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Subpopulations and stability in microbial communities

Pierre A. Haas ,* Nuno M. Oliveira,† and Raymond E. Goldstein ‡

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 9 September 2019; accepted 16 April 2020; published 12 May 2020)

In microbial communities, each species often has multiple, distinct phenotypes, but studies of ecological
stability have largely ignored this subpopulation structure. Here, we show that such implicit averaging over
phenotypes leads to incorrect linear stability results. We then analyze the effect of phenotypic switching in
detail in an asymptotic limit and partly overturn classical stability paradigms: Abundant phenotypic variation
is linearly destabilizing but, surprisingly, a rare phenotype such as bacterial persisters has a stabilizing effect.
Finally, we extend these results by showing how phenotypic variation modifies the stability of the system to large
perturbations such as antibiotic treatments.
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Over 40 years ago, May suggested that equilibria of large
ecological communities are overwhelmingly likely to be lin-
early unstable [1]. His approach did not specify the details
of the dynamical system that describes the full population
dynamics, but rather assumed that the linearized dynamics
near the fixed point were represented by a random Jaco-
bian matrix. Invoking results from random matrix theory, he
concluded that unstable eigenvalues are more likely to arise
as the number of interacting species increases. Actual large
ecological communities certainly seem stable, and a major
research theme in theoretical ecology has been to identify
those features of the population dynamics that stabilize them
[2–7].

Recent advances in our understanding of large natural
microbial communities such as the human microbiome have
emphasized the important link between stability and function:
Adult individuals typically carry the same microbiome com-
position for long periods of time and disturbances thereof are
often associated with disease [8–10]. Moreover, while genet-
ically identical organisms may exhibit different phenotypes
[11–14] and despite the known ecological importance of phe-
notypic variation [15], studies of stability have largely ignored
the existence of such subpopulations within species. Most
models are therefore implicit averages over subpopulations.

We show here that this averaging yields incorrect stability
results. With stochastic switching between phenotypes as
an example of subpopulation structure, we show that while
multiple abundant phenotypes are destabilizing, a rare pheno-
type can be stabilizing. This surprising result partly overturns
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May’s paradigm, and stresses the importance of phenotypic
variation in ecological stability.

Our starting point is the Lotka-Volterra model [16], one
of the most studied in population dynamics: N species with
abundances A compete as

Ȧ = A(α − D · A), (1)

where α is a vector of birth rates and D a matrix of non-
negative competition strengths [17]; this is the competitive (as
opposed to predator-prey) flavor of the model. If det D �= 0,
Eq. (1) has a unique equilibrium A∗ = D−1 · α of coexistence
of all N species. This equilibrium is feasible (i.e., A∗ > 0) if
and only if α lies in the positive span of the columns of D.

If the N species each have two subpopulations with respec-
tive abundances B,C, then

Ḃ = B(β − E · B − F · C), Ċ = C(γ − G · B − H · C),
(2)

where β, γ are birth rates, and E, F, G, H are competition
strengths [18]. The dynamics of the sum B + C derived from
the subpopulation-resolving “full” system (2) are not of the
averaged form (1). However, to a coexistence equilibrium
(B∗,C∗) of Eqs. (2) we can associate an equilibrium A∗ of
Eq. (1), determined by the requirement that, at equilibrium,
population sizes, births, and competition be equal [Fig. 1(a)],
i.e., that

A∗ = B∗ + C∗, αA∗ = βB∗ + γC∗, (3a)

and

A∗DA∗ = B∗(EB∗ + FC∗) + C∗(GB∗ + HC∗). (3b)

These consistency conditions are a property of the model,
based on the interpretation of its terms. Given Eqs. (2), they
uniquely define an equilibrium A∗ and an averaged model of
the form (1), and this A∗ is an equilibrium of this averaged
model, and feasible if (B∗,C∗) is.

We select random averaged and subpopulation-resolving
systems by sampling model parameters from a uniform
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FIG. 1. Stability of communities with subpopulations. (a) The
consistency conditions (3) relate the full model (2), in which each
species has two subpopulations (dark and light individuals) that
interact with all subpopulations of every other species, to the corre-
sponding averaged model (1) without subpopulations. (b) Probability
that a random stable equilibrium of the averaged model (1), �, or the
full model (2), ⊕, is unstable in the other model, as a function of
the number of species N . Probabilities were estimated from up to
107 random systems. Error bars indicate 95% confidence intervals
larger than the plot markers. (c) Corresponding results for models
with N = 2 species each having M subpopulations, as a function
of M.

distribution [19], and analyze the stability of their coexistence
equilibria by computing the eigenvalues of their Jacobians. As
the number of species N increases, stable equilibria of the
averaged model (1) are increasingly likely to be unstable in
the full model (2) [Fig. 1(b)]. This is because the full model
effectively has 2N species, and stable equilibria become in-
creasingly rare as the number of species increases [1,3]. It
is therefore all the more striking that, as N increases, stable
equilibria of the full model are also increasingly likely to be
unstable in the averaged model [Fig. 1(b)]. The full model (2)
can be extended to species with M � 2 subpopulations each,
but increasing M at fixed N = 2 does not significantly affect
the probability that a stable equilibrium of the full model
destabilizes in the averaged model [Fig. 1(c)].

These toy models thus show that implicit averaging of
subpopulations leads to incorrect stability results, and hence
underline their importance. Mathematically, this result is not
fundamentally surprising: The determinant of the sum of two
matrices is not the sum of their determinants, and so the linear
relations between the Jacobians of the two systems resulting
from Eqs. (3) cannot be expected to lead to simple relations
between their stability.

We now specialize by taking phenotypic variation in micro-
bial communities as an instance of subpopulation structure.
It is useful to focus on one particular biological example:
bacterial persisters [24,26]. Bacteria such as Escherichia coli
switch between a normal growth state and a persister state,
in which they significantly suppress growth but are resilient
to conditions of stress such as competition or exposure to
antibiotics [24,27,28]. Infections can thus be difficult to treat
even in the absence of genetic antibiotic resistance; for this
reason, this phenotype has great biomedical relevance [24,27].

FIG. 2. Stability of microbial communities with phenotypic
switching. Probability that a random stable equilibrium of a
phenotype-resolving model ⊕ (large markers) or the corresponding
averaged model � (small markers) is unstable in the other model, as
a function of the number of species N . Different markers represent
Eqs. (4) and asymptotic and exact evaluations of Eqs. (5). The inset
focuses on low probabilities. Probabilities were estimated from up
to 108 random systems. Error bars indicate 95% confidence intervals
larger than the plot markers. Parameter value for Eqs. (5): ε = 0.01.

Adding switching between normal cells and persisters to
Eqs. (2) leads to a phenotype-resolving model,

Ḃ = B(β − E · B − F · C) − κB + λC, (4a)

Ċ = C(γ − G · B − H · C) + κB − λC, (4b)

where κ,λ are rates of (stochastic) switching. This form has
previously been used to study phenotypic switching of a
single species without competition [25,29]. Since the rates are
balanced, given an equilibrium of Eqs. (4), the consistency
conditions (3) still define a correspondence to a model without
phenotypic variation, of the form in Eq. (1). Although this
model now represents a microbial community that is different
from the one described by the phenotype-resolving model
(4), we shall continue to refer to it as an “averaged” model
by analogy with our analysis of the toy model. Equations
(3) ensure that this averaged model and Eqs. (4) have the
same dynamics at equilibrium, and hence allow a meaningful
comparison of two different communities with and without
phenotypic variation, respectively. We cannot, however, ex-
pect the dynamics away from equilibrium to be the same
in general and must therefore ask the following: How do
phenotypic variation and stochastic switching in particular
affect stability?

To answer this question, we again begin by comparing
the stability of the full and averaged models. Steady states
of Eqs. (4) cannot in general be found in closed form. To
sample random systems, we must therefore sample parameters
indirectly [19]. With increasing number of species, random
stable coexistence states of either this full model or the corre-
sponding averaged model again become increasingly likely to
be unstable in the other model (Fig. 2).

Equations (4) do not, however, take into account the
weak growth and competition of the persisters or the large
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separation of switching rates [29]. Adding a small parameter
ε � 1, we therefore modify Eqs. (4) into

Ḃ = B(β − E · B − εF · C) − εκB + λC, (5a)

Ċ = εC(γ − G · B − H · C) + εκB − λC. (5b)

Hence B are normal cells and C are persisters. For wild-
type E. coli, ε ≈ 10−5 [29], but here, we take ε = 0.01 for
numerical convenience. We justify this below by confirming
the numerical results by an asymptotic analysis of Eqs. (5).
A more intricate asymptotic separation of parameters arises
in the hipQ mutant of E. coli [29], but we do not pursue this
further.

The separation of growth and competition terms and
switching rates in Eqs. (5) allows for steady states to be
found by expansion in ε. Writing B∗ = B0 + εB1 + O(ε2)
and C∗ = C0 + εC1 + O(ε2), we find B0 = E−1 · β and C1 =
κB0/λ, but B1 = C0 = 0 [19]. This is the expected asymptotic
separation of the two population sizes: Few cells are persis-
ters, at least under laboratory conditions [29]. This asymptotic
solution enables direct sampling of all model parameters [19].

To analyze the stability of equilibria of Eqs. (5), we expand
its Jacobian, J∗ = J0 + εJ1 + O(ε2), finding

J0 =
(−B0E λI

O −λI

)
, J1 =

(−κI −B0F

κI (γ − G · B0)I

)
,

(6)

with I the identity and O the zero matrix [19]. The averaged
model has Jacobian K∗ = K0 + εK1 + O(ε2), with

K0 = −B0E, K1 = B0E
κ

λ
. (7)

Since J0 is block-upper-triangular, its eigenvalues are those of
−λI, which are stable, and those of −B0E = K0. Hence any
unstable eigenvalues of J∗ and K∗ are equal to lowest order
in the expansion. Equivalently, at ε = 0, the full phenotype-
resolving model (5) is stable if and only if the corresponding
averaged model is stable. This result is not borne out, however,
by numerics at finite ε: As N increases, the probability that a
random stable equilibrium of the full model is destabilized
in the corresponding averaged model still increases (Fig. 2),
although the probability is reduced compared to the previous
case. Much more strikingly, the probability that a stable equi-
librium of the averaged model is destabilized in the full model
is vastly reduced (Fig. 2, inset). This is all the more surprising
as we argued earlier that the opposite behavior was to be
expected since larger systems are more likely to be unstable.
We have also sampled exact equilibria of Eqs. (5), similarly to
our analysis of Eqs. (4) above, yielding results in qualitative
agreement with those based on the asymptotic equilibria
(Fig. 2, inset). This justifies basing the detailed analysis of
the destabilization mechanism on the asymptotic results.

To explain these surprising results, we analyze the spectra
of the Jacobians in more detail. With the exception of a single
outlier eigenvalue that is large and negative, the eigenvalues
of K∗ lie approximately within a circle [Fig. 3(a)], as expected
from the circular law of random matrices [30]. The spectral
distribution of J∗ is the sum of this distribution and the
(uniform) distribution of eigenvalues of −λI [Fig. 3(b)]. The
outlier eigenvalue can be analyzed in great generality [31],

FIG. 3. Eigenvalue distributions of the full and averaged models
for ε � 1. (a) Eigenvalue distribution, for N = 10, of the Jacobian
K∗ of Eq. (1). Histogram obtained from 105 random systems. The
inset shows the distribution of real eigenvalues. (b) Corresponding
plot for the Jacobian J∗ of Eqs. (5). Parameter value: ε = 0.01. Boxes
on the real axis and in the inset indicate the real eigenvalues of −λI.
(c) Eigenvalue distribution of K0 with a stable outlier eigenvalue and
a circular core of radius r ∼ √

N . The stability of eigenvalues ν0 with
|Re(ν0)| � ε � r can be affected by higher-order terms. The average
distance between eigenvalues is δ = O(1).

but heuristics suffice here: Denoting by −μ0 < 0 the mean of
the distribution of entries of K0 and neglecting correlations
between entries, each row of K0 has approximate sum −Nμ0,
and so K0 has an approximate eigenvector 1 = (1, 1, . . . , 1)
with eigenvalue −Nμ0 < 0, as argued in the Supplemental
Material of Ref. [3]. The other eigenvalues of K0 [Fig. 3(c)]
are uniformly distributed on a disk of radius r ∼ √

N for
N 
 1 by the circular law [30]. (Hence, by the Perron–
Frobenius theorem [22], the outlier eigenvalue is indeed
real.) An eigenvalue ν0 of K0 has |Re(ν0)| � ε with prob-
ability � ∼ (εr)/r2 ∼ ε/

√
N , i.e., � = cε/

√
N , for some

c = O(1). The average distance δ between eigenvalues is
determined by Nδ2 ∼ r2, so δ = O(1) and the eigenvalues of
K0 are pairwise different at order O(1) [Fig. 3(c)]. Hence,
if ν0 is an eigenvalue of K0, then K∗ has an eigenvalue
ν∗ = ν0 + O(ε) [19]. Thus ν∗ is stable if either (i) Re(ν0) < 0
and |Re(ν0)| � ε or (ii) |Re(ν0)| � ε and the small real part
of ν∗ is stabilized by K1. By definition, |Re(ν0)| � ε with
probability � , so (i) occurs with probability (1 − � )/2. Let
q denote the probability of stabilization by K1 in case (ii).
Summing over the N − 1 nonoutlier eigenvalues of K0, the
probability p = P (K∗ stable) is

p =
N−1∑
k=0

(
N − 1

k

)
� kqk

(
1 − �

2

)N−1−k

=
(

1

2
+ c(2q − 1)ε

2
√

N

)N−1

∼
exp

[
c(2q − 1)ε

√
N

]
2N−1

, (8)
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for N 
 1, using the binomial theorem and (1 + 1/x)x ∼
ex for x 
 1. A similar expression determines p′ =
P (J∗ stable), with q replaced q′. Equation (6) shows that J1
acts on K0 as the negative definite matrix −κI, so q′ > q [19].
It follows that

p′

p
∼ exp

[
2c(q′ − q)ε

√
N

]
→ ∞ as N → ∞, (9)

confirming the trend in Fig. 2: The full model is much more
likely to be stable than the averaged model.

Hence, switching to a rare phenotype such as persisters can
enhance the stability of a community. The detailed analysis
of Eqs. (5) above has emphasized that this effect relies on
both the spectral distribution (which allows terms beyond
leading order to change the stability of the system) and the
detailed structure of the system (which can suppress or en-
hance this mechanism). By contrast, switching to an abundant
phenotype destabilizes the community: The introduction of
such a phenotype essentially increases the effective number
of species, which is destabilizing [1,3]. Reference [6] recently
introduced a family of models with explicit resource dynamics
for which any feasible equilibrium is stable. Switching to an
abundant phenotype also destabilizes a phenotype-resolving
version of the model of Ref. [6] provided that the difference
in switching rates is large enough [19], confirming that this
effect is generic. These conclusions are therefore likely to be
relevant for the stability of microbial communities such as the
microbiome, for which competitive interactions are known to
play an important, stabilizing role [10].

Linear stability analysis cannot elucidate the effect of large
perturbations on coexistence. These might arise from antibi-
otic treatments, which bacterial communities can survive by
forming persisters [24]. We therefore complete our analysis by
exploring such perturbations numerically. Rather than mod-
eling the dynamics of antibiotic treatment in detail [19], we
suppose that it reduces the abundances of both normal cells
and persisters, and we ask the following: Does the community
converge back to coexistence, or do some species disappear
from the community? Do the answers from the averaged and
full models differ? To answer these questions, we reconsider
the exact stable equilibria of the full model (5) that are
also stable in the averaged model, and evolve both systems
from consistent random small initial conditions using the stiff
solver ode15s of MATLAB (The MathWorks, Inc.).

Figure 4(a) shows the distribution of possible outcomes:
(1) convergence back to coexistence of all N species, (2)
convergence to a new coexistence state of n < N species,
and (3) convergence to a limit cycle. (The trivial equilibria
A = 0 and B = C = 0 of the averaged and full models are
clearly unstable, so 1 � n < N .) The probability of outcome
(2) increases with N [Fig. 4(a)] and the distribution of n
in Fig. 4(b) shows that n � N/2 is somewhat more likely
than n � N/2. Thus if the whole community does not sur-
vive, then at least half does. The averaged and full persister
models give comparable outcome distributions. This does not
contradict our earlier result that a rare phenotype stabilizes
the community since, here, we only consider states stable
in both the averaged and full models so that results can be
compared meaningfully. In fact, as N increases, individual re-

FIG. 4. Stability of microbial communities to large perturba-
tions. (a) Distribution of possible long-time behaviors after large
perturbations of the full model (5) and the corresponding averaged
model as a function of N . Possible behaviors are (1) convergence
back to coexistence of all species, (2) convergence to coexistence
of n < N species, or (3) no convergence to a steady state. In some
cases (#), the numerical solution failed. Probabilities were estimated
from up to 104 random systems. (b) Distribution of the number n
of remaining species for outcome (2), for N = 10, and for both the
full and averaged models. (c) Probability that the full and averaged
models converge to different coexistence states, given that both
models converge to some coexistence state. The contribution from
systems for which one model converges to coexistence of all species
is highlighted. Error bars indicate 95% confidence intervals.

alizations of full and averaged models are increasingly likely
to give different outcomes [Fig. 4(c)]. In most cases, outcomes
differ because the system converges back to coexistence of
all species in one model only; in a small number of cases,
different species die out in the full and averaged models
[Fig. 4(c)]. These observations thus extend our results for
linear perturbations to large perturbations.

Here, we have revealed the strong effects of subpopulation
structure on the stability of competing microbial communities
and the surprising stabilizing effect of stochastic switching to
a single rare phenotype. Very recently, Ref. [32] numerically
studied the dynamics of communities with multiple pheno-
types in a similar Lotka-Volterra system, and similarly em-
phasized the stabilizing effect of phenotypic variation. While
the competitive interactions considered here are important in
systems such as the human microbiome [10], future work
will need to explore the phenotypic structure in more detail.
The interaction structure of ecological communities without
phenotypic variation is known to affect their stability [3,4],
but these and related studies, in the spirit of May’s seminal
work [1], are based on the analysis of random Jacobians.
By contrast, here, we could not avoid specifying explicit
dynamical systems, since we had to establish a correspon-
dence between full and averaged models (and indeed our
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analysis has shown that the details of the model structure can
matter). In particular, this prepends the question of feasibility
to the question of stability. This question of feasibility can be
treated in a statistical sense [33,34] but cannot be eschewed
in general. Nonetheless, our analysis only relying on generic
properties of the spectral distribution suggests that our conclu-
sions apply not only to competitive, but also to more general
interactions.

The authors gratefully acknowledge support from Engi-
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