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The eukaryotic flagellum is a remarkable cellular structure, for it can sustain beating with unfailing
rhythmicity, yet is capable of rapid responses to stimuli. Recent studies have revealed flagellar
beating to be intrinsically noisy, but detailed understanding of this stochasticity is lacking. Here,
we use Chlamydomonas reinhardtii to investigate flagellum sensitivity to noise and perturbations.
We find that flagellum oscillations prescribe stable limit cycles and phase-dependent waveform
fluctuations, while interbeat intervals exhibit approximate 1/f noise and long-range correlations
spanning hundreds of beats. By forcing beating flagella with hydrodynamic loads, we quantify
the recovery of periodic breastroke beating from imposed perturbations. These results will help
constrain microscopic theories on the origin and regulation of beating.

Patterns of coordinated movement in living organisms,
such as walking, running, and galloping, may be vari-
able yet simultaneously stable. Such repetitive dynamics
are distinguished by their reproducibility, sustainability
over long times, and stability in the presence of small to
moderate perturbations. In the precise, rhythmic beat-
ing of the flagella of the alga Chlamydomonas we find
remarkable living oscillators that fulfil these three crite-
ria. The synchronous beating of its twin flagella allows
Chlamydomonas to swim a fast breaststroke [1]. For this
alga, oscillations of its flagella are self-sustained – re-
peated mechano-chemical cycles continuously supply en-
ergy to motor dyneins residing within flagellar axonemes
[2]. Stepping action of individual motors is intrinsically
stochastic [3], and yet, beating can nevertheless persist,
resilient against a cacophony of biochemical and back-
ground fluctuations [4]. Often, in assessing the fidelity
or robustness of a biological oscillator, the stability and
rhythmicity of its oscillations serve as prime indicators:
one might identify pathological gaits of human walking
from measures of cycle stability [5], determine the phase-
dependent response of circadian clocks using external
stimuli [6], or infer the health of a human heart from
variability of inter-beat intervals [7, 8]. Similarly, peri-
odic oscillations of beating flagella are correlated with a
cell’s responses and sensitivity to its environment, but
study of these features remains inchoate [9–14].

Here, we assess flagellum stability on two complemen-
tary levels, drawing on data from a large population
(∼100) of cells. First, we evaluate stability to weak fluc-
tuations originating from such sources over which the ex-
perimenter has little control. These include background
thermal noise, intracellular biochemical processes asso-
ciated with cell metabolism [15], or even fluctuations in
photon irradiance [4]. Flagellar dynamics are found to
be inherently stable, but waveform noise displays an in-
triguing phase dependence. Measured beat-to-beat in-
tervals form a complex timeseries that exhibits fractal
structure, and successive beats may remain correlated
for many seconds. Second, we measure the recovery of

flagellar beating in the aftermath of stronger, externally-
derived perturbations imposed by injecting fluid impulses
near a beating flagellum. Post-perturbation, the normal
breaststroke resumes following a characteristic relaxation
dynamics back to the stable limit cycle. This ability to
recover readily from disruption to beating may be a cru-
cial property of viable ciliary/flagellar structures.

To permit long-time, in-focus visualization of flagel-
lar dynamics, wildtype cells (strains CC124 and CC125,
Chlamydomonas Center) were individually caught and
held in place by micropipette micromanipulation (Patch-
star, Scientifica, UK) with gentle suction, as described
previously [9, 12]. High-speed images (SA3 Fastcam,
Photron, USA and Phantom V311, Vision Research,
USA) of beating flagella were captured at 1000 − 3000
frames/s – at least one order of magnitude above the
maximum flagella beat frequency. Continuous record-
ings (1−10 minutes) were taken for each cell, from which
∼1− 5× 103 contiguous beat cycles could be extracted.
Recordings were conducted under conditions that appro-
priately mimic a wild-type cell’s natural daytime habitat,
namely white light illumination (100W halogen lamp)
with negligible background lighting, and hence some pho-
totactic response is expected [16]. Pixel coordinates that
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FIG. 1. (color online) Noisy flagellar limit cycles. a) Tra-

jectories in angle (θ) – angular velocity (θ̇) space at a fixed
arclength along the flagellum, with four Poincaré sections
shown. b) Lyapunov exponents at phases 1-4, for 48 cells.
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FIG. 2. (color online) Noisy flagellar waveforms. a) Overlaid waveforms at phases 1–4 (Fig. 1a), colored by recurrence. Observed
stroboscopically, flagellar waveforms f coalesce in a band about an average shape f∗. b) Length-normalized Fréchet distance
δF (f , f∗)/`, where ` is the total flagellum length, showing phase-dependent noise. (Cyan: average over O(103) beat cycles for a
single cell; error bars: one s.d. from the mean. Red: a multicell average; shading: one s.d. from mean.) c) Discretized points
(blue) along a flagellum define an area per beat via an alpha-shape (yellow). This shape fluctuates over successive beat cycles
(red). d) Positive correlation between per-beat area α and per-beat period T , for multiple cells. Lines drawn summarize the
per-cell noisy scatter, chosen to be coincident with the major axes of 95% confidence ellipses, sampling a χ2 distribution.

track the flagellum in each frame were converted to spline
fits, and used to generate timeseries.

Automated flagellar waveform tracking has given us
access to unprecedented spatio-temporal resolution [12],
and recording Chlamydomonas flagellar beating over
thousands of cycles allows us to measure the degree of
spatial reproducibility. Angles θ(t) traced by a point at
fixed arclength along the waveform relative to a reference
axis (Fig. 1a) serve as convenient projections of the mul-
tidimensional dynamics. From θ and θ̇ we create a cloud
of points mapping the attracting region around a limit
cycle Γ, which we approximate numerically. Progression
through each cycle is charted by associating the 2D flag-
ellum centerline f(ti) at each time ti with a uniformly-
rotating phase φ defined by transforming the polar an-
gle [12]. Trajectory crossings C = {xn : φ(Pn(xn)) =
φ0, n = 1, 2, 3, . . .} at fixed φ = φ0 correspond to itera-
tions of a Poincaré return map P.

To determine cycle stability, we computed for each
cell, and for 50 subdivisions of [0, 2π], eigenvalues of
the Jacobian matrix of derivatives J = DP|p∗ tak-
ing p∗ = 〈x〉x∈C , and fitting to the bilinear model
(xn+1 − p∗) = J (xn − p∗). The distribution of com-
puted eigenvalues is shown in Fig. 1b, which is particu-
larly dense on the real line. All eigenvalues have magni-
tude less than unity; limit cycles are stable. Further,
we ascertain whether these stable flagellar oscillations
exhibit phase-dependent noise, by taking into account

the full dimensionality of flagellar waveforms. Define
Sk = {f(tkj )} to be the set of equal-phase waveforms
where {j : φ(t)|t=tkj = φk}, for phases φk = 2πk/50,

k = 1, · · · 50; this selection criteria is equivalent to ob-
serving stroboscopically periodic waveforms (Fig. 2a).
We measure the dissimilarity between curves f ∈ Sk and
an average waveform f∗k by the Fréchet distance δF (f , f∗k )
between curves, where for x,y : [0,1] → R2 some ar-
bitary 2D curves and parameterizations γx and γy,

δF (x,y) = inf
γx,γy

max
u∈[0,1]

{|x(γx(u))− y(γy(u))|} . (1)

Computationally, the minimizing operation makes use of
the Fréchet distance matrix Fε = {t ∈ [0, 1] × [0, 1] :
|x − y| ≤ ε}, with flagellar waveforms approximated by
polygonal curves [17]. At each phase, δF gauges wave-
form noise in the periodic formation of the flagellum
shape (Fig. 2b), which we find is minimized during the re-
covery stroke (>∼ 1.7%) and maximized at the transitions
between power and recovery strokes (<∼ 10.8%).

What governs transitions between strokes? The clas-
sic eukaryotic flagellum has a distinctive ‘9 + 2’ structure
[2] of microtubule doublets, and periodic flagellar beat-
ing emerges from selective activation and inactivation of
dyneins that crosslink them. To determine when and
where this putative switch-point between power and re-
covery strokes occurs, we measured the beat frequency
and waveform envelope of each full beat cycle. The
nth beat cycle was systematically defined by partition-
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FIG. 3. (color online) Long-range correlations in flagellar beating. a) Autocorrelation in interbeat intervals b(t) for a population
of cells: average (black), and one s.d. from the mean (shaded region). Inset: parametric fit to C(τ) for a sample cell. b)
Fluctuations in ν(t) := 1/b(t) for a sample cell, with the filtered signal overlaid on the raw data to highlight global trends, and
pdf fit to a Gaussian. c) DFA on a sample b(t) timeseries and its shuffled version. Inset: DFA scaling for a blind mutant (eye2 )
lies between that of the wt and wt-shuffled. ( Linear fits have been displaced vertically for better visualization.)

ing flagellar positions by phase. Averaged measurements
from two different Poincaré sections were taken for the
instantaneous per-cycle beat period Tn, and frequency
νn = 1/Tn. To approximate the nth-cycle beat enve-
lope we construct the alpha-shape [18], defined here by
the set K of material points along the flagellum (Fig. 2c)
and a collection {Sr} of closed discs of radii r. That is,
for Scr = Cl(R2\Sr) the closure complement of Sr and
D =

⋃
{Scα : Scr ⊃ K} we compute a straight-line graph

approximation to its piecewise-circular boundary ∂D,
starting from the (closest-point) Delaunay triangulation
of K (Matlab, Mathworks). We chose r = 5 pixels ∼ 1.11
µm, and denote the computed alpha-shape area by αn
(Fig. 2c), where n indexes beat number. We find Tn and
αn to be correlated (Fig. 2d). A similar correlation has
been found independently [14]. Plotting Π = Tn/ 〈Tn〉 vs
A = αn/ 〈αn〉 reveals directional but noisy scatter. To
determine this directionality we compute the matrix

Cov [Π, A] =

(
〈T T 〉 〈T A〉
〈AT 〉 〈AA〉

)
, (2)

where T = Π − 〈Π〉 and A = A − 〈A〉. For
cell i we estimate γi = Π/A ∼ tan−1(v2/v1) where
(v1, v2) is the principal eigenvector direction. For the
ensemble we find 〈γi〉 ∼ (0.264 ± 0.146) rad. We
derive a dimensional ratio of increments δA/δΠ =〈〈
αin
〉
/
〈
T in
〉
× (1/ tan(γi))

〉
all i
≈ 39.7 ± 31.0 µm2/ms.

Equivalently, assuming a flagellum “wingspan” of 10µm
during the power stroke this is δ`/δΠ ∼ 4µm/ms, for an
effective amplitude `. The observed correlation may be
rationalized thus: if η is the medium viscosity and ν ∼
T−1 is the angular frequency of the beat, a rod-like flagel-
lum of length ` produces a motive force F (`, T ) ∼ η`2/T .
Then here F (` + δ`, T + δT ) − F (`, T ) ≈ (aδ` − bδT ),
a ≈ b, consistent with constant force production by mo-

tors along the axoneme. A similar argument holds for the
power density p = P/` where the power P ∼ ηT−2`3.

In the presence of small perturbations due to weak en-
vironmental fluctuations, both flagellum and cell may be
feedback modulating their behavior in real-time. With
sufficient resolution, we can measure not only the mag-
nitude of such responses but also their temporal correla-
tion. It is instructive to consider b(t), the timeseries of
beating periods, and the statistic C(τ) = 〈b(t+ τ)b(t)−
〈b〉2〉, where 〈·〉 denotes a time average. The decay of
C(τ) is unexpectedly slow, and in many cases even oscil-
latory (Fig. 3a), which suggests an underlying periodic
process with noise. Consider b(t) = b0(1+β(t)) cos(ω0t+
φ(t)), where b0 and ω0 are the averaged amplitude and
frequency of these oscillations, and β(t), φ(t) are inde-
pendent functions respectively characterizing phase and
amplitude noise. We assume that β(t) is stationary, and
that φ(t) is a Brownian motion with 〈φ(t)〉 = 0 and〈
φ(t)2

〉
= Dt. The autocorrelation is

C̃(τ) =
b20
2

[1 + Cb(τ)]e−D|τ | cos(ω0τ) , (3)

where Cb is the covariance of β(t). For a sample cell,
we fit C(τ) using (3) above, with an empirical function
Cb(τ) = βe−|τ |/ξ (Fig. 3a), yielding b0 = 0.157, D =
0.002, ω0 = 0.016, β = 9.928 and ξ = 1.85. In particular
we find a timescale for the periodicity of slow oscillations:
2π/ω0 = 392 beats, or 6.01 s. Sampled over 65 cells, the
average form of C(τ) takes ∼250 beats for the correlation
to reverse sign, and persists over ∼1000 beats, or ∼15 s.

Next, we perform a detrended fluctuation analysis
(DFA) on b(t) to obtain a scalar measure of ‘noisiness’
of timeseries with fractal structure [19]. For a signal
b(t) of length L we construct the mean-subtracted, in-

tegrated series B(t) =
∑L
i=0(b(ti) − 〈b〉), divide B into
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K non-overlapping sections of size n = L/K, {Ii :=
[ti, ti+1], ti = iL/K, i = 1, 2, · · · ,K − 1}, and compute
the local trend at the ith section. Let Bn(ti) be the lsq
linear fit to data points B(ti ∈ Ii). We detrend B by
subtracting Bn, and compute

F (n) =

(
1

K

K∑
i=1

(B(ti)−Bn(ti))
2

)0.5

. (4)

A power-law scaling F (n) ∼ nα can be seen to hold
(Fig. 3c). For the population, we obtain α = 0.83± 0.10
(67 cells, O(103) successive beats for each). Randomly
permuting b(t) (each time averaging over 10 shuffles)
yields α = 0.48 ± 0.03, or white noise. DFA on a blind
Chlamydomonas mutant with wildtype motility (eye2,
CC4302 Chlamydomonas Center) gives α = 0.72 ± 0.04
(Fig. 3d), consistent with reduced flagellum noise upon
removal of photo-perception. Wildtype Chlamydomonas
respond to single-photon events [4], that alter voltage-
gated flagellar Ca2+ channels downstream [20] and elicit
characteristic flagellar responses in O(ms). For our light
source we estimate an incident flux of 5 × 1017 pho-
tons s−1 m−2 on an illuminated sample, which falls on a
maximum of 3×104 rhodopsins in the eyespot of a single
cell [21], each spanning ∼ 1 Å2 in area [22]. A held cell
may therefore only encounter up to 100 photons over the
course of a single beat, yet the timescale we measure for
slow oscillations (Fig. 3a) is orders of magnitude greater
than that of response to photon fluctuations.

Intracellular calcium is the putative biochemical source
for control of flagellar beating [23, 24], and is directly
implicated in our measured slow oscillations in beat fre-
quency. In previous work [9] we found that the flagella of
freeswimming Chlamydomonas cells switch stochastically
from synchronous to asynchronous beating (drifts) with
a characteristic timescale of ∼ 10 s, and suggested that
this could be a consequence of fluctuating levels of inter-
nal calcium, which is known to affect the cis and trans
flagella differentially. Here we find oscillatory beat fre-
quency correlations in synchronous breaststroke beating,
and conjecture that dynamic changes in coupled flagel-
lar behavior leading to synchronous/asynchronous tran-
sitions corresponds to stochastic crossings of a calcium
threshold. Fluctuations of O(s) have been observed in
in vivo measurements of cytosolic calcium in Chlamy-
domonas cells ballistically-loaded with calcium dyes [25].

In their native habitats cilia and flagella experience
disturbances imparted through the fluid: flagella of mi-
croalgae must respond to encountered physical obsta-
cles, likewise mammalian cilia must withstand changes
in viscoelastic loading [26]. To mimic such perturba-
tions, pulses of fluid were manually introduced from a
2nd pipette placed in the vicinity of a beating flagel-
lum, applying forces of O(nN). Such an affected flag-
ellum undergoes a number of abnormal beats before re-
sumption of normal beating. Greater out-of-plane de-
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FIG. 4. (color online) Stability to perturbations. (a) Fluid
injected from a 2nd pipette (arrow) alters beating of both
flagella (1-3). Here waveforms for the cis flagellum only are
overlaid. Insets: x-y coordinates of a reference point at fixed
arclength. (b) Deviation from pre-perturbation limit cycle
and instantaneous frequency during one perturbation event.
(c) The response in the flagellum is phase-dependent.

formations appear when greater perturbative forces are
applied. For small perturbations beating remains con-
fined to the plane, enabling dynamic flagellar tracking
(Fig. 4a). As in the unperturbed case (Fig. 1), we can
now compute perturbed trajectories r(t) and phases. To
estimate the attractor strength, we define

σ =
1

t
ln

∣∣∣∣r(0)− rL(0)

r(t)− rL(t)

∣∣∣∣ , (5)

for r(t) assumed to contract linearly towards the pre-
perturbation limit cycle rL(t). Interestingly perturbing
one flagellum can lead to altered beating of both flag-
ella in a coupled pair (Fig. 4b), confirming their shared
biochemical origins. For 57 perturbed-flagella events, we
find σ ∼ 2.94 ± 1.72 s−1 or σ−1 ∼ 20.4 beats, for a
beat frequency of 60 Hz. Perturbed oscillations are also
phase-shifted by δφ = φnew − φold (Fig. 4c). Reversing
the forcing direction (sucking fluid back through pipette)
produces a qualitatively different response, highlighting
the directional sensitivity of flagellar beating.

These external forces/flows are detected by membrane
pressure sensors [27], which in conjunction with homeo-
static inputs from the cytosol and eyespot, lead to rapid
feedback responses that are difficult to quantify or mon-
itor molecularly. Here, we have chosen to address global,
generic properties of rhythmic flagellum behaviors, us-
ing dynamic high-resolution flagellar tracking to conclude
that flagellar beating is (i) noisy but intrinsically sta-
ble, (ii) exhibits long-range correlations, and that (iii)
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flagellum noise is phase-dependent. We attribute flagel-
lum noise primarily to fluctuations in calcium. The long-
timescale beat frequency correlations we measure may be
signatures of spatial and temporal calcium signalling [28];
calcium is already known to govern ciliary beat frequen-
cies in many different organisms [29–31]. Oscillatory cal-
cium dynamics would vastly improve flagellum signalling
specificity, as signals can be integrated over longer times
without detrimental, sustained rise. It would be interest-
ing to examine the noise spectrum of artificial flagellar
beating, where feedback-regulation would be absent.
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