero
surface velocity u′ to the drag and torque on a rigid body of instantaneously identical
shape, and derived the following results for a sphere of radius a, surface S:

U(t)=− 1
4πa2

∫
S

u′ dS, (2.18a)

Ω(t)=− 3
8πa3

∫
S

n× u′ dS, (2.18b)

where n is the outward normal to the sphere. From the first of these (2.3) follows. It
turns out not to be so simple to use these results for squirmers with non-zero radial
deformations, because of the need to calculate the drag to O(ε2) for the rigid deformed
sphere.

3. Application to Volvox

In order to apply the above theory to Volvox, we need to specify the αn, βn, γn.
This will be done by making use of the experimental results on the metachronal wave
by Brumley et al. (2012), which led to (1.1) for the radial velocity distribution on
the envelope of flagellar tips, plus assumptions about the tangential and azimuthal
displacements. Following (1.1), we write the radial displacement as

R− a= aε sin (kθ0 − σ t), (3.1)

where k is the wavenumber, σ the radian frequency, and ε � 1. Observations of
flagellar beating show that a flagellar tip moves in an approximately elliptical orbit
(see figure 6b). Thus, we may write

θ − θ0 = εδ sin (kθ0 − σ t− χ), (3.2)

where figure 6(b) suggests δ ≈ 1.68 and the phase difference χ ≈ −π/2. The
observation that the plane of beating of the flagella is offset by 10–20◦ from the
meridional plane suggests that the functional form of the φ displacement, relative
to the rotating sphere, is also given by (3.2), multiplied by a constant, τ , equal to
the tangent of the offset angle. Together, then, equations (2.5), (2.10), (3.1) and (3.2)
give

α0(t)+
∞∑

n=2

αn(t)Pn(cos θ0)= sin (kθ0 − σ t) (3.3a)
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∞∑

n=1

βn(t)Vn(cos θ0)= δ sin (kθ0 − σ t− χ) (3.3b)

∞∑
n=1

γn(t)Vn(cos θ0)= τδ sin (kθ0 − σ t− χ). (3.3c)

It can be seen immediately that γn = τβn, so only (3.3a) and (3.3b) need to be
solved for αn and βn. To do this requires expressions for sin kθ0 and cos kθ0 as series
of both Pn(cos θ0) and Vn(cos θ0):

sin kθ0 =
∞∑

n=0

a(s)n Pn(cos θ0)=
∞∑

n=1

b(s)n Vn(cos θ0) (3.4a)

cos kθ0 =
∞∑

n=0

a(c)n Pn(cos θ0)=
∞∑

n=1

b(c)n Vn(cos θ0). (3.4b)

The results for a(s)n etc. (see appendix B) are

a(s)n =−k(2n+ 1)[1+ (−1)n+1 cos kπ]η(k, n) (3.5a)

a(c)n = k(2n+ 1)(−1)n+1 sin kπη(k, n) (3.5b)

b(s)n = 1
2(−1)n+1n(n+ 1)(2n+ 1) sin kπη(k, n) (3.5c)

b(c)n = 1
2 n(n+ 1)(2n+ 1)[1+ (−1)n+1 cos kπ]η(k, n), (3.5d)

where

η(k, n)=
Γ

(
n− k

2

)
Γ

(
n+ k

2

)
16Γ

(
n+ 3− k

2

)
Γ

(
n+ 3+ k

2

) , (3.6)

and k is assumed not to be an integer. It then follows from (3.3) that

αn(t) = k(−1)n+1(2n+ 1)[(−1)n cos σ t− cos(σ t− kπ)]η(k, n) (3.7a)

βn(t) = γn

τ

= δ

2
(−1)n+1n(n+ 1)(2n+ 1)[(−1)n sin(σ t+ χ)− sin(σ t+ χ − kπ)]η(k, n).

(3.7b)

Now we can put (3.7) into (2.16) and (2.17), take the mean values and obtain
final results for the second-order contributions to the mean angular and translational
velocities:

Ω̄ (2) = 36στδ2η(k, 1)η(k, 2) sin kπ

+ 3
2
στδ sin kπ

∞∑
n=2

η(k, n)η(k, n+ 1)(−1)n+1(n+ 1)(n+ 2)

×[(2n+ 3)k sin χ + 2δn(n+ 1)], (3.8)
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FIGURE 7. Predicted values of (a) mean angular velocity Ω̄ , (b) mean swimming speed Ū
and (c) mechanical efficiency, E, as functions of the metachronal wavenumber k. Green
dots are predictions of the squirmer model using the individually measured parameters
for each of the 60 Volvox colonies. The solid lines are the predictions using the mean
properties (k= 4.7, σ = 203 rad s−1). Other parameters include δ= 1.68, χ =−π/2, τ =
tan(20◦). Here the mean amplitude is ε ≈ 0.035, equivalent to flagella length L= 20 µm.

Ū(2) = −2aσδη(k, 1)η(k, 2) sin kπ
(

12δ + 9
k

sin χ
)

+ aσ sin kπ
∞∑

n=2

(−1)nη(k, n)η(k, n+ 1)

×[2δ2n(n+ 1)2(n+ 2)+ 2kδ(n+ 1)(2n2 + 3n+ 2) sin χ − k2(2n2 − 2n− 1)];
(3.9)

note that non-zero α0 makes no difference to Ω̄ (2). We may also note that calculations
are made easier by recognising that

η(k, n)η(k, n+ 1)= 1
4((n+ 2)2 − k2)((n+ 1)2 − k2)(n2 − k2)

. (3.10)

We now put in parameter values obtained from the experiments of Brumley
et al. (2012) and compare the predicted values of Ū and Ω̄ with the measurements
of Drescher et al. (2009). Rather than merely using the average values of k and
σ quoted by Brumley et al. (k = 4.7, σ = 203 rad s−1), we use the individual
values for each of the 60 Volvox colonies from which the averages were obtained,
together with their radii a. We also need the value of the dimensionless amplitude
ε. As discussed above, the recorded radius a0 is the radius of the surface of the
extracellular matrix in which the somatic cells are embedded, and a = a0 + 2L/3
and, hence, ε = L/(3a0 + 2L) ≈ L/3a0 (noting the typical orbit in figure 6b). Solari
et al. (2011) have shown that flagellar length, as well as colony radius, increases as
a colony of V. carteri or V. barberi ages. The values of L (14.9–20.5 µm) and a0
quoted by them give values of ε between 0.029 and 0.038; thus, we may be justified
in choosing ε = 0.035 as normal. We also use the value of δ (1.68) quoted above,
although trajectories of flagellar tips measured by Brumley et al. (2014) show a range
of values of δ from 1.45 to 1.86. Moreover, we use τ = tan(20◦)≈ 0.36 although we
do not have measurements of the offset angle for individual colonies.

The results for Ū (=ε2Ū(2)) and Ω̄ (=ε2Ω̄ (2)) are plotted against k in figure 7,
where the dots use the individual values of k, σ and a in each of the 60 Volvox
colonies measured by Brumley et al. (2015a). The continuous curve uses the mean
values of σ and a; all results assume a flagellum of length L= 20 µm, and a mean
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FIGURE 8. Predicted and measured values of (a) mean angular velocity Ω̄ and (b) mean
swimming speed Ū, as functions of colony radius. Green dots are predictions of this
model, red dots are measurements (on a different population of colonies) by Drescher
et al. (2009) (cf. figure 2). The solid line is the prediction from mean properties of the
60 colonies whose metachronal wave data have been used.

value of ε of 0.035. It is interesting that Ū and, to a lesser extent, Ω̄ increase regularly
with k over the range of measured values, but would vary considerably for lower
values, even resulting in negative mean swimming speeds.

Also plotted, in figure 7(c), is the mechanical efficiency

E= 6πµaŪ2/P̄, (3.11)

where P is the instantaneous rate of working of the stresses at the surface of the
sphere,

P= 2πa2
∫ π

0
(urσrr + uθσrθ + uφσrφ) sin θ0 dθ0, (3.12)

and σ is the stress tensor. The formula for P in the absence of swirl was given by
Blake (1971b, (9)), the additional, third, term due to swirl is equal to

16µπa3
∞∑

n=2

(n+ 2)
n(n+ 1)(2n+ 1)

C2
n (3.13)

(see also Pak & Lauga 2014). Figure 7(c) shows a local maximum of E at k ' 1.5,
corresponding to negative swimming speed, which may therefore be discounted. For
k > 3.0, however, the efficiency increases with k. According to this model, then, it
appears that the swimming mode of Volvox did not come about evolutionarily through
energetic optimisation.

We plot the calculated Ū and Ω̄ against a in figure 8. The green points represent
colony-specific predictions using data from Brumley et al. (2015a) and the continuous
curves correspond to the mean values of k, σ and ε referred to above. The red
points represent the experimental values measured by Drescher et al. (2009), again
using the individual values of Ū, Ω̄ and a for each of the colonies measured (data
kindly supplied by Dr Knut Drescher) rather than an average value. As noted in the
introduction, with reference to figure 2, because the above theory assumes neutral
buoyancy, the value quoted for U is the sum of the actual upwards swimming speed
U1 and the sedimentation speed V of an inactive colony of the same radius.
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FIGURE 9. Same as figure 8 but with mean ε ≈ 0.10 (L= 50 µm).
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FIGURE 10. Squirming flow fields. Radial (a) and tangential (b) components of the fluid
velocity field shown at various times through one flagellar beating cycle. The metachronal
wave properties ((3.1) and (3.2)) are the same as for the average Volvox colony (k= 4.7,
σ = 203 rad s−1, a0= 144 µm) and other parameters correspond to measured flagella and
their trajectories (L= 20 µm, δ = 1.68, χ =−π/2).

In figure 8, the predictions for both Ū and Ω̄ are significantly below the measured
values, though the trend with increasing radius is similar. If we had taken the flagellar
length L to be 50 µm instead of 20 µm, the agreement would seem to be almost
perfect (figure 9). In the next section we discuss in more detail aspects of the model
that may need to be improved.

In addition to calculating Ω̄ and Ū we can use the squirmer model to compute
the time-dependent velocity field, for comparison with the measurements in figures 4
and 5. Figure 10 shows the radial and tangential velocities as functions of position at
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FIGURE 11. Squirmer kymographs. Radial ur (a) and tangential uθ (b) components of the
flow, as functions of polar angle θ and time t, computed at the fixed radius (r= 1.3× a0).
Other parameters are the same as in figure 10.

different times during a cycle, for the mean values of k (4.7), σ (203 rad s−1) and
a0 = 144 µm. Both velocity components show the metachronal wave, which is not
surprising since that was used as input from (3.1) and (3.2). The figure also indicates
that the tangential velocity component decays more rapidly with radial distance than
the radial component. Calculated kymographs of ur and uθ at r= 1.3× a0 are shown
in figure 11, and can be compared with figure 5. There is good qualitative agreement
between figures 10 and 11 and figures 4 and 5. Unlike the mean velocity, however,
which is lower than measured, the amplitude of the calculated ur or uθ oscillations,
scaling as σa0ε from (2.11a-c) and (3.1), is about 1000 µm s−1, significantly larger
than the measured value of about 300 µm s−1 (figure 5).

4. Discussion
The main discrepancy between the theoretical predictions of this paper and the

experimental observations of Drescher et al. (2009) is that, although the maximum
fluid velocity during a cycle, for the experimental parameter values, is much larger
in the model than measured, the predicted mean velocity and angular velocity are
significantly smaller than measured.

The envelope model is clearly a great oversimplification, because even in the context
of single-celled ciliates, the cilia tips do not form a continuous surface at all times.
Not only may there be wide spaces between neighbouring tips, but also some tips may,
during their recovery stroke, be overshadowed by others in their power stroke, so the
envelope is not single-valued (Brennen & Winet 1977). The latter is not a problem
for V. carteri, because the flagellar pairs are more widely spaced, but that in itself
adds to the former difficulty. Blake (1971b) argued that the envelope model would
be a better approximation for symplectic metachronal waves than for antiplectic ones,
because the tips are closer together during the power stroke, when their effect on the
neighbouring fluid is greatest; this is especially true for a ciliate such as Opalina, but
is less compelling in the case of V. carteri, for which typical cell (and, hence, flagellar)
spacings are roughly equal to the flagellar length. The wide spacing between flagellar
tips means that much of the ‘envelope’ is not actively engaged in driving fluid past
the surface, and fluid can leak back between neighbours, so one would expect the
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FIGURE 12. Particle paths in the vicinity of a flagellum. (a) Trajectories of 0.5 µm
passive tracers near an isolated Volvox flagellum held with a glass micropipette. The
tracked flagellar waveform from several beats is also shown. (b) A sphere of radius b
moving in a circular trajectory above and perpendicular to a no-slip boundary produces a
time-dependent flow, which closely mimics that of a real flagellum. This simulation of 100
beats shows particle paths from various initial positions, and corresponds to h= 10 µm,
R0 = 5 µm, b= 5 µm.

model to overestimate the fluid velocity, as it does if one considers the maximum
instantaneous radial or tangential velocity. As reviewed elsewhere (Goldstein 2015),
the volvocine algae include a range of species with differing interflagellar distances,
some of which are significantly smaller than in V. carteri, and one can anticipate that
future studies of those species may shed further light on the validity of the envelope
model.

Why, therefore, is the mean velocity underestimated? It seems likely that the
difference lies in the fact that each flagellum beats close to the no-slip surface of the
extracellular matrix in which the somatic cells are embedded. In the power stroke, a
flagellum is extended and its outer parts, in particular the tip, set neighbouring fluid
particles in motion, over a range of several flagellar radii, at about the same speed
as the tip. During the recovery stroke, on the other hand, the flagellum is much
more curved, and the outer part remains roughly parallel to the colony surface (Blake
1972). Thus the drag exerted by the outer part of the flagellum on the fluid will be
reduced by a factor approaching two compared with the power stroke. Moreover, this
outer part is relatively close to the colony surface, and the no-slip condition on that
surface will prevent fluid particles from moving at the same speed as the tip except
very close to it. Both these factors mean that, although every element of the beating
flagellum oscillates with zero mean displacement, the fluid velocities that it generates
do not have zero mean.

As part of the experiments reported by Brumley et al. (2014), movies were taken
of the motion of microspheres in the flow driven by a single beating flagellum on
an isolated V. carteri somatic cell fixed on a micropipette. Experimental details are
given briefly in appendix C. One of these movies is reproduced in movie S3, in
which the difference between the fluid particle displacements in power and recovery
strokes can be clearly seen. The trajectories of a number of the microspheres are
shown in figure 12(a). Movie S4 and figure 12(b) show particle trajectories calculated
from a very simple model (see appendix C), which consists of a small spherical bead
following a circular orbit perpendicular to a nearby rigid plane (such an orbiting
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bead model of a beating flagellum has been used extensively in recent years (Lenz &
Ryskin 2006; Vilfan & Jülicher 2006; Niedermayer et al. 2008; Uchida & Golestanian
2011; Brumley et al. 2012, 2015a; Bruot & Cicuta 2016)). The similarity between
the measured and computed trajectories is clear.

It is therefore evident that the net tangential velocity excess of the power stroke over
the recovery stroke of Volvox flagella will be O(ε), so the mean velocity generated
will be O(ε) not O(ε2) as obtained from our squirmer model. That may be a more
important limitation of the model than the wide spacing of the flagella. What is
required, in future, is a detailed fluid dynamic analysis of an array of beating flagella
on the surface of a sphere. This will be an extension of the so-called sublayer model
of Blake (1972) and Brennen & Winet (1977), in which each cilium is represented
as a linear distribution of Stokeslets whose strengths can be estimated using resistive
force theory, or calculated more accurately as the solution of an integral equation
using slender-body theory, taking account of the no-slip boundary by including the
Stokeslet image system as derived for a planar boundary by Blake (1971a). This
model is currently being developed.

Three other assumptions in the theory of this paper should be discussed. First is
the choice of a sine wave to represent the displacement of the flagella tips ((3.1) and
(3.2)). The choice necessitates some intricate calculations (§ 3 and appendix B) and it
could be argued that the measurements of Brumley et al. (2012) are not sufficiently
refined to justify it. Blake (1971b), among others, proposed that four terms in the
Legendre polynomial expansions (2.4) would be accurate enough. Moreover, that
would avoid the problem of non-zero values for A0 and α0. However, a sine wave
still seems the most natural choice for a propagating wave, and we have assumed it
accordingly.

Another choice made here is to truncate the expansions of derived quantities at
O(ε2), which is likely to lead to errors at larger values of ε (Drummond 1966);
however, even for figure 9, the assumed value of ε was less than 0.1, so this is
unlikely to cause a significant error in figure 8. A third assumption in this paper
is that the elliptical trajectory of each flagellar tip has its major axis parallel to the
locally planar no-slip colony surface. In fact, it will in general be at a non-zero angle
ψ to that surface (figure 6b). In that case the calculation becomes somewhat more
cumbersome but no more difficult, as outlined in appendix D. If we choose ψ = 30◦,
for example, the results for Ū and Ω̄ are negligibly different from those in figure 8.
The assumption that ψ = 0 is therefore not responsible for the discrepancy between
theory and experiment in that figure.
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Appendix A. Integrals required in the derivation of (2.16)
We seek to evaluate

Jnm =
∫ π

0
sin2 θ0Pn(cos θ0)Vm(cos θ0) dθ0 (A 1)

and

Knm =
∫ π

0
sin θ0 cos θ0Vn(cos θ0)Vm(cos θ0) dθ0, (A 2)

where Vn is defined by (2.2), using the standard recurrence relations and differential
equation for Legendre polynomials:

xP′n = nPn + P′n−1 (A 3)
(2n+ 1)xPn = (n+ 1)Pn+1 + nPn−1 (A 4)

d
dx
[(1− x2)P′n] =−n(n+ 1)Pn. (A 5)

Here a prime means d/dx and we do not explicitly give the x-dependence of Pn(x).
From (A 1),

Jnm = 2
m(m+ 1)

∫ 1

−1
Pn(1− x2)P′m dx= 2

∫ 1

−1
In(x)Pn dx (by parts), (A 6)

where
In(x)=

∫ x

Pn dx= xPn − Pn−1

n+ 1
. (A 7)

Hence,

Jnm = 2
2n+ 1

∫ 1

−1
Pm(Pn+1 − Pn−1) dx= 4

2n+ 1

(
δm,n+1

2n+ 3
− δm,n−1

2n− 1

)
. (A 8)

From (A 2),

Knm = 4
n(n+ 1)m(m+ 1)

∫ 1

−1
xP′n(1− x2)P′m dx

= 4
n(n+ 1)

∫ 1

−1
(nIn + Pn−1)Pm dx (by parts and using (A 3))

= 4
n(n+ 1)

∫ 1

−1

(
n

2n+ 1
Pn+1 + n+ 1

2n+ 1
Pn−1

)
Pm dx (using (A 4))

= 8
2n+ 1

[
δm,n+1

(n+ 1)(2n+ 3)
+ δm,n−1

n(2n− 1)

]
. (A 9)

Appendix B. Proof of (3.5a)
We prove by induction the first of the formulae in (3.5); proofs of the others are

similar. Let

Qn(k)=
∫ π

0
sin θPn(cos θ) sin kθ dθ, (B 1)
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so that
a(s)n =

2n+ 1
2

Qn(k), (B 2)

from the first of (3.4a). The result we seek to prove is

Qn(k)= (−1)n2k[(−1)n+1 + cos kπ]η(k, n), (B 3)

where η(k, n) is given by (3.6). From (B 1) and (A 4), we have

Qn+1(k) =
∫ π

0
sin kθ sin θ

[
2n+ 1
n+ 1

cos θPn − n
n+ 1

Pn−1

]
dθ

= − n
n+ 1

Qn−1(k)+ 2n+ 1
n+ 1

∫ π

0
sin kθ sin θ cos θPn dθ

= − n
n+ 1

Qn−1(k)+ 2n+ 1
2(n+ 1)

∫ π

0
[sin (k+ 1)θ + sin (k− 1)θ ] sin θPn dθ

= − n
n+ 1

Qn−1(k)+ 2n+ 1
2(n+ 1)

[Qn(k+ 1)+Qn(k− 1)]. (B 4)

Now suppose that (B 3) is true for Qn−1 and Qn, for all k, substitute it into the right-
hand side of (B 4), and after some algebra indeed obtain (B 3) with n replaced by
n+ 1. The induction can be shown to start, with n= 1 and n= 2, using the standard
identities

Γ (z+ 1)= zΓ (z) (B 5)

Γ (z)Γ (1− z)=−zΓ (−z)Γ (z)= π

sin (πz)
. (B 6)

Thus, (B 3) and hence (3.5a) are proved.

Appendix C. Flagellar flow fields
To investigate the time-dependent flow fields produced by individual eukaryotic

flagella, Brumley et al. (2014) isolated individual cells from colonies of V. carteri,
captured and oriented them using glass micropipettes, and imaged the motion of
0.5 µm polystyrene microspheres within the fluid at 1000 f.p.s. One such movie
is included as movie S3, which shows the time-dependent motion of these passive
tracers in the vicinity of the beating flagellum. Using custom-made tracking routines,
we identify the trajectories of the microspheres, and these are shown in figure 12(a),
together with the tracked flagellar waveform over several beats. Tracer particles in
the immediate vicinity of the flagellar tip exhibit very little back flow during the
recovery stroke.

We consider now the flow field produced by a simple model flagellum, which
consists of a sphere of radius b driven at a constant angular speed ω around a
circular trajectory of radius R0, perpendicular to an infinite no-slip boundary. The
trajectory of the sphere is given by

x1(t)= x0 + R0(cosωtẑ+ sinωtŷ), (C 1)

where x0 = hẑ. The velocity of the particle is then

v1 = ẋ1 =ωR0(− sinωtẑ+ cosωtŷ). (C 2)
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The force that this particle imparts on the fluid is given by

F1 = γ1 · v1 = γ0

[
I+ 9b

16z(t)
(I+ ẑẑ)

]
· v1. (C 3)

We know that z(t)= h+ R0 cosωt, and therefore the time-dependent force exerted on
the fluid is

F1(t)= γ0ωR0

[
cosωtŷ− sinωtẑ+ 9b

16(h+ R0 cosωt)
(cosωtŷ− 2 sinωtẑ)

]
. (C 4)

The fluid velocity u(x) at position x is expressed in terms of the Green’s function in
the presence of the no-slip boundary condition (Blake 1971a):

u(x)=G(x1(t), x) · F1(t), (C 5)

where

G(xi, x)=GS(x− xi)−GS(x− x̄i)+ 2z2
i GD(x− x̄i)− 2ziGSD(x− x̄i) (C 6)

and

GS
αβ(x)=

1
8πµ

(
δαβ

|x| +
xαxβ
|x|3

)
, (C 7)

GD
αβ(x)=

1
8πµ

(1− 2δβz)
∂

∂xβ

(
xα
|x|3
)
, (C 8)

GSD
αβ (x)= (1− 2δβz)

∂

∂xβ
GS
αz(x). (C 9)

For a passive tracer with initial position x=X0 at t= t0, its trajectory can be calculated
according to

x(t)−X0 =
∫ t

t0

G(x1(τ ), x(τ )) · F1(τ ) dτ . (C 10)

Numerical solutions of (C 10) are shown in figure 12(b) for various initial positions.
The parameters used are designed to mimic those of real Volvox flagella (h= 10 µm,
R0 = 5 µm). A sphere of radius b= 5 µm is used, though we emphasise that strictly
speaking this does not come into contact with the plane. The finite value of b is used
simply to generate variable drag as a function of height, in order to produce a net flow.
In addition, the particle trajectories are independent of the speed of the sphere, and
so the results in figure 12(b) would be unchanged if the sphere were instead driven
by either a constant force, or by a phase-dependent term.

Appendix D. Rotated ellipse
In this section, we consider the case in which the elliptical trajectory of the flagellar

tip is rotated at an angle ψ with respect to the surface of the Volvox colony. In this
case, (3.1) and (3.2) can be generalised to become

R− a= cosψ[aε sin(kθ0 − σ t)] − sinψ[aεδ sin(kθ0 − σ t− χ)], (D 1)
θ − θ0 = cosψ[εδ sin(kθ0 − σ t− χ)] + sinψ[ε sin(kθ0 − σ t)]. (D 2)
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The series expansions for these are then given by

∞∑
n=0

αn(t)Pn(cos θ0)= cosψ sin(kθ0 − σ t)− δ sinψ sin(kθ0 − σ t− χ), (D 3)

∞∑
n=1

βn(t)Vn(cos θ0)= δ cosψ sin(kθ0 − σ t− χ)+ sinψ sin(kθ0 − σ t), (D 4)

and γn(t)= τβn(t) as before. Equations (D 3) and (D 4) need to be solved for αn and
βn, but this follows easily by linearity using the solutions in (3.7a) and (3.7b), together
with appropriate transformations in t. Calculation of Ω̄ (2) and Ū(2) is more challenging,
but after considerable algebra, we find the following:

Ω̄ (2) = 18στη(k, 1)η(k, 2) sin kπ[(δ2 − 1) cos 2ψ + 1+ δ2 + 2δ cos χ sin 2ψ]
+ 3

2
στ sin kπ

∞∑
n=2

η(k, n)η(k, n+ 1)(−1)n+1(n+ 1)(n+ 2)

× [n(n+ 1)(δ2 − 1) cos 2ψ + k(2n+ 3)δ sin χ
+ n(n+ 1)(1+ δ2 + 2δ cos χ sin 2ψ)], (D 5)

and

Ū(2) = −6aση(k, 1)η(k, 2) sin kπ

×
[

3δ sin χ
k
+ 2(δ2 + 2δ cos χ sin 2ψ + 1)+ 2(δ2 − 1) cos 2ψ

]
+ 1

2
aσ sin kπ

∞∑
n=2

(−1)nη(k, n)η(k, n+ 1)
[
4kδ(n+ 1)(2n2 + 3n+ 2) sin χ

+ k2(2n2 − 2n− 1)[(δ2 − 1) cos 2ψ − δ2 + 2δ cos χ sin 2ψ − 1]
+ 2n(n+ 2)(n+ 1)2[(δ2 − 1) cos 2ψ + δ2 + 2δ cos χ sin 2ψ + 1]] . (D 6)

Note that (D 5) and (D 6) reduce to (3.8) and (3.9) respectively when ψ = 0.
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