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Superhydrophobic surfaces (SHSs) have the potential to reduce drag at solid
boundaries. However, multiple independent studies have recently shown that small
amounts of surfactant, naturally present in the environment, can induce Marangoni
forces that increase drag, at least in the laminar regime. To obtain accurate drag
predictions, one must solve the mass, momentum, bulk surfactant and interfacial
surfactant conservation equations. This requires expensive simulations, thus preventing
surfactant from being widely considered in SHS studies. To address this issue, we
propose a theory for steady, pressure-driven, laminar, two-dimensional flow in a
periodic SHS channel with soluble surfactant. We linearize the coupling between
flow and surfactant, under the assumption of small concentration, finding a scaling
prediction for the local slip length. To obtain the drag reduction and interfacial
shear, we find a series solution for the velocity field by assuming Stokes flow in
the bulk and uniform interfacial shear. We find how the slip and drag depend on
the nine dimensionless groups that together characterize the surfactant transport
near SHSs, the gas fraction and the normalized interface length. Our model agrees
with numerical simulations spanning orders of magnitude in each dimensionless
group. The simulations also provide the constants in the scaling theory. Our
model significantly improves predictions relative to a surfactant-free one, which can
otherwise overestimate slip and underestimate drag by several orders of magnitude.
Our slip length model can provide the boundary condition in other simulations,
thereby accounting for surfactant effects without having to solve the full problem.

Key words: drag reduction, microfluidics

1. Introduction
Superhydrophobic surfaces (SHSs) consist of hydrophobic coatings equipped with

micro- or nano-scale textures, such that a layer of air (known as a ‘plastron’; see
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883 A18-2 J. R. Landel and others

e.g. Shirtcliffe et al. (2006)) is retained when the surface is submerged in water (see
e.g. the reviews of Quéré 2008; Rothstein 2010; Samaha, Tafreshi & Gad-el Hak
2012; Lee, Choi & Kim 2016; Bhushan 2018). The air layer is held in place by the
texture, with the upper edges of the micro- or nano-structures making contact with
the water. Since air is approximately 50 times less viscous than water, the plastron
has often been approximated as a shear-free surface in analytical models (Philip
1972a,b; Lauga & Stone 2003; Cottin-Bizonne et al. 2004; Sbragaglia & Prosperetti
2007; Ybert et al. 2007; Davis & Lauga 2009; Teo & Khoo 2009; Crowdy 2016),
leading to the expectation that SHSs could achieve very large drag reduction. Potential
applications include high-Reynolds-number turbulent flows (e.g. Park, Park & Kim
2013; Park, Sun & Kim 2014; Ling et al. 2016; Cartagena et al. 2018; Gose et al.
2018; Rastegari & Akhavan 2018) as well as low-Reynolds-number internal flows,
which are the focus of the present paper (e.g. Lauga & Stone 2003; Ou, Perot &
Rothstein 2004; Ou & Rothstein 2005; Ybert et al. 2007; Kim & Hidrovo 2012;
Bolognesi, Cottin-Bizonne & Pirat 2014; Schäffel et al. 2016; Peaudecerf et al. 2017;
Song et al. 2018). At low Reynolds numbers, the use of SHSs has been proposed
to reduce what are otherwise very large pressure differences across microchannels,
as is the case in microfluidic devices or in micro-cooling applications (Cheng, Xu &
Sui 2015; Lam, Hodes & Enright 2015; Kirk, Hodes & Papageorgiou 2017), as well
as to minimize Taylor dispersion in the chemical or biological analysis of species
(Cottin-Bizonne et al. 2004).

However, laminar-flow experimental results have been mixed. While early works
reported large drag reduction (e.g. Ou et al. 2004; Truesdell et al. 2006; Lee, Choi &
Kim 2008), several more recent studies found no benefits, even though a plastron was
clearly retained on the surface (Kim & Hidrovo 2012; Bolognesi et al. 2014; Gruncell
2014). Lee et al. (2016) reviewed possible sources of experimental errors that might
have affected some of the early measurements.

A key step towards solving this puzzle has come with the realization that surfactants
could induce Marangoni stresses that impair drag reduction. More specifically, Kim
& Hidrovo (2012) experimentally examined flow over a SHS consisting of gratings
perpendicular to the flow, for which they found no measurable slip at the surface.
Bolognesi et al. (2014) also found negligible slip for a SHS consisting of gratings
aligned with the flow, in contradiction with traditional theoretical and numerical
results. Bolognesi et al. (2014) hypothesized that surfactant effects could be to blame.
Following this hypothesis, surfactants naturally present in water would adsorb onto
the air–water interface, as sketched in figure 1(a). They would then be advected
by the flow and accumulate at downstream stagnation points, where the interface
terminates in a three-phase contact line. The resulting surfactant gradient would
therefore produce a Marangoni stress opposing the fluid motion, thereby decreasing
slip and increasing drag (figure 1b). Since traditional models of SHSs are surfactant
free, they cannot account for this additional surfactant-induced Marangoni drag.

Motivated by this hypothesis, Schäffel et al. (2016) performed detailed measure-
ments of the interface slip on a SHS comprising posts. They reported slip velocities far
smaller than predicted by surfactant-free simulations. The slip pattern also exhibited
strong anisotropy, consistently with what may be expected from surfactant-induced
Marangoni stresses in their geometry. Deliberately adding surfactant resulted in a
further small decrease in slip, although the magnitude of this change was within
experimental uncertainty. Peaudecerf et al. (2017) performed unsteady microchannel
experiments over SHSs consisting of gratings aligned with the flow. By introducing
unsteady forcing, they uncovered complex interfacial responses that could only be
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Slip length model with surfactant traces 883 A18-3

Air
plastron

Water Surfactants Surfactant
gradientShear

flow

Marangoni
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(a) (b)

FIGURE 1. Schematic illustrating the impact of surfactants above a superhydrophobic
surface made of a longitudinal rectangular grating. (a) Surfactants present in water
adsorb at the air–water interface of the gratings. (b) In the presence of an external flow,
surfactants distribute in gradients between stagnation points, yielding a Marangoni stress
opposing the flow.

explained by surfactant effects. They found that, if the driving pressure difference
across the microchannel is suddenly removed, the plastron starts flowing backwards
relative to the initial flow due to a surfactant-induced Marangoni force. The reverse
flow decays as the inverse power of time, consistently with a similarity solution that
assumes advection-dominated surfactant transport at the interface.

Since numerous works (Kim & Hidrovo 2012; Bolognesi et al. 2014; Schäffel et al.
2016; Peaudecerf et al. 2017; Song et al. 2018) observed drastically reduced slip even
in nominally clean conditions, Peaudecerf et al. (2017) performed steady simulations
inclusive of surfactants, where they could precisely control surfactant concentrations.
They found that surfactant effects can impair drag reduction even at extremely low
surfactant concentrations, well below values naturally occurring in the laboratory or
the environment. They also found that increasing the streamwise distance between
stagnation points on the SHS helped to reduce the surfactant gradient and to increase
slip. This explained the large slip achieved in the previous experiments of Lee et al.
(2008), who used a circular rheometer with annular gratings. Annular gratings are
effectively infinitely long, without any stagnation point for surfactants to accumulate,
thus avoiding Marangoni stresses. To illustrate this sensitivity of surfactant-induced
Marangoni stresses with respect to the interface geometry, Temprano-Coleto et al.
(2018) devised an experiment whereby a complex maze is solved by a small amount
of surfactant, which is introduced at the maze entrance.

More recently, Song et al. (2018) performed detailed experiments on a SHS
consisting of a rectangular cavity with small streamwise length. They found that the
rectangular gas–liquid interface exhibits recirculation, with reverse flow developing
either along the middle or the sides of the plastron, depending on whether the
gas–liquid interface is deformed towards the liquid phase (convex) or towards the
gas phase (concave), respectively. They performed simulations where a uniform stress
was applied to the interface (to approximate a Marangoni stress), showing that the
experimentally observed recirculation pattern could be induced by surfactants.

While the importance of surfactants is an emerging topic in the context of
superhydrophobic surfaces, it should be noted that the importance of surfactant effects
has been well established in many other interfacial flows, often after protracted
scientific debates that sought explanations for surprising phenomena. Well-known
examples can be found for small bubbles rising in water, where the increased
drag due to surfactant adsorption has been studied extensively (see e.g. Bond &
Newton (1928), Frumkin & Levich (1947), Levich (1962), Palaparthi, Papageorgiou &
Maldarelli (2006), and references therein), as well as in dip-coating problems, where
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883 A18-4 J. R. Landel and others

accounting for Marangoni stresses is important to predict the coating thickness (Mayer
& Krechetnikov 2012). In the ocean, the impact of naturally occurring surfactants
is well established, as they have important effects on wave breaking and gas fluxes
(Pereira et al. 2018). Furthermore, steady motions in the bulk (such as internal
waves or Langmuir circulations) can cause accumulation of surfactants at the surface.
The resulting change in the amplitude of capillary waves affects light scattering,
as revealed by satellite photographs (Kropfli et al. 1999). In laboratory models of
oceanic flows, surfactant accumulation can be disproportionately important, driving
stresses that qualitatively change the interior flow (Luzzatto-Fegiz & Helfrich 2014).
Traces of surfactant have also been shown to modify drastically the behaviour of the
air–water interface of small bubbles probed with atomic force microscopy (see Manor
et al. 2008; Maali et al. 2017). While a free-slip boundary condition would have
been expected, force measurements demonstrated a cross-over between free slip and
no slip depending on the approaching speed of the cantilever or its probing frequency.
These modified hydrodynamic boundary conditions are well modelled by theories that
include traces of surfactant, at levels undetectable through traditional surface tension
measurements (Manor et al. 2008; Maali et al. 2017). These findings further support
the notion that surfactant traces can qualitatively alter the hydrodynamics.

Predicting surfactant effects is also important since surface-active molecules are
inevitably present in both natural end engineered applications. Indeed, biological
or environmental samples have been found to contain large amounts of surface-
active compounds, including water from seas, rivers, estuaries and fog (Lewis
1991; Kropfli et al. 1999; Facchini et al. 2000). For engineered systems, recently
Hourlier-Fargette et al. (2018) used experiments involving insoluble liquid drops in
water to demonstrate that uncross-linked chains of polydimethylsiloxane (PDMS)
can act as a surfactant. Since PDMS is one of the most common materials for
microchannel fabrication, their results imply that surfactants are commonly present in
microfluidic systems.

While this mounting evidence shows the importance of surfactant effects for
superhydrophobic surfaces (at least in the laminar regime), there are presently no
theoretical models that can predict slip as a function of surfactant properties and flow
geometry.

In this paper, we build a scaling theory that describes the slip length, and the
associated Marangoni shear stress, in surfactant-laden laminar flows over SHSs. As
noted earlier, these surfactant effects are induced by accumulation of surfactant at
stagnation points on the plastron, which are unavoidable in real applications (except
in annular gratings in a rotating flow). As a fundamental model of such a flow,
we consider a two-dimensional SHS consisting of transverse grooves, such as those
considered by Kim & Hidrovo (2012), Bolognesi et al. (2014) and Crowdy (2016).
This case also serves as an upper bound for the slip and drag reduction that will be
obtained in a three-dimensional flow over finite rectangular gratings. Furthermore, the
model developed here constitutes a stepping stone towards a more complex theory
for three-dimensional flow over SHSs with surfactant.

The problem definition and governing equations are described in § 2. In § 3,
we present the key assumptions which allow us to develop a low-order scaling
model for the local slip length at the plastron, as a function of the relevant
dimensionless numbers. In § 4, a model for the interior flow in a microchannel
with a superhydrophobic side is developed, and coupled to the slip length model
to obtain the effective slip length and drag reduction for the overall channel flow.
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FIGURE 2. (a) Schematic of the geometry of the problem studied. (b) Schematic
illustrating the bulk concentration profile near the interface.

The overall theory is tested against numerical simulations of the full governing
equations. The computational set-up is described in § 5, and results are reported
in § 6. Each parameter is varied over several orders of magnitude, confirming
each aspect of the theory. The performance, key assumptions and potential uses
of the theory are discussed in § 7, with conclusions presented in § 8. To ease
adoption and testing of our model, MATLAB codes that automate the theoretical
calculations are included as online supplementary material, which is available online
at https://doi.org/10.1017/jfm.2019.857.

2. Problem description and governing equations
We study a steady, laminar, two-dimensional liquid flow with a small concentration

of surfactant in a channel with a periodic array of flat gas–liquid interfaces on
one side, as illustrated in figure 2(a). This geometry is typical of microchannel
experiments, where the smooth side of the channel is made transparent to ensure
optical access (see e.g. Ou & Rothstein 2005; Bolognesi et al. 2014; Schäffel et al.
2016; Peaudecerf et al. 2017; Song et al. 2018). We use hats to denote dimensional
quantities throughout the paper, whilst dimensionless quantities are without hats.
The dimensional velocity field is û(x̂, ŷ) = (û(x̂, ŷ), v̂(x̂, ŷ)). The surfactant bulk
and interfacial concentration fields are ĉ(x̂, ŷ) and Γ̂ (x̂), respectively. Owing to the
periodicity of the geometry, we can restrict our study to a single periodic cell of total
length L̂ and height 2ĥ, as shown in figure 2(a). This cell has a centred gas–liquid
interface (hereafter designated as ‘the interface’) of length ĝ at ŷ = −ĥ, with solid
surfaces on either side of the interface. The solid surfaces have overall combined
length l̂= L̂− ĝ. Opposite the interface is a solid surface, located at ŷ= ĥ. The flow
is driven in the positive x̂ direction by a constant streamwise mean pressure drop, per
unit length, Ĝ=−1p̂/L̂> 0.
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883 A18-6 J. R. Landel and others

We deliberately choose to study the transverse flow over SHS gratings of arbitrary
but finite length ĝ, instead of the longitudinal flow over infinitely long gratings, as
has been done in many previous theoretical and numerical studies (Philip 1972a,b;
Lauga & Stone 2003; Sbragaglia & Prosperetti 2007; Teo & Khoo 2009; Park
et al. 2013; Cheng et al. 2015; Crowdy 2016; Rastegari & Akhavan 2018). Indeed,
as mentioned in § 1, the establishment of adverse surfactant-induced Marangoni
stresses requires stagnation points, as are necessarily found at the end of real SHS
gratings, except in the special case of annular gratings (Lee et al. 2008). One
of the aims of our model is to predict the effect of ĝ on the effective slip length,
following the observations made by Peaudecerf et al. (2017) that increasing ĝ reduces
surfactant-induced Marangoni stresses. As also noted earlier, the two-dimensional flow
studied here will yield an upper bound for the slip and drag reduction that can be
expected in a three-dimensional flow over finite rectangular gratings.

The governing steady conservation equations for mass, momentum, bulk surfactant
and interfacial surfactant can be found in dimensional form in Peaudecerf et al.
(2017). We non-dimensionalize them using the channel half-height ĥ as the length
scale, the mean pressure drop per unit length Ĝ as the scale for pressure gradients,
the corresponding velocity Û = Ĝĥ2/µ̂ as the velocity scale (with µ̂ the dynamic
viscosity), the background bulk surfactant concentration ĉ0 as the bulk concentration
scale and the maximum packing concentration of the surfactant at the interface Γ̂m
(Prosser & Franses 2001) as the interfacial concentration scale, such that

x=
x̂

ĥ
, y=

ŷ

ĥ
, u=

û
Û
, ∇p=

∇̂p̂

Ĝ
, c=

ĉ
ĉ0
, Γ =

Γ̂

Γ̂m

. (2.1a−f )

The governing equations are, in dimensionless form,

∇ · u= 0, (2.2)
Re∇ · (uu)=−∇p+∇2u, (2.3)

∇ · (uc)=
1
Pe
∇

2c, (2.4)

d
dx
(uIΓ )=

1
PeI

d2Γ

dx2
+ S(cI, Γ ) on the interface, (2.5)

where bold symbols are used for vectors, uI(x) designates the velocity at the interface
and p(x, y) is the bulk pressure. The subscript I designates the limit of the bulk
quantity considered, as it approaches the interface. In general, this limit is equal to
the value taken by the quantity at the interface, except where mentioned explicitly.
For instance, we have uI(x) = limy→−1+ u(x, y) = u(x, y = −1) for |x| < g/2. The
Reynolds number Re, and bulk and interfacial Péclet numbers Pe, PeI are defined
below after (2.17), together with all other dimensionless groups in the problem.
A summary is also provided in table 1.

We assume that the source–sink term modelling the flux of surfactants between the
bulk and the interface follows kinetics consistent with the Frumkin isotherm, which
has been found to model accurately single-component surfactant systems (Chang &
Franses 1995; Prosser & Franses 2001),

S(cI, Γ )= Bi(kcI(1− Γ )− eAΓΓ ), (2.6)

with cI(x) = limy→−1+ c(x, y) for |x| < g/2. Here, A is the Frumkin
interaction parameter, which takes negative values A< 0 for surfactants with attractive
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Slip length model with surfactant traces 883 A18-7

Parameter Symbol Minimum Maximum

Gas fraction φ = ĝ/L̂ 1× 10−3 9.5× 10−1

Length of the air–water interface g= ĝ/ĥ 1× 10−3 1× 102

Reynolds number Re= ρ̂ĥÛ/µ̂ 4× 10−4 1× 105

Bulk concentration k= κ̂aĉ0/κ̂d 1× 10−7 1× 102

Bulk Péclet number Pe= ĥÛ/D̂ 5× 10−6 2.5× 107

Bulk Péclet number (with ĝ) Peg = ĝÛ/D̂ 1× 10−6 1× 106

Interface Péclet number PeI = ĥÛ/D̂I 4 2× 108

Interface Péclet number (with ĝ) F0PeI,g =F0ĝÛ/D̂I 3.1× 10−4 2.5× 105

Biot number Bi= κ̂dĥ/Û 1.2× 10−4 5× 102

Biot number (with ĝ) Big = κ̂dĝ/Û 1.2× 10−5 2.5
Kinetics number χ = κ̂dĥ/(κ̂aΓ̂m) 5× 10−3 5× 103

Kinetics number (with ĝ) χg = κ̂dĝ/(κ̂aΓ̂m) 2× 10−3 2× 102

Marangoni number Ma= nσ R̂T̂Γ̂m/(µ̂Û) 3 1.2× 1012

Marangoni concentration k∗ = kMa 3× 10−7 1.2× 1014

Ratio of kinetics flux to
advective flux at the interface KI,g = Big(1+ k)/F0 9.9× 10−4 3.2× 103

Ratio of diffusive flux to
advective flux at the interface DI,g = χg(1+ k)/(F0Peg)

1/2 4× 10−5 4.4× 103

TABLE 1. Range of values for all the non-dimensional parameters varied in the 137 finite
element numerical simulations. Hatted quantities are dimensional. See also supplementary
table S1 for the value of each parameter in each numerical simulation.

intermolecular interactions and positive values A > 0 in the case of repulsive
interactions. This sign convention for A coincides with the one adopted by Prosser
& Franses (2001), but the opposite convention can also be found elsewhere in the
literature (e.g. in Chang & Franses 1995). In (2.6), we note that the bulk concentration
near the interface cI is different from the interfacial concentration Γ . This follows
the subsurface layer model, where adsorption and desorption kinetics occur between a
bulk subsurface layer and the interface (Chang & Franses 1995). We note that S> 0
corresponds to an adsorption flux and S< 0 to a desorption flux, see figure 2(b). By
definition, u and c are periodic (with period L), while the pressure p has a normalized
mean drop per unit of length of −1, which is enforced by imposing a net pressure
drop of value L across each periodic unit of length L, so that

u(x, y)= u(x+ L, y), (2.7)
c(x, y)= c(x+ L, y), (2.8)

and

p(x, y)= p(x+ L, y)+ L. (2.9)

The boundary conditions include

u= 0 on all solid surfaces (no slip), (2.10)
v = 0 on the interface (no penetration), (2.11)
∂c
∂y
= 0 on all solid surfaces (no flux), (2.12)
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883 A18-8 J. R. Landel and others
dΓ
dx
= 0 at

(
x=±

g
2
, y=−1

)
(no flux). (2.13)

Additionally, the continuity of the surfactant fluxes between the bulk and the interface
is given by

χk
Pe

∂c
∂y

∣∣∣∣
I

= S(cI, Γ ) on the interface. (2.14)

The last piece of the model is the balance of forces between the viscous drag from the
bulk flow and the surfactant Marangoni force at the interface. The decrease in surface
tension σ induced by the surfactant is given by an equation of state consistent with
the Frumkin isotherm (Prosser & Franses 2001), that is

σ = 1+Ma Ca
[

ln(1− Γ )−
AΓ 2

2

]
, (2.15)

and the Marangoni shear stress at the interface is given by the gradient of surface
tension, yielding the last boundary condition

∂u
∂y

∣∣∣∣
I

=−
1

Ca
dσ
dx
, (2.16)

that is
∂u
∂y

∣∣∣∣
I

=Ma
(

1
1− Γ

+ AΓ
)

dΓ
dx

on the interface. (2.17)

The chosen characteristic scales imply the following definitions for the dimension-
less groups. The Reynolds number is Re = ρ̂ĥÛ/µ̂, with ρ̂ the liquid density. The
bulk and interface Péclet numbers are Pe = ĥÛ/D̂ and PeI = ĥÛ/D̂I , where D̂ and
D̂I are the bulk and interface surfactant diffusivities, respectively. The Biot number
is Bi= κ̂dĥ/Û. The effective bulk concentration is k = κ̂aĉ0/κ̂d, where κ̂a and κ̂d are
the adsorption and desorption coefficients, respectively. Note that, consistently with the
canonical definition of Frumkin kinetics, the adsorption and desorption coefficients κ̂a
and κ̂d have different units, so that k is non-dimensional. The surfactant adsorption–
desorption kinetics are parameterized by χ = κ̂dĥ/(κ̂aΓ̂m). We note that χk = ĉ0ĥ/Γ̂m
in (2.14) is effectively the non-dimensional ratio between the characteristic bulk and
interfacial concentration scales. The Marangoni number is Ma= nσ R̂T̂Γ̂m/(µ̂Û), where
nσ is a parameter associated with the Frumkin isotherm (Chang & Franses 1995), R̂
is the universal gas constant and T̂ is the absolute temperature. Temperature-driven
Marangoni effects are not considered in this study and we assume that temperature is
uniform in the domain. Note also that the capillary number Ca= µ̂Û/σ̂0 (where σ̂0 is
the surface tension of a clean interface) has no effect in our model, since it does not
appear in the final form of the Marangoni boundary condition (2.17) and we do not
consider any other physical mechanism, such as interface curvature, in which it could
play a role (§ 7.5.3 provides a discussion of this assumption).

The governing equations (2.2)–(2.5) with the periodicity and boundary conditions
(2.7)–(2.14) and (2.17) define a complex nonlinear coupled problem where the
unknowns are the two-dimensional velocity field u, the pressure p, the bulk
concentration c and the interfacial concentration Γ . This transport problem depends
on nine non-dimensional numbers, which collectively depend on a combination of
flow, liquid and surfactant properties, as well as geometry, namely Re, Pe, PeI , Bi, k,
χ , Ma, g= ĝ/ĥ and φ= g/L= ĝ/L̂. Here g is the normalized interface length, whereas
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Slip length model with surfactant traces 883 A18-9

φ is the gas fraction. According to (2.17), a surfactant-induced Marangoni shear can
develop at the interface when a gradient of interfacial surfactant concentration forms.

The main goal of this study is to determine a low-order model for the interfacial
Marangoni shear rate ∂u/∂y|I > 0 and the interfacial velocity uI > 0 as a function
of the nine non-dimensional numbers above, considering realistic parameter regimes.
Such a model could be used, for instance, to parameterize a slip length condition
in direct numerical simulations of flow over a SHS, without having to solve the full
complex coupled problem above.

3. Scaling theory for slip length with surfactant traces
3.1. Introducing the Marangoni concentration k∗ ≡ k Ma for small concentrations

The key assumption we propose is that the normalized interfacial surfactant
concentration Γ is sufficiently small, such that (2.6) and (2.17) can be linearized.
The same assumption was made by Harper (2004) for the study of air bubbles rising
in contaminated water. Hence, we obtain kinetics congruent with the Henry isotherm
(Chang & Franses 1995), namely

S(cI, Γ )≈ Bi(kcI − Γ ), (3.1)

∂u
∂y

∣∣∣∣
I

≈Ma
dΓ
dx

on the interface. (3.2)

In many realistic situations where surfactants are not artificially added, we indeed
expect to have low effective bulk concentrations, i.e. k � 1, which generally lead
to small interfacial concentrations Γ . The interfacial concentration is usually away
from saturation, i.e. Γ � 1, because the maximum packing concentration Γ̂m used
in surfactant models is in fact based on geometrical arguments (Rosen & Kunjappu
2012) or on achieving a good fit to experimental data based on a specific kinetic
model (Chang & Franses 1995). Hence, Γ̂m is usually not attained even when the
bulk concentration is at the critical micellar concentration. We also have A . 1 for
common surfactants (see Prosser & Franses 2001). We discuss further the relevance
of our assumption Γ � 1 in the context of applications in § 7.

We take advantage of the linearization of (2.6) and (2.17) to propose a parameter
reduction in our problem, by introducing the following rescaled effective Marangoni
concentration and surface concentration:

k∗ ≡Ma k, Γ ∗ ≡MaΓ . (3.3a,b)

Substituting k = k∗/Ma and Γ = Γ ∗/Ma into (2.5), (2.14) and (2.13), with the
Henry kinetics (3.1) and (3.2), we obtain a set of equations where k and Ma have
been combined to form k∗, thereby reducing by one the number of dimensionless
groups. This can be verified by examining the updated version of the complete set
of equations, (2.2)–(2.13), which becomes

∇ · u= 0, (3.4)
Re∇ · (uu)=−∇p+∇2u, (3.5)

∇ · (uc)=
1
Pe
∇

2c, (3.6)

d
dx
(uIΓ

∗)=
1

PeI

d2Γ ∗

dx2
+ Bi(k∗cI − Γ

∗) on the interface, (3.7)
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883 A18-10 J. R. Landel and others

with boundary conditions

u= 0 on all solid surfaces, (3.8)
v = 0 on the interface, (3.9)

∂c
∂y
= 0 on all solid surfaces, (3.10)

dΓ ∗

dx
= 0 at

(
x=±

g
2
, y=−1

)
, (3.11)

χk∗

Pe
∂c
∂y

∣∣∣∣
I

= Bi(k∗cI − Γ
∗) on the interface, (3.12)

∂u
∂y

∣∣∣∣
I

=
dΓ ∗

dx
on the interface, (3.13)

such that the three quantities k, Γ and Ma have been replaced by the dimensionless
number k∗ and the variable Γ ∗.

3.2. Scaling theory for surfactant dynamics
To make further progress in modelling the shear rate ∂u/∂y|I and velocity uI , we
perform a scale analysis on the equations in our problem, starting with rearranging
(3.12), which expresses continuity of surfactant fluxes between the bulk and the
interface

∂c
∂y

∣∣∣∣
I

=
Bi Pe
χk∗

(k∗cI − Γ
∗). (3.14)

For steady flows, adsorption and desorption fluxes between the bulk and the interface
are in balance overall, implying∫ g/2

−g/2

∂c
∂y

∣∣∣∣
I

dx=
Bi Pe
χk∗

∫ g/2

−g/2
(k∗cI − Γ

∗) dx= 0, (3.15)

such that, by the mean value theorem, there is a point on the interface where
∂c/∂y|I = 0 and k∗cI = Γ ∗. With a flow in the positive x-direction, interfacial
surfactant Γ ∗ is advected downstream, such that the beginning of the interface has a
lower surfactant concentration, implying that Γ ∗ < k∗cI , and that an adsorption flux
exists from the bulk onto the beginning of the interface, such that ∂c/∂y|I > 0 there,
as illustrated in figure 2(b). By the same argument, near the end of the interface, a
higher surfactant concentration Γ ∗ > k∗cI leads to desorption from the interface into
the bulk, implying ∂c/∂y|I < 0. Therefore, somewhere along the interface, we must
have ∂c/∂y|I = 0. We designate by x0 this location where the kinetics flux S= 0, as
depicted in figure 2(b).

In addition, at the beginning of the interface, cI is less than the bulk concentration,
i.e. cI < 1 with our non-dimensionalization, whereas towards the end of the interface,
where surfactants accumulate, cI > 1. This means that, at a specific location along
the interface, the concentration near the interface is equal to the background bulk
concentration, that is cI = 1. Taking cI ∼ 1 along the interface, we then find that (3.14)
implies that the interfacial concentration scales as Γ ∗ ∼ k∗.

Next, assuming that the variations of cI and Γ scale in the same way for the
adsorption region, −g/2< x< x0, and the desorption region, x0 < x< g/2, we have

Γ ∗ ∼ k∗ ∓1Γ ∗, cI ∼ 1∓1cI, (3.16a,b)
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Slip length model with surfactant traces 883 A18-11

for the adsorption (−) and desorption (+) regions, respectively (see figure 2b). The
quantities 1Γ ∗ and 1cI are the characteristic variations of Γ ∗ and cI , respectively. We
must have 1Γ ∗ > k∗1cI > 0 to satisfy the direction of the kinetic flux, as described
above.

From the relation between Marangoni stress and surfactant gradient (3.2), we also
have

1Γ ∗ ∼ gγMa, (3.17)
where

γMa =
1
g

∫ g/2

−g/2

∂u
∂y

∣∣∣∣
I

dx (3.18)

is the average shear rate induced by Marangoni stresses along the interface, such that
γMa = 0 corresponds to free slip at the interface and γMa= 1 corresponds to a no-slip
interface. Then, a scale analysis of (3.14) gives

∂c
∂y

∣∣∣∣
I

∼
1cI

δ
∼

Bi Pe
χk∗

(gγMa − k∗1cI), (3.19)

where δ is the typical thickness of the diffusive layer of bulk surfactant. To estimate
δ, we can use the bulk advection–diffusion equation (2.4). At high Péclet numbers,
Pe� 1, the diffusive layer of surfactant forms a thin boundary layer. As explained in
detail in appendix B, there are two main asymptotic regimes depending on whether
there is slip or not at the interface. For large slip and small interfacial shear rate,
γMa� 1, we can show that the boundary layer thickness scales as (see appendix B)

δ

g
= δ0,1(1+ δ1,1g2Pe)−1/2 for g . 1, (3.20)

δ

g
= δ0,2(1+ δ1,2gPe)−1/2 for g & 1, (3.21)

where δ0,1, δ1,1, δ0,2, δ1,2 are empirical parameters which need to be determined. We
note that the scaling δ ∼ Pe−1/2 at large Péclet numbers corresponds to having a
uniform velocity in the diffusive boundary layer, consistently with the case γMa� 1.

For negligible slip at the interface and γMa ∼ 1, we obtain

δ

g
= δ0,3(1+ δ1,3g2Pe)−1/3, (3.22)

for any g > 0, and with δ0,3 and δ1,3 two empirical parameters which need to be
determined. This corresponds to the Lévêque regime (Lévêque 1928; Landel et al.
2016), giving a power law δ∼Pe−1/3 at large Péclet numbers owing to a linear shear
rate profile in the diffusive boundary layer. The scalings (3.20)–(3.22) assume that:
(i) the variation of the bulk concentration along the interface is sufficiently smooth;
(ii) the boundary layer is not confined vertically, i.e. δ . 1; and (iii) the diffusive
boundary layers between consecutive interfaces are independent. As we will discuss
in § 6, our scaling prediction remains accurate even for confined diffusive boundary
layers δ ∼ 1.

With δ assumed known in terms of g and Pe, we rearrange (3.19) to solve for 1cI ,

1cI ∼ γMa

Bi Pe
χk∗

g δ

1+
Bi Pe
χ

δ

, (3.23)
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883 A18-12 J. R. Landel and others

such that, dividing by δ, we obtain a scaling that relates the kinetics flux to the shear

∂c
∂y

∣∣∣∣
I

∼
1cI

δ
∼ γMa

Bi Pe
χk∗

g

1+
Bi Pe
χ

δ

. (3.24)

3.3. Scaling for the interfacial velocity and for the slip length
We now seek a scaling expression for uI . We integrate the interfacial advection–
diffusion equation (3.7) from the upstream stagnation point x=−g/2 to x0. We find

(uIΓ
∗)|x0 =

1
PeI

dΓ ∗

dx

∣∣∣∣
x0

+
k∗χ
Pe

∫ x0

−g/2

∂c
∂y

∣∣∣∣
I

dx, (3.25)

where we used the no-slip boundary condition (3.8) at x=−g/2 for the left-hand side,
the no-flux boundary condition (3.11) at x=−g/2 for the first term on the right-hand
side, as well as the continuity of flux condition (3.12) for the last term. To write the
right-hand side in terms of γMa, note that Γ ∗|x0 ∼ k∗ and dΓ ∗/dx|x0 ∼ γMa. For the last
term, we use (3.24) to scale the integral

∫ x0

−g/2

∂c
∂y

∣∣∣∣
I

dx∼ g
1cI

δ
∼ γMa

Bi Pe
χk∗

g2

1+
Bi Pe
χ

δ

. (3.26)

Substituting into (3.25) we obtain a scaling relation between interfacial velocity and
shear. Introducing empirical prefactors (to be determined) ahead of each term, we
write

uI|x0 =
2
a1

1
k∗

 1
PeI
+ a2

g2Bi

1+
BiPe
χ
δ

 γMa, (3.27)

where a1, a2 are empirical parameters; the choice of writing 2/a1 for the overall
prefactor leads to a more convenient expression for the results later in § 6.1.

As also noted in the previous section, scaling expressions for the boundary layer
thickness δ are given by (3.20), (3.21) or (3.22), which depend on g, φ and γMa.
Therefore, our scaling is a nonlinear function of the Marangoni shear rate. However,
in the comparison of our model with numerical simulations (see § 6), we find that the
nonlinear dependence of γMa with δ is actually weak. Consequently, we adopt only
(3.22) in our model. This proves to be a good approximation and allows us to regard
δ as independent from γMa.

Furthermore, we note that a first-order linear expansion of the concentrations c and
Γ near x0 predicts a2 = 1/8 since x0 = 0 (that is, x0 is at the mid-gap location) due
to the balance of desorption and adsorption fluxes along the interface.

A characteristic scale for the slip length near x0, which corresponds to the mid-gap
of the interface under our assumptions, is therefore simply

λx0 =
uI|x0

γMa
=

2
a1

1
k∗

 1
PeI
+ a2

g2Bi

1+
BiPe
χ
δ

 . (3.28)
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Slip length model with surfactant traces 883 A18-13

This scaling prediction shows that the local slip length λx0 depends strongly on the
Marangoni concentration k∗ = k Ma and the normalized gap length g. It is intuitive
that increasing the gap length tends to increase the slip length, since it would reduce
the concentration gradient at the interface and thus the opposing Marangoni stress.
In contrast, increasing the effective bulk surfactant concentration k or the Marangoni
number tends to reduce the slip length, as expected. We also find increasing the bulk
or interfacial Péclet numbers, Pe or PeI , reduces λx0 . Increasing the Biot or χ numbers
has a positive effect on the slip length.

However, we note that (3.28) is only a local measure of the characteristic slip length
near the middle of the interface, where S(x0) = 0. In order to have an effective or
global slip length over the entire SHS which takes into account all interfaces and solid
ridges, we also need to model the channel flow over the SHS. In the next section, we
analyse the remaining governing equations for the flow, i.e. the continuity and Navier–
Stokes equations (3.4) and (3.5), to study how the flow is affected by a SHS with a
surfactant-induced Marangoni stress over the interfaces.

4. Complete model for effective slip in channel flows with one-sided periodic
transverse ridges

4.1. Stokes flow model for SHS channels with surfactant contamination
According to equation (3.2), interfacial surfactant concentration gradients can generate
a Marangoni shear rate at the interface ∂u/∂y|I ≈ dΓ ∗/dx > 0. In this section, we
derive an expression for how interfacial stresses with arbitrary profile can affect the
flow over a periodic SHS. The geometry follows the same schematic presented in
figure 2. Such a periodic SHS arrangement was studied in detail by Lauga & Stone
(2003) and Teo & Khoo (2009) for a shear-free interface, i.e. with ∂u/∂y|I = 0 along
the interface, at low Reynolds number. Here we generalize their approach to also study
the case where ∂u/∂y|I > 0. We also assume Re� 1, such that (3.5) simplifies to the
Stokes flow equation

∇p=∇2u. (4.1)

Taking the curl of (4.1) and using the continuity equation (3.4), we find that the
pressure field p and the vorticity field, ω = ∇ × u are both solutions of Laplace’s
equation. Using the superposition principle to solve Laplace’s equation for the
vorticity, we decompose it as the sum of the two-dimensional Poiseuille flow
component, which is a pressure-driven flow in a channel with full solid walls on
both sides (denoted by a subscript p), and a deviating component (denoted by a
subscript d), such that

ω=ωp +ωd, (4.2)

where ωp = y. As the flow is incompressible, we can also use the streamfunction Ψ ,
defined such that u = ∇ × Ψ , and which is the solution of the biharmonic equation
∇

4Ψ = 0. Note that Ψ = (0, 0, Ψ ) for two-dimensional flows. The solution for
the deviating component of the vorticity is obtained using separation of variables
considering the periodicity of the flow with wavelength L. Integrating twice, we then
obtain the deviation streamfunction (Lauga & Stone 2003; Teo & Khoo 2009). Noting
that the mean pressure gradient imposed by the deviating field is zero, neglecting the
constant of integration and using the no-flow boundary condition v = 0 in (3.8) and
(3.9), the deviating component of the streamfunction is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

85
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 C
en

tr
e 

of
 In

te
rn

at
io

na
l S

tu
di

es
, o

n 
08

 D
ec

 2
01

9 
at

 1
6:

42
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.857
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


883 A18-14 J. R. Landel and others

Ψd = B
y2

2
+ Ey+

∞∑
n=1

{en[cosh(kny)− coth(kn)y sinh(kny)]

+ dn[sinh(kny)− tanh(kn)y cosh(kny)]} cos(knx), (4.3)

where kn= 2πn/L, and B, E, en and dn are unknowns to be determined using the other
boundary conditions. The streamfunction for the Poiseuille component is

Ψp =
1
6(3y− y3). (4.4)

Up to this point, (4.3) and (4.4) are general solutions for any arrangement and
geometry of a SHS in a two-dimensional Stokes flow channel: i.e. they are not
limited to one-sided SHSs, symmetric patterns or a particular shear rate profile at the
interface.

With our geometry, using the no-slip boundary condition on the solid wall side at
y= 1 for all x, we find B=−E and

gn =
en

dn
=−

sinh(kn)− kn cosh(kn)+ kn tanh(kn) sinh(kn)

cosh(kn)− kn sinh(kn)+ kn coth(kn) cosh(kn)
. (4.5)

Hence, the deviating streamfunction simplifies to

Ψd =

(
−

y2

2
+ y
)

E+
∞∑

n=1

dn{gn[cosh(kny)− coth(kn)y sinh(kny)]

+ sinh(kny)− tanh(kn)y cosh(kny)} cos(knx). (4.6)

To determine the unknowns E and dn for n > 1, we can use the no-slip boundary
condition on the SHS side. At y=−1 for g/2< |x|< L/2, we have the condition

0= 2E+
∞∑

n=1

dnαn cos(knx), (4.7)

where
αn = 2kn[cosh(kn)− tanh(kn) sinh(kn)] − 2 sinh(kn). (4.8)

We then apply the last boundary condition on the interface, where we assume that
there is an arbitrary shear rate profile ∂u/∂y|I(x) > 0. Hence, we obtain the general
condition

0=
∂u
∂y

∣∣∣∣
I

− 1+ E+
∞∑

n=1

dnβn cos(knx) (4.9)

for |x|< g/2, y=−1, and with

βn = 2kn[gn coth(kn) cosh(kn)− tanh(kn) sinh(kn)]. (4.10)

To make further progress and obtain a relationship between the interfacial shear
rate and the interfacial velocity, we now assume that the interfacial shear rate is
uniform along the interface: ∂u/∂y|I = γMa, where 0 6 γMa 6 1 corresponds to the
interface-averaged surfactant-induced Marangoni shear rate, as introduced previously
in (3.17). This assumption is consistent with having a uniform concentration gradient,
following the linearized coupling condition (3.2). In the context of air bubbles
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rising in surfactant-contaminated water, this assumption is also consistent with the
‘uniformly retarded’ regime described for instance by Palaparthi et al. (2006). In the
context of a SHS, a similar assumption was made by Schönecker & Hardt (2013) to
model viscous effects from a gas phase trapped inside the cavities of the SHS. This
allowed them to decouple the flow above the interface from the flow in the cavity of
the SHS. We discuss further the relevance of this assumption in applications in § 7.
Hence, (4.9) becomes

0= γMa − 1+ E+
∞∑

n=1

dnβn cos(knx). (4.11)

If γMa = 0 in the equation above, the interface is stress free and the surfactant
concentration gradient at the interface vanishes. The surface is completely immobilized
if γMa = 1, and the flow follows a channel Poiseuille flow.

Following Lauga & Stone (2003), we can compute an approximation of the solution
by truncating the series in equations (4.7) and (4.11) at n= N − 1, multiplying (4.7)
and (4.11) by cos(2πmr) for m ∈ [0, N − 1] (with r = x/L) and integrating them for
r ∈ (φ/2, 1/2) and r ∈ (0, φ/2), respectively, where φ is the gas fraction. Summing
together the results for each m in one single equation, we finally obtain a linear system
of N equations for the N unknown coefficients E and dn for n∈ [1,N − 1], which we
can solve numerically. The linear system in matrix form is, for m ∈ [0, N − 1] and
n ∈ [0,N − 1],

Am,nUn =Bm, (4.12)

with U0 = E and Un = dn. The square matrix Am,n has coefficients

A0,0 = 1−
φ

2
, (4.13)

A0,n = (βn − αn)
sin(πnφ)

2πn
, n> 0 (4.14)

Am,0 =−
sin(πmφ)

2πm
, m> 0 (4.15)

An,n =
αn

4
+ (βn − αn)

(
φ

4
+

sin(2πnφ)
8πn

)
, n> 0 (4.16)

Am,n = (βn − αn)
1

4π

(
sin(π(m+ n)φ)

m+ n
+

sin(π(m− n)φ)
m− n

)
, m 6= n> 0 (4.17)

and the vector Bm has coefficients

B0 = (1− γMa)
φ

2
, (4.18)

Bm = (1− γMa)
sin(πmφ)

2πm
, m> 0. (4.19)

Care must be taken at large n, where the system is not well conditioned, as pointed
out by Teo & Khoo (2009). We provide, as supplementary material, MATLAB
routines solving the linear system (4.12).
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883 A18-16 J. R. Landel and others

4.2. Interfacial slip velocity
Once all the coefficients E and dn are computed, the non-dimensional slip velocity at
the interface uI can be determined to machine precision, depending on the size N of
the matrix A, such that

uI = 2E+
∞∑

n=1

dnαn cos(knx). (4.20)

Through its coefficients E and dn, (4.20) is a function of the uniform Marangoni
interfacial shear rate γMa and of the two non-dimensional geometrical parameters g
and φ. Hence, we have

uI = G(γMa, g, φ, x). (4.21)

The function G is only known implicitly through the solution of the linear system
(4.12). In practice, it would be useful to obtain an explicit analytical solution, or at
least a scaling expression for G which can give an approximate solution to the coupled
surfactant–flow transport problem in combination with (3.27). In the linear system
(4.12), we can factorize all the coefficients of Bm by (1 − γMa). This means that E
and dn are proportional to (1− γMa) for all n > 1. Thus, the velocity at the interface
is such that

uI = 2(1− γMa)F(g, φ, x), (4.22)

where, again, F is an implicit function. Now, F is decoupled from the surfactant
transport problem since it does not depend on γMa. It can thus be computed
to arbitrary numerical precision for each couple of geometrical non-dimensional
parameters (g, φ) and for all x by solving the linear system (4.12) in the surfactant-
free case, i.e. setting γMa = 0 in (4.18) and (4.19).

Based on this observation, F(g, φ, x)=uI(x)/(2(1−γMa)) is a normalized interfacial
velocity. In figure 3(a), we plot on a log–log scale this normalized interfacial velocity
at the middle of the gap, x= 0:

uIc

2(1− γMa)
=F(g, φ, x= 0)=F0(g, φ), (4.23)

as a function of g and for different φ (shown with different colours, see legend). For
φ� 1 and g. 1, the normalized interfacial velocity follows a linear asymptotic trend

uIc

2(1− γMa)
'

g
8
, (4.24)

plotted with a black dotted line in figure 3(a). We can see that for φ = 0.99 the
interfacial velocity still follows a linear scaling, although with a higher slope than
in the asymptotic limit (4.24), as shown by the black dot-dashed line in figure 3(a),
which was computed using (C 24). At large gap length, g�1, and for low gas fraction,
φ� 1, the interfacial velocity collapses on the asymptotic plateau

uIc

2(1− γMa)
→

1
4
, (4.25)

plotted with a black dashed line in figure 3(a). More details about the behaviour of
the interfacial velocity uIc with φ and g and the two asymptotic limits (4.24) and
(4.25) can be found in appendix C. The transition observed at g ∼ 1 from a linear
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FIGURE 3. Variation of the normalized mid-gap interfacial velocity, uIc/(2(1 − γMa)) =
F(g, φ, x= 0)=F0(g, φ) (see (4.22) and text), as a function of: (a) the non-dimensional
interfacial length g, for different non-dimensional gas fractions from φ = 0.01 to 0.99
(shown with different colours, see legend); (b) the gas fraction φ, for various interfacial
lengths g (shown with different colours, see legend). The implicit function F0(g, φ) has
been computed by solving the linear system (4.12) with N = 500, except in the more
demanding cases of 0.01<φ6 0.1 (N= 2 500), 0.996φ6 1 (N= 2 500) and 06φ6 0.01
(N = 15 000). In (a) the black dotted line is plotted using (4.24) for φ � 1 and g . 1,
the black dot-dashed line is plotted using (C 24) for g . 1 and φ = 0.99 and the black
dashed line is plotted using (4.25) for φ� 1 and g& 1. The black solid line corresponds
to the maximum asymptotic value for φ→ 1: uI,c→ uu(y=−1)= 2(1− γMa) (see (4.27)).
In (b), the black dashed line has been plotted using the asymptotic trend (4.28) for g� 1
(see also appendix C).

trend towards a plateau is due to the importance of the opposite wall at y= 1 through
viscous effects.

We note that the behaviour of uI,c/(2(1− γMa)) is similar across all g and for any φ.
This function goes from a linear behaviour for g. 1 to a plateau for g& 1, and with
simple asymptotics in the case φ � 1. Most of the data in figure 3(a) follow these
limiting regimes, suggesting that asymptotic results are sufficiently accurate in many
applications.

This common behaviour of the interfacial velocity might also suggest that the
velocity field follows a closed analytical form. However, we have not been able
to demonstrate this theoretically from the biharmonic equation. As far as we
are aware, the case of Stokes flow in a transverse channel with mixed boundary
conditions changing twice (on one or both channel sides), which is reminiscent of the
longitudinal-channel work of Philip (1972a), has not been shown to have a closed
analytical form in the literature. It would be valuable to re-examine the present
problem with conformal mapping tools similar to those used by Crowdy (2016,
2017a).

Figure 3(b) plots curves of uI,c/(2(1 − γMa)) versus gas fraction φ, with g as
a parameter. As the gas fraction φ increases towards 1, the normalized interfacial
velocity increases rapidly at any fixed g. In the limit φ→ 1 we have

uIc

2(1− γMa)
→ 1, (4.26)
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which can be predicted from the velocity field with uniform boundary conditions at
the top and bottom sides, that is u(y= 1)= 0 and duu/dy(y=−1)= γMa, respectively.
The solution to the Stokes problem (4.1) with these uniform boundary conditions is
independent of x,

uu =
1
2(1− y2)+ (1− γMa)(1− y), (4.27)

and can be used to yield the limit of uIc→ uu(y=−1) for φ→ 1. At g. 1, it is also
clear from figure 3(b) that uIc/(2(1− γMa))→ 1 only for gas fractions very close to
1, i.e. in the limit φ→ 1, as already observed in figure 3(a). This result confirms the
range of validity of the first scaling (3.20) for the diffusive boundary layer thickness
δ. Then, we can show (see appendix C) that in the limit of large gap length, g� 1,
the normalized interfacial velocity follows the asymptotic hyperbolic trend

uIc

2(1− γMa)
'

1
4− 3φ

, (4.28)

plotted with a black dashed line in figure 3(b). The asymptotic result (4.28) is valid
for any φ. This result is consistent with (4.25) and (4.26).

4.3. Predictions of the interfacial shear rate, effective slip length and drag reduction
We now have two independent expressions relating the interfacial velocity uI and the
Marangoni shear γMa. The scaling (3.27) was found based on the near-interface
surfactant dynamics, whereas (4.22) was derived from a Stokes flow solution.
Eliminating the interface velocity, we deduce a scaling expression for the average
Marangoni shear rate,

γMa = a1k∗F0(g, φ)

 1
PeI
+ a2

g2Bi

1+
Bi Pe
χ

δ

+ a1k∗F0(g, φ)


−1

, (4.29)

where a1 and a2 are the empirical parameters that were introduced in § 3.2. This
predictive scaling depends only on the properties of the flow, fluid and surfactant
through the non-dimensional numbers k∗ = k Ma, PeI , Bi, Pe and χ , and on the two
geometrical parameters g and φ. As noted earlier, this assumes a sufficiently small
concentration of surfactant and a small Reynolds number in the flow, and the diffusive
boundary layer thickness δ depends only weakly on γMa following (3.20), (3.21) or
(3.22). The parameters a1, a2, as well as δ0,i and δ1,i (with i= 1, 2 or 3 for the scaling
predictions (3.20), (3.21) or (3.22), respectively) for δ, are determined empirically by
fitting to our numerical simulations in § 6.

We can also compute a global effective slip length λe as defined by Lauga &
Stone (2003), which corresponds to the value λe such that an equivalent channel flow
under the same pressure gradient, but with a uniform Navier slip boundary condition
u(y = −1) = λe∂u/∂y|y=−1 replaces the mixed conditions of the SHS at the bottom
boundary. We can show that the contribution of the effective slip length λe is such
that the total volume flux in the channel is the sum of the background Poiseuille
volume flux, Qp = 2/3, and the volume flux of the deviating flow,

Q=Qp +Qd =
2
3
+

2λe

λe + 2
, (4.30)
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where the maximum value for the deviating flux is Qd→ 2, as λe→∞. The effective
slip length as a function of the deviating flux is

λe =
2Qd

2−Qd
. (4.31)

From equation (4.6), the deviating streamfunction is

Qd =Ψd(y= 1)−Ψd(y=−1)=
E
2
−

(
−

3E
2

)
= 2E, (4.32)

and substituting into (4.31) yields

λe =
2E

1− E
. (4.33)

Following from the linearity of the governing equations, and of the boundary
conditions, E also scales linearly with (1 − γMa). Accordingly, we can find the
explicit dependence of λe with the Marangoni shear rate γMa,

λe =
2(1− γMa)E0

1− (1− γMa)E0
, (4.34)

where E0 is the first coefficient of the vector Un (see (4.12)) in the surfactant-free case,
i.e. E0=E for γMa= 0, and γMa is expressed by (4.29). As expected, 06λe<∞, since
0 6 γMa 6 1 and 0 6 E0 6 1.

The corresponding drag reduction due to the presence of the SHS in our pressure-
driven channel flows, inclusive of surfactant, can be computed as

DR= 1−
Cf

Cf ,p
= 1−

〈τ̂s〉

ρ̂(Q̂/2)2

〈τ̂s〉p

ρ̂(Q̂p/2)2

, (4.35)

where Cf =〈τ̂s〉/(ρ̂(Q̂/2)2) is the laminar friction coefficient for a pressure-driven flow
through a SHS channel with surfactants and Cf ,p = 〈τ̂s〉p/(ρ̂(Q̂p/2)2) is the laminar
friction coefficient for the equivalent Poiseuille channel flow driven with the same
pressure gradient and for the same channel height. The quantities 〈τs〉 and 〈τs〉p are
the surface stresses averaged along both top and bottom surfaces for a SHS channel
flow and a Poiseuille channel flow with the same geometry, respectively. Since, by
construction, the pressure gradient is the same for the flow in the SHS channel and the
Poiseuille channel flow, we have 〈τ̂s〉= 〈τ̂s〉p. Then, using (4.30) and (4.31) into (4.35)
we find

DR= 1−
(

1+
3Qd

2

)−2

= 1−
(

1+
3λe

λe + 2

)−2

. (4.36)

The maximum possible drag reduction is DR→ 15/16 as λe→∞. We can compute
λe in (4.36) using (4.34) and (4.29). We also provide, as supplementary materials,
MATLAB routines computing λe, DR and γMa for any specified flow-related, surfactant
or geometrical parameters.
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5. Surfactant-laden numerical simulations
To test the validity of our theoretical model and its predictions for the surfactant-

induced Marangoni shear γMa in (4.29) and for the effective slip length λe in (4.34),
we performed 137 surfactant-laden numerical simulations of the full governing
equations (2.2)–(2.13).

We varied the nine dimensionless numbers independently over several orders of
magnitude to comprehensively explore the parameter space. As introduced in § 2, these
dimensionless groups are the Reynolds number Re = ρ̂ĥÛ/µ̂, the bulk and interface
Péclet numbers Pe = ĥÛ/D̂ and PeI = ĥÛ/D̂I , the Biot number Bi = κ̂dĥ/Û, the
non-dimensional bulk concentration k = κ̂aĉ0/κ̂d, the surfactant adsorption–desorption
kinetics number χ = κ̂dĥ/(κ̂aΓ̂m), the Marangoni number Ma = nσ R̂T̂Γ̂m/(µ̂Û), the
gas fraction φ= ĝ/L̂ and the non-dimensional interfacial length g= ĝ/ĥ. The Frumkin
interaction parameter, used in equation (2.6), is kept constant at A = −1 for all our
simulations. Since this parameter has a weak influence on the surfactant-induced
Marangoni shear rate, we chose a value for A corresponding to moderate attractive
interactions between the adsorbed surfactant molecules. This value is close to the
measured value for the common surfactant sodium dodecyl sulphate in de-ionized
water: A=−2.4 (Chang & Franses 1995; Prosser & Franses 2001). The aim is also
to obtain values for the empirical parameters a1, a2 in (4.29) and δ0,i and δ1,i (with
i= 1, 2 or 3) in the uniform shear regime.

The model described by the dimensional form of equations (2.2) to (2.13) was
implemented in COMSOL Multiphysics 5.2r in two-dimensional finite-element
numerical simulations. The SHS channel geometry shown in figure 2(a) was used
for the simulation domain, where the range of values for the gap length ĝ, the ridge
length l̂, the channel half-height ĥ and the streamwise mean pressure drop per unit
length Ĝ are presented in supplementary table S1.

When designing the mesh of the domain, we were particularly careful to ensure we
could capture strong possible variations of some variables near the stagnation points at
the beginning and end of the interface (x=±g/2), and in the vicinity of the interface.
For each simulation, the maximum size of the mesh elements at the stagnation points,
on the interface, and in the bulk, is detailed in supplementary table S1. Across all the
simulations, the maximum density of elements close to the two stagnation points of
the interface is 200 per micron, while the lowest density of elements at the middle of
the interface is 20 per micron.

To implement the model in COMSOL, we combine the Laminar Flow module
with a Dilute Species Transport module for the transport equations in the bulk
(2.2)–(2.4). The equation for the transport of surfactant on the interface (2.5) is
implemented through a general form boundary partial differential equation, with a
source term corresponding to the Frumkin kinetics flux S (2.6). This flux also serves
to implement the condition for the continuity of the diffusive flux and the kinetics
flux (2.14) at the interface for the Dilute Species Transport module. The non-uniform
distribution of surfactants at the interface yield Marangoni forces, which modify
the Laminar Flow module, as stated in (2.17), through a weak contribution at the
interface coupled to a free-slip boundary condition, resulting in the required partial
slip at the interface.

The flow is forced by a mean pressure drop per unit length, which is implemented
through a periodic flow condition between inlet and outlet following (2.9), also
enforcing velocity field periodicity between inlet and outlet. A gauge for the pressure
is imposed through a pressure point constraint at a corner of the domain. The initial
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guess for the velocity, for the stationary solver, is set to the reference Poiseuille
profile up= (1− y2)/2 in the entire chamber, corresponding to the streamfunction (4.4).
Periodic boundary conditions between inlet and outlet following (2.8) are also imposed
in the Dilute Species Transport module for the bulk surfactant concentration c.

To ensure the accuracy and stability of the numerical simulations, we discretize
the fluid flow with quadratic elements for the velocity field and linear elements for
the pressure field (Taylor–Hood elements), as well as quadratic elements for the
concentration fields in the bulk and on the interface. We use the MUMPS solver of
COMSOL to solve for the steady state of the system, with a relative tolerance of
10−5. All our 137 COMSOL numerical simulations were fully converged, satisfying
this strict relative tolerance.

The surfactant properties correspond to the well-characterized surfactant sodium
dodecyl sulphate (SDS), which are well described by Frumkin kinetics (Prosser &
Franses 2001). The physical parameters were chosen in order to explore a large
range of the key non-dimensional numbers. Variations by four to six orders of
magnitude were explored, as summarized in table 1 in this section, as well as in
figure 8 in appendix A. In five simulations, we explored the limit of high Reynolds
number with Re > 1000, for which the flow should physically be at or above the
transition to a turbulent regime. However, we imposed the flow to remain laminar in
these simulations, since we are not interested in the effect of inertial instabilities or
turbulence in this study. We will return to this point in § 6, when discussing results
at large Reynolds numbers under laminar conditions. All other relevant physical and
kinetics parameters of the 137 performed simulations are presented in supplementary
table S1.

6. Results and model performance
6.1. Effective slip length

In figure 4, we compare our scaling predictions for the effective slip length λtheory
e

with the numerical results λdata
e . We compute λtheory

e using (4.34), where γMa follows
(4.29) and the coefficients E0 are computed by solving the linear problem (4.12) in the
surfactant-free case for each couple of geometrical parameters (g, φ). The empirical
parameters a1, a2 in (4.29) and δ0,i, δ1,i, with i= 1, 2 or 3 for δ (see equations (3.20)–
(3.22)) can be determined using a least-squares fitting approach and the trust region
reflective algorithm, as implemented in the package optimize.least_squares of
Scipy (Jones et al. 2001).

First, we determine δ1,3 in δ by fitting a measure of the characteristic diffusive
boundary layer thickness in our numerical simulations, calculated using (3.24), with
the scaling model given in (3.22). We have only used the Lévêque scaling (3.22) for
δ in (4.29). In our numerical simulations, the diffusive boundary layer mostly follows
the Lévêque regime, which assumes a background linear shear flow, since the slip
velocity uI is small. Moreover, as also noted earlier, the scaling model (4.29) for γMa

depends weakly on δ. Hence, the choice of scaling for δ, which can vary between
(3.20), (3.21) or (3.22) depending on the geometry and the slip, does not appear to
be critical. The fit gives

δ1,3 = 0.0528, (6.1)

from the minimization of the sum of the squares of the relative distance of theory
from data, i.e. (δtheory

− δdata)2/(δdata)2. This prior independent determination of
δ1,3 reduces the number of fitting parameters to three in (4.29): a1, a2 and δ0,3.
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FIGURE 4. (a) Comparison of the scaling predictions for the effective slip length λtheory
e ,

computed using (4.34) and (4.29), with fitting parameters a1= 2.30, a2= 0.319, δ0,3= 1.68
and δ1,3 = 0.0528, with the numerical results from our simulations λdata

e , calculated from
(4.31). Results are plotted on a log–log scale, with the grey dashed line showing equality
between predictions and simulations. The predictions for the four data points in the partial
stagnant cap (SC) regime, plotted with vermilion squares, underestimate the data owing
to the strong non-uniformity of the interfacial shear rate profile. Nevertheless, the theory
remains practically useful also for these cases, as it correctly predicts λe� 1. In the inset
of (b), we plot an extended range of λdata

e . In (c), a linear–log plot shows the relative
error between the data and the scaling predictions, as a function of the average interfacial
shear rate. Red crosses show the error in the effective slip length when surfactants are
neglected, such that λe is calculated using (4.34) with γMa = 0.
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This ensures a more accurate and robust fit for λtheory
e , less sensitive to the actual

fitting technique used.
Then, using δ1,3 = 0.0528 in (4.29), we fit the effective slip length λtheory

e given by
(4.34) to λdata

e computed via the deviating flux Qd using (4.31). Incidentally, computing
λdata

e using (4.31) gives an accurate and robust estimation of the effective slip length in
our numerical simulations, as it relies solely on the integral quantity Qd=Q−Qp (see
(4.30)). Minimizing the sum of the squares of the absolute distance between λtheory

e and
λdata

e , we obtain

a1 = 2.30, a2 = 0.319 and δ0,3 = 1.68. (6.2a−c)

As we can see in figure 4(a,b), the scaling predictions for λtheory
e , using the values

for a1, a2, δ0,3 and δ1,3 stated in the previous paragraph, show an excellent agreement
with λdata

e over a very large range: 10−12 . λe . 1.
The nine data points at non-negligible Reynolds numbers, 1 6 Re 6 105 (identified

with blue circles in figure 4a,b), also exhibit good agreement despite violating the
low-Reynolds-number assumption made in our flow model (see § 4.1). As explained
previously in § 5, although the full steady nonlinear Navier–Stokes equation (2.3) was
used in the simulations, the flow remained in the laminar regime for all Reynolds
numbers tested.

At large non-dimensional background concentrations, 1 6 k 6 100 (identified with
green triangles in figure 4b), the scaling predictions underestimate slightly the slip
length. This is due to the fact that the model assumes a low concentration of
surfactant. However, the model still provides a practically useful prediction of the
boundary condition at the interface, which can be effectively considered as no slip
for all our simulations with k > 1. We also find that the maximum boundary layer
thickness is δ = 1.20, which suggests that our scaling prediction is accurate even if
the diffusive boundary layer is vertically confined.

We indicate in figure 4 (as well as in figures 5 and 6) data where the interface
properties are strongly non-uniform, which are labelled by vermilion squares and
orange diamonds. Qualitatively similar interface non-uniformities have been studied
extensively in the context of air bubbles rising in surfactant-contaminated water
(e.g. Bond & Newton 1928; Frumkin & Levich 1947; Levich 1962; He, Maldarelli
& Dagan 1991), where they correspond to the ‘stagnant cap regime’. In this regime,
an upstream part of the interface has a negligible surfactant gradient and can be
considered as shear free (γMa→ 0), whilst the rest of the interface downstream has a
large Marangoni shear (γMa→ 1), leading to a no-slip condition over a portion of the
bubble known as the ‘stagnant cap’ (hereafter designated as SC). In the SC regime,
advection of surfactant along the interface dominates relative to surfactant transport
between the interface and the bulk. This makes possible highly non-uniform interfacial
concentrations. Since transport between the interface and the bulk is mediated by both
the diffusive boundary layer flux and the surfactant kinetics, the SC regime requires
that advection along the interface must be large compared to either diffusive or kinetic
fluxes (or both).

We briefly summarize here the bubble-flow analysis of Palaparthi et al. (2006), and
translate it to SHS flow. For a bubble, the SC regime is found when the characteristic
interfacial Péclet number is large, and either the adsorption–desorption kinetics flux S
is small, or the diffusive flux through the boundary layer is small compared with the
interfacial advective flux. Denoting with a superscript ‘bubble’ the results of Palaparthi
et al. (2006), they showed that this implies Pebubble

I � 1, and KI = Bibubble(1+ k)� 1
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or DI = χ
bubble(1 + k)/(Pebubble)1/2 � 1. For a bubble, the characteristic length and

velocity scales are the bubble radius and interfacial velocity in the surfactant-free case.
In order to translate these canonical bubble results to SHSs, note that the bubble
radius is analogous to the grating length ĝ. For the SHS, the characteristic velocity
scale for these non-dimensional numbers is the mid-gap interfacial velocity in the
surfactant-free case, namely ûIc(γMa = 0), which differs from the bulk characteristic
velocity, such that ûIc(γMa = 0) = 2F0Û, according to (4.22). This contrasts slightly
with contaminated air bubbles in water, where the characteristic interfacial velocity in
the surfactant-free case scales as the far-field bulk velocity, owing to the absence of
rigid no-slip walls. As shown in figure 3 and explained in detail in appendix C, we
have F0 ∼ 1 for g & 1 (as for bubbles) and F0 ∼ g for g . 1.

Therefore, using our dimensionless group definitions of § 2, and using a ‘g’
subscript to characterize dimensionless groups where we use the length scale ĝ, rather
than ĥ, we have Pebubble

I 7→ F0gPeI = F0PeI,g and KI = Bibubble(1 + k) 7→ KI,g =

Big(1+ k)/F0, as well as DI =χ
bubble(1+ k)/(Pebubble)1/2 7→DI,g=χg(1+ k)/(F0Peg)

1/2.
The ranges spanned by the quantities F0PeI,g, KI,g and DI,g are reported in table 1.
The distinction between the partial SC regime, where the SC fills only part of the

interface, and the full SC regime, where the SC fills all the interface, is revealed by an
inspection of the shear rate profiles along the interface (not shown here). In the partial
SC regime, the shear rate increases abruptly from negligible values to γMa ∼ 1 at a
particular location along the interface. In the partial SC regime, the non-dimensional
numbers in our simulations range approximately as: 2.5× 103 6 F0PeI,g 6 2.5× 105,
9.9× 10−4 6KI,g 6 0.4 and 0.04 6DI,g 6 0.4 (see also figure 8, appendix A, for the
variations of these numbers across all our numerical simulations and for the different
regimes, as well as supplementary table S1 for the value of each parameter for each
simulation). In the full SC regime, the non-dimensional numbers range approximately
as: 52 6 F0PeI,g 6 2.5 × 104, 2 × 10−2 6 KI,g 6 50 and 4.0 × 10−5 6 DI,g 6 1.3. The
interfacial Péclet number is mostly higher in the partial SC regime than in the full
SC regime, which is intuitively expected. We can see in figure 4(a) that the four
data points in the partial SC regime (plotted with vermilion squares) are the only
data points where the scaling predictions significantly underestimates the effective slip
length with λtheory

e 6 5.2 × 10−5, whereas λdata
e > 3.5 × 10−4. This discrepancy is due

to the strong non-uniformity of the shear rate profile in the SC regime, not taken
into account by our scaling model which is based on the assumption that the shear
rate is approximately uniform along the interface (see (3.17)). The predictions λtheory

e
in the full SC regime, plotted with orange diamonds, are in reasonable agreement
with the data λdata

e . We can see that λtheory
e underestimates slightly the data, although

by less than one order of magnitude for all our results in the full SC regime, with
0.25 6 λtheory

e /λdata
e 6 2.4.

The data plotted with black pluses in figure 4, i.e. not in the SC regime, are in
a state analogous to the ‘uniformly retarded regime’ described by Palaparthi et al.
(2006) in their study of air bubbles rising in contaminated water, where they make
the case that this regime exists for KI,g∼ 1 and DI,g∼ 1. However, in our simulations,
we find that the interfacial shear rate is in the ‘uniform’ regime, and thus satisfies
our modelling assumption, over a range of KI,g and DI,g that spans several orders of
magnitude, implying that the vast majority of the simulations satisfy our modelling
assumptions. More specifically, we find that simulations in the ‘uniformly retarded
regime’ have parameters that satisfy approximately 2.8× 10−3 6DI,g 6 4.4× 103 and
1.9 × 10−2 6 KI,g 6 3.2 × 103. This is most likely due to the fact that some of our
simulations are in an intermediate or transition regime between the SC regime and
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FIGURE 5. Comparison of the scaling predictions for the drag reduction DRtheory,
computed using (4.36), with the numerical results from our simulations DRdata. We also
show with red crosses the drag reduction DRtheory estimated using a model neglecting the
surfactant effect. Note that we plot in this graph only data for DR> 10−4, to show more
clearly our results in a range useful to applications. Equality between data and theory falls
on the grey dashed line.

the uniformly retarded regime, and for which λe still follows our scaling prediction,
although perhaps with slightly more scatter, as shown by some of the black pluses in
figure 4.

In figure 4(c), we show the relative error between the scaling predictions λtheory
e and

the numerical results λdata
e for the effective slip length. The error remains relatively

small across all values of the average interfacial shear rate γMa. It is less than
approximately 33 % for γMa 6 0.7, except for the four simulations in the partial
SC regime plotted with vermilion squares. The relative error is less than 1.7 for
0.7 6 γMa 6 1.

For comparison, we also show with red crosses in figure 4(c) the prediction from
a surfactant-free model, which is obtained using (4.34) with γMa = 0. Our model
provides consistently better predictions than those that neglect the surfactant effect. In
particular, the error made by neglecting surfactant effects becomes very large when
the interfacial shear rate increases towards the Poiseuille value γp = 1. At low shear
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rate, γMa 6 0.3 we can see that the two models have comparable (small) relative
errors.

Overall, we find that our scaling model for λe provides excellent quantitative
predictions across a large range of non-dimensional numbers, beyond the strict range
of validity based on our modelling assumptions. Although our model predictions
can underestimate the slip length in some cases (at large concentrations, and in
the stagnant cap regime), our model remains practically useful as both theory and
simulation yield negligible slip in those instances.

6.2. Drag reduction

We compare the drag reduction predicted by our theory (DRtheory) with the numerical
results from our simulations (DRdata), as shown in figure 5. The value of DRtheory is
obtained from (4.36), where the corresponding values of λtheory

e were shown earlier in
figure 4. Similarly, DRdata is calculated using λdata

e , whose values are also shown in
figure 4. Using a log–log scale, we only plot data for DR> 10−4, which correspond to
the more meaningful range for practical applications. The predictions from our scaling
model are in very good agreement with the numerical results. Data at even lower drag
reductions (not shown here) still exhibit a very good agreement with our theoretical
prediction.

In figure 5, we also plot, using red crosses, the drag reduction computed using a
surfactant-free model. This is obtained by substituting the values for the surfactant-free
λtheory

e (plotted with red crosses in figure 4c) into (4.36). As may be expected, the
surfactant-free theory almost always incorrectly predicts a larger drag reduction,
with values often more than an order of magnitude larger than the actual ones.
This clearly shows that the drag reduction potential of SHSs can be significantly
overestimated in conditions where surfactants are important. This is consistent with
the findings of Peaudecerf et al. (2017), who showed that, for SHSs with rectangular
longitudinal gratings, surfactant effects become important at very low concentrations,
similar to background levels found in the environment. As may be expected, the few
surfactant-free predictions in figure 5 that show better agreement with the numerical
simulations correspond to lower values of γMa, when the surfactant-free predictions
converge towards our model predictions (see figure 4c).

6.3. Interfacial shear rate

We compare in figure 6 the numerical results for the average interfacial shear rate γ data
Ma

with the theoretical predictions, γ theory
Ma computed using (4.29) using the four empirical

parameters optimized for λe in § 6.1: a1= 2.30 and a2= 0.319 for γMa, and δ0,3= 1.68
and δ1,3 = 0.0528 for δ based on (3.22). The numerical results for γ data

Ma have been
computed by taking the spatial average of the interfacial shear rate in the interior of
the interface −g/2 6 x 6 g/2.

In figure 6(a), we show (1 − γMa) in a log–log plot to focus on the no-slip limit
γMa → 1. Over the limited range shown on this graph, we find good agreement
between our scaling predictions and the data for all our numerical simulations where
the interfacial shear rate is found to be approximately uniform along the interface
(see the uniform regime, plotted with black plusses). Similar to λe shown in figure 4,
we can see that the four data points in the partial SC regime (vermilion squares)
with (1− γ data

Ma )> 0.4 are the only ones where the predictions underestimate the data.
As discussed earlier, this is due to the strong non-uniformity of the shear rate profile
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FIGURE 6. Comparison of the scaling predictions for the average interfacial shear rate
γ

theory
Ma , computed using (4.29), with the numerical results from our simulations γ data

Ma ,
calculated by averaging the shear rate along the interface. The scaling predictions use
empirical parameters: a1 = 2.30 and a2 = 0.319 for γMa, and δ0,3 = 1.68 and δ1,3 = 0.0528
for δ (see (3.22)), computed from the fit of λe (see § 6.1). In (a) we plot using a log–log
scale (1 − γMa) to reveal the behaviour at large shear rate, when γ data

Ma → γp = 1. The
predictions γ

theory
Ma for the four data points in the partial stagnant cap regime, plotted

with vermilion squares, overestimate the data owing to the strong non-uniformity of the
interfacial shear rate profile. In (b) we plot (1− γMa) over a larger range, revealing the
error related to the singularity at the stagnation points. In (c) we plot γMa to show more
clearly the behaviour at intermediate shear rates, 0.7 6 γMa 6 1. In all plots, equality
between data and theory would fall on the grey dashed line.
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883 A18-28 J. R. Landel and others

in the SC regime, in contradiction to the uniform assumption made in our model
(see (3.17)). Nevertheless, the theory remains practically useful, as both model and
simulation yield a shear that is essentially indistinguishable from that of a no-slip
boundary.

In figure 6(b) (which is the inset of figure 6a), we plot (1−γ data
Ma ) over the full range

of values tested. As the average shear rate tends to the maximum Poiseuille value,
γ data

Ma →γp=1 or equivalently (1−γ data
Ma )→0, (1−γ theory

Ma ) underestimates the data. The
difference becomes significant for (1 − γ theory

Ma ) . 10−3. This is due to the singularity
at the two stagnation points and the difficulty associated with resolving it numerically.
The shear rate exhibits extreme variations very close to the stagnation points, whilst
the shear rate remains flat in the interior of the interface with values very close to
the Poiseuille shear rate. We note, however, that the effect of the singularity appears
only in the limit γ data

Ma → γp= 1, at values practically equivalent to a no-slip boundary
condition at the interface.

This can also be seen in figure 6(c), where we plot γMa directly, for γMa > 0.7.
The scaling predictions consistently predict a no-slip boundary condition γ

theory
Ma → 1,

as γ data
Ma → 1. This shows that the actual error between γ

theory
Ma and γ data

Ma is actually
very small in this limit, where we find the simulations at large Reynolds numbers
Re> 1 (blue circles), large non-dimensional concentrations k > 1 (green triangles) and
in the full SC regime (orange diamonds). Predictions at intermediate values (shown by
plusses in figure 6c), for 0.76 γ theory

Ma 6 1, show a good agreement with γ data
Ma although

with a slight overestimation.
Therefore, our scaling model also provides reasonable predictions across the whole

range of interfacial shear rate values, even though the model has been fitted for λe
and not for γMa. An agreement is found from intermediate to large values, provided
the interface is not in a partial SC regime. Our scaling model remains accurate across
a broad range of non-dimensional numbers (see table 1 and figure 8, appendix A) and
in the full SC regime.

7. Discussion
7.1. Verifying the validity of our main assumptions

The first key assumption in our scaling model is that the non-dimensional interfacial
surfactant concentration Γ is sufficiently small so that the adsorption–desorption
kinetics flux S in (2.6) and the coupling condition (2.17) between the viscous stress
and the surfactant-induced Marangoni stress can be linearized (see § 3.1). To test
the validity of the assumption Γ � 1, at least a posteriori, we can note that it
implies Γ ∼ k� 1, which results from applying (3.1) at S= 0 along the interface. As
mentioned before, we expect that k should remain low in many applications where
surfactants are not artificially added. Peaudecerf et al. (2017) estimated typical ranges
of k, depending on whether one considers a ‘weak’ or ‘strong’ surfactant. Peaudecerf
et al. (2017) calculated that, for ‘weak’ types of surfactants, the non-dimensional
concentration range is 10−9 . k . 10−2, which supports our hypothesis. Note that
the upper bound of this range is given at the critical micellar concentration for the
bulk concentration ĉ0, implying that the worst-case scenario corresponds to water that
is saturated with surfactant. Only for ‘strong’ types of surfactant did they indicate
that the k� 1 assumption could potentially be invalid, since 10−6 . k . 103. Strong
surfactants are likely to be found only in applications where they have been artificially
added. Nevertheless, the model presented here performed well even at large k, as
seen for example in figure 4.
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Slip length model with surfactant traces 883 A18-29

The second key assumption made in our scaling model is that the surfactant-induced
Marangoni shear rate along the interface is approximately uniform. This is related to
having a uniform concentration gradient, following the linearized coupling condition
(3.2). From the broad range of parameters tested, see table 1 and figure 8, appendix A,
we find that this assumption is invalid only in the partial stagnant cap regime, where
the concentration gradient presents an abrupt increase at some point along the
interface, separating the no-shear and no-slip regions. As we saw in figure 4, in
the partial SC regime (see vermilion squares) our model underestimates the slip
length. However, it is noteworthy that our scaling model provides reasonably accurate
predictions for the full SC regime, where the no-slip region spans the whole interface.
Furthermore, our scaling model remains practically useful in both the partial and full
SC regimes, since it correctly predicts an essentially negligible effective slip length.

If wishing to strictly determine whether our model applies, we must therefore
distinguish the parameter ranges between the full and partial SC regimes. As explained
in § 6.1, the SC regime exists when the Péclet number at the interface, F0PeI,g, is
large and either DI,g or KI,g are small. From our simulations, we cannot find any
clear distinction between the partial and full SC regimes based only on DI,g or
KI,g. However, we noted already that the partial SC regime was generally found at
larger Péclet numbers, for F0PeI,g & 103, whilst the full SC regime was found for
1�F0PeI,g . 104. This is physically intuitive as increasing the external flow velocity
would eventually overcome the Marangoni stress at the interface. This would lead to
a compression of the finite amount of surfactant adsorbed onto the interface towards
the downstream end, thereby freeing the upstream part of the interface from any
shear.

Since F0PeI,g ∝ F0Û, KI,g ∝ 1/(F0Û) and DI,g ∝ 1/(F0Û)1/2, we expect to find
the partial SC regime in applications where the characteristic velocity near the
interface F0Û is large. We emphasize again that the characteristic velocity in these
dimensionless numbers is the local characteristic velocity near the interface, F0Û,
where the bulk velocity Û is modulated by the geometrical function 06F0 6 1, which
scales as F0∼g for g.1, otherwise F0∼1. Hence, our model is valid for applications
at sufficiently low Û or if g is sufficiently small such that the SHS is away from
the partial SC regime. Microfluidic applications, such as lab-on-a-chip systems or
micro-cooling, where Û is small would be typical applications for our model. For
instance, we can consider a typical micro-fluidic channel with ĥ= 50 microns, a flow
of water with characteristic speed ranging 0.1 to 10 mm s−1, and SHS gratings of
length ĝ= 1 mm with gas fraction φ ≈ 0.95. If surfactants similar to sodium dodecyl
sulphate are present at a concentration of approximately 10−3 mM (equivalent to
traces naturally present in the water), then we obtain: 800 6 F0PeI,g 6 8 × 104,
12 6 KI,g 6 120, 0.7 6 DI,g 6 7 and k = 10−3. This shows that for this geometry
with this range of flow speeds, the SHS would be in the uniform regime, far from
the stagnant cap regime, such that our model would predict accurate estimates of
the impact of surfactant on the slip length, drag reduction and average Marangoni
shear rate.

7.2. Comparison to experimental studies of surfactant effects
Another application of our model is to analyse experimental studies reporting
degradation of the performance of SHSs where surfactant contamination could be the
cause. For example, two recent studies by Peaudecerf et al. (2017) and Song et al.
(2018) identified surfactant as the cause for the reduced or negligible slip measured
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883 A18-30 J. R. Landel and others

near SHSs in laminar channel flows. As we discuss in detail in appendix D, the main
difficulty in applying our model to predict the reduction in slip in their experiments
is the absence of information regarding the surfactant properties and concentration.
This is due to the fact that the surfactants were not introduced artificially, but were
present as unwanted and unknown contaminants in their experiments.

Nevertheless, we can use our model to analyse a posteriori the impact of surfactant
in the studies of Peaudecerf et al. (2017) and Song et al. (2018). Assuming different
possible surfactant types, we find that our theoretical model can predict physically
sensible concentrations ĉ0, which would lead to the reduced slip measured in their
experiments. As detailed in appendix D, our model predicts that for instance a ‘strong’
surfactant (see Peaudecerf et al. 2017) would only require minute traces, far below
typical environmental concentrations, to reduce the slip velocity uI as measured by
Peaudecerf et al. (2017) and Song et al. (2018). A weak surfactant, e.g. SDS, would
require large ĉ0 close to the critical micellar concentration, whilst an intermediate
surfactant (see appendix D) would require small ĉ0 at or below typical environmental
conditions. Hence, our model predictions are consistent with the experimental
results of Peaudecerf et al. (2017) and Song et al. (2018) attributing their reduced
performance to surfactant contaminant traces. Our model can also provide a rational
a posteriori explanation for other experimental and field measurements that have
reported poor SHS drag reduction performance, in contradiction to surfactant-free
theoretical or numerical predictions. Therefore, our model could help design future
SHSs to mitigate or avoid surfactant effect a priori, for instance by identifying the
optimal geometry and flow conditions for a given surfactant contaminant.

7.3. Analytical limits for slip and drag
It can be instructive and useful to examine practically relevant limits where our results
simplify. We discuss effects of key dimensionless groups, and derive expressions in
the limits of insoluble surfactant, and of very long gratings. In the latter case, it is
possible to immediately predict the drag reduction without the need to solve the full
Stokes flow problem. In any other case, we recommend using the MATLAB codes
provided as supplementary materials.

To model insoluble surfactant, consider the interfacial advection–diffusion equation
(3.7), setting the kinetics term on the right-hand side to zero. Integrating from the
upstream stagnation point x=−g/2 to x0, and dividing through by Γ ∗|x0 , we obtain

uI|x0,ins =
γMa

Γ ∗|x0 PeI
. (7.1)

Dividing by γMa we find the plastron slip length, in the insoluble limit

λx0 |ins =
1

Γ ∗|x0 PeI
'

1
Mains

, (7.2)

where we assume that Γ |x0 ' Γs, where Γs is the (uniform) interfacial concentration
found in static conditions, and Mains is a Marangoni number for an insoluble
surfactant, namely

Mains = Γ
∗

s PeI = ΓsMa PeI =
Γ̂s

Γ̂m

nσ R̂T̂Γ̂m

µ̂Û

Ûĥ

D̂I

=
Γ̂snσ R̂T̂ĥ

µ̂D̂I

. (7.3)
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Slip length model with surfactant traces 883 A18-31

Therefore, in the insoluble case, the plastron slip length is simply inversely
proportional to Mains, such that Mains → ∞ yields zero slip (λx0 → 0), whereas
Mains→ 0 allows the plastron to be free slip (λx0 →∞), analogously to the soluble
case.

In general, computing the effective slip length (or equivalently the drag) requires
going through the Stokes flow calculation described in § 4. However, in the g� 1
limit, it is also possible to evaluate analytically the effective slip length λe, and
therefore the drag reduction. We start from (4.34), which expresses λe as a function
of γMa and E0. Note that, based on (C 7),

E0|g�1 =
E(0)|g�1

(1− γMa)
'

φ

(4− 3φ)
, (7.4)

yielding λe in terms of (γMa, φ)

λe|g�1 '
2φ(1− γMa)

(4− 3φ)− φ(1− γMa)
. (7.5)

To calculate γMa in the insoluble limit, we use (7.1) to eliminate uI in (4.22), and
obtain

γMa|ins '
MainsF0

1+MainsF0
. (7.6)

For F0 = uIc/[2(1 − γMa)], we use the large-g approximation (4.28), that is
F0 ' 1/(4− 3φ). Substituting into (7.6) and then into (7.7), the effective slip length
for insoluble surfactant over a long grating is found explicitly as

λe|ins,g�1 '
2φ

Mains + 4(1− φ)
. (7.7)

For long gratings, analytical expressions for λx0 and λe are also possible in the case
of soluble surfactant. If g� 1, we expect the diffusive boundary layer to be limited
by the channel height, and therefore δ will approach a constant. From our simulations,
we find δ ' 1.20 in this limit. For the plastron slip length, if g is sufficiently large,
we expect the second term in (3.28) to be dominant, yielding

λx0 |g�1 '
2a2

a1 k∗
g2 Biχ

χ + 1.20 Bi Pe
. (7.8)

To find λe, we calculate γMa using (4.29), where we again set δ ' 1.20 and
F0 ' 1/(4− 3φ). Without further approximation we obtain

γMa|g�1 '
a1k∗PeI(χ + Bi Pe)

(χ + Bi Pe)[(4− 3φ)+ a1k∗PeI] + 1.20 a2(4− 3φ)g2BiχPeI
. (7.9)

Recalling that a1 = 2.30 and a2 = 0.319, equations (7.9) and (7.5) together provide
explicitly the effective slip length as a function of surfactant properties and geometry,
without the need to solve the full Stokes flow problem. The drag reduction is then
found from (4.36), as before.
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7.4. Tentative deductions for turbulent regimes
Applications of our model in turbulent regimes might be possible if a sufficiently thick
viscous sublayer exists. If the surfactant transport occurs within the viscous sublayer,
where the flow is laminar, the viscous sublayer height would be the appropriate
length scale instead of ĥ, and the flow velocity at the edge of the viscous sublayer
would be the relevant velocity scale Û. In that case, the local characteristic velocity
F0Û at the interface may be sufficiently small to avoid the partial SC regime. While
the resulting predictions based on our model would be at best qualitative, it is of
great practical interest to explore this tentative application to turbulent flows. Here
we restrict ourselves to examining the plastron slip length λ̂x0 , defined in (3.28) and
which does not depend on whether the flow is internal (e.g. channel flow) or external
(e.g. a boundary layer).

In a turbulent boundary layer, with dimensional wall shear stress τ̂w, the canonical
scales are the shear velocity ûν =

√
τ̂w/ρ̂ and the viscous length scale δ̂ν = ν̂/ûν (Pope

2000). The height of the viscous sublayer is of order 10 δ̂ν . At this distance from a
smooth wall, the flow velocity is of order 10 ûν (Pope 2000). We replace ĥ and Û
in our analysis with these turbulent scales and set a representative wall shear stress
τ̂w = 50 N m−2.

In practical applications, detection of a specific surfactant type is challenging.
However, dimensional surface tension σ̂ has been measured for both clean ‘synthetic’
seawater (labelled ‘σ̂0’ below), as well as for seawater samples collected through
cruises (Nayar et al. 2014, and references therein). For the purpose of estimating the
order of magnitude of k in this example, we use the Langmuir isotherm. While this
is less accurate than the Frumkin isotherm, it does not require k� 1, yet it provides
a relation between surfactant and surface tension that can be analytically inverted.
In a liquid at equilibrium (Chang & Franses 1995)

σ̂0 − σ̂ = nσ R̂T̂Γ̂m ln (1+ k). (7.10)

Schmidt & Schneider (2011) find that seawater that is away from major surfactant
sources (such as seasonal blooms of phytoplankton, oil seeps or wastewater treatment
facilities) has σ̂0 − σ̂ ∼ 10−4 N m−1 (see also Pogorzelski & Kogut 2001). Setting
nσ ≈ 2, R̂ = 8.314 kg m2/(s2 K mol), T̂ ≈ 300 K, Γ̂m ≈ 3.9 × 10−6 mol m−2 and
rearranging (7.10) for k, we obtain, for low surfactant oceanic conditions

k= exp
(
σ̂0 − σ̂

nσ R̂T̂Γ̂m

)
− 1≈ 0.005. (7.11)

Incidentally, this example yields k� 1, consistently with our set of assumptions. Note
that substantially higher k values can occur in oceans and lakes. In order to set up a
well-defined calculation, we consider SDS with concentrations ĉ0 = (0.01, 0.1, 1)mM,
corresponding to k = 1.79 × (10−3, 10−2, 10−1), which bracket the value of k found
in (7.11). We change the length of the grating ĝ from 1 µm to 2.5 cm, the latter being
the grating length in Park et al. (2014). We use (3.28) to calculate λ̂x0 , as shown in
figure 7.

To interpret figure 7, we note that one needs the effective slip length to be
comparable to the thickness of the viscous sublayer in order to achieve meaningful
drag reduction in turbulent flow (Rothstein 2010). For this substantial effective slip to
be possible, one needs the plastron to have an even larger slip length, since of course
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FIGURE 7. Order-of magnitude scaling for the slip length over the plastron of turbulent
superhydrophobic gratings, such as those considered by Park et al. (2014), as a function
of the grating length ĝ. A prescribed shear stress of 50 N m−2 is used in the calculation.
Panel (a) shows the mid-plastron slip length normalized by the viscous length scale δ̂ν ,
whereas panel (b) shows the corresponding dimensional results.

the solid walls will have no slip. (For context, recall that, in canonical surfactant-free
theories and simulations, the plastron is assumed to have infinite slip length.) Since
the viscous sublayer thickness is 10 δ̂ν , we propose that a plastron slip length of
approximately 100 δ̂ν is a tentative relevant threshold for useful drag reduction. This
value is marked by a dashed line in figure 7.

Note that, at small grating lengths ĝ, the first term on the right-hand side of
(3.28) dominates. This is independent of ĝ. At larger ĝ, the second term in (3.28)
dominates, eventually following a scaling of ĝ5/3, as shown in figure 7(b). The slip
length also increases with the inverse of ĉ0. These results suggest that useful drag
reduction may be possible provided the surfactant concentration is not too strong
and the plastron is sufficiently long in the streamwise direction. Our conclusions are
consistent with the experimental results of Park et al. (2014), who found strong drag
reduction for gratings in laboratory experiments, indicating that traces of surfactant
were not sufficient to negate drag reduction. However, our theory also indicates that
a large drag increase may occur for a ship equipped with SHS, when it navigates
through surfactant-rich waters, which are common in the coastal ocean, rivers and
lakes. Finally, we emphasize, once again, that these are tentative deductions, and that
our model will require additional work to provide quantitative drag predictions in
turbulent flow.

7.5. Relative importance of effects neglected in the present model
7.5.1. Surface rheology

It is also worth discussing some physical effects not considered in our model.
For example, surface rheology could play a role in the boundary condition (2.17)
if viscous surface stresses at the interface were comparable to viscous stresses in
the bulk. The relevant dimensionless groups accounting for this balance are the
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FIGURE 8. Variation of some of the characteristic non-dimensional numbers used in
our 137 numerical simulations depending on the regime. The non-dimensional number
KI,g=Big(1+ k)/F0 the ratio of the adsorption–desorption kinetic flux to the advective flux
at the interface. The parameter DI,g = χg(1+ k)/(F0Peg)

1/2 is the ratio of the transverse
diffusive flux through the diffusive boundary layer to the advective flux at the interface.
The function F0=F(g, φ, x= 0) is related to the interfacial slip velocity following (4.22).

Boussinesq numbers Boµ= µ̂s/µ̂ĝ and Boκ = κ̂s/µ̂ĝ, with µ̂s and κ̂s the surface shear
and the surface dilatational viscosities of the surfactant-laden interface, respectively.
The precise measurement of µ̂s and κ̂s is itself a challenging problem with many
open questions (Langevin 2014).

A recent experimental study by Zell et al. (2014), who employed a technique of
unprecedented precision, concludes that soluble surfactants can be regarded as surface
shear inviscid, with values of µ̂s below their experimental sensitivity of 10−8 kg s−1.
In our problem, we can expect a negligible effect from surface shear viscous stresses,
even at the smallest practical SHS length ĝ. Indeed, assuming a worst-case scenario
with µ̂s = 10−8 kg s−1 in water (µ̂ ≈ 10−3 kg m−1 s−1) we find Boµ � 1 for ĝ �
µ̂s/µ̂= 10−5 m, which is the case in practical applications.

Surface dilatational viscosities are even more challenging to measure, since
dilatational rheology and Marangoni stresses are necessarily coupled, and therefore
hard to distinguish, at an interface subject to compression or expansion (Kotula &
Anna 2015; Elfring, Leal & Squires 2016). However, a natural (although unverified)
assumption for soluble surfactant is to assume κ̂s ∼ µ̂s (Langevin & Monroy 2014),
leading to Boκ ∼Boµ. Thus, surface dilatational viscous stresses can also be considered
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negligible for SHS geometries with practical gap lengths ĝ� 10−5 m. Note also that
it is common to find an effective surface dilatational viscosity in the literature
which can be much larger than µ̂s. However, unlike the true intrinsic viscosity κ̂s,
the effective surface dilatational viscosity actually accounts for dissipation from
other non-rheological effects such as adsorption–desorption fluxes, which are already
accounted for explicitly in our study.

7.5.2. Viscous stresses in the gas phase
In this model, we have neglected viscous stresses from a gas phase inside the

grating compared with the other stresses, namely the driving viscous stress from the
liquid phase and the surfactant-induced Marangoni stress at the interface. To assess
the validity of this assumption, we compare an order-of-magnitude estimate of the
characteristic gas viscous stress with order-of-magnitude estimates of the other two
stresses.

Let us consider the condition of continuity of stress at a surfactant-free interface
of a SHS, where a viscous gas phase fills two-dimensional rectangular gratings of
depth Ĥg (see e.g. Schönecker & Hardt 2013; Crowdy 2017b). The gas viscous stress
at the interface, normalized by the characteristic driving stress from the liquid phase,
is at most of the order of εuIc/Hg, where uIc = ûIc/Û = 2F0(g, φ) is the maximum
shear-free interfacial velocity computed using (4.23) at x= 0 and with γMa= 0, where
ε = µ̂g/µ̂ is the dynamic viscosity ratio between the gas and liquid phases, and
Hg= Ĥg/ĥ is the normalized depth of the grating. From all our simulations presented
in figures 4–6, we estimate that the gas viscous stress is negligible compared with
the driving stress from the liquid phase, εuIc/Hg� 1, for all Ĥg & 10−5 m, except at
high viscosity ratio ε& 1. To calculate ε we have assumed that the gas in the grating
is air, µ̂g = 1.81 × 10−5 kg m−1 s−1, whilst the liquid viscosity varies over a broad
range such that 1.81× 10−4 6 ε 6 1.81× 105.

Compared with the Marangoni stress measured in our simulations, which can be
estimated as k∗/g when normalized with the driving viscous stress from the liquid
phase (see (3.2) and (3.16)), the gas viscous stress is also negligible in all our
simulations, (εuIc/Hg)/(k∗/g) � 1 for all Ĥg & 10−5 m and all ε. If we assume
Ĥg ∼ 10−6 m, we find that the gas viscous stress is of the same order of magnitude
as the Marangoni stress in a small number of simulations only.

We have also studied the effect of air viscosity in the experiments of Peaudecerf
et al. (2017) and Song et al. (2018), who measured the velocity profile near the
air–water interface of SHSs made of longitudinal rectangular gratings in laminar
channel flows. We find that the normalized air viscous stress at the interface is
approximately εuIc/Hg ≈ 0.05 in the experiments of Peaudecerf et al. (2017) and of
the order of 0.001 to 0.01 in the experiments of Song et al. (2018). This ratio falls
by at least an order of magnitude when using their measured (reduced) slip velocity
uI , instead of our theoretical shear-free prediction (4.23). Since air viscous stresses
are typically several orders of magnitude smaller than the characteristic driving force
from the water phase, air viscous effects alone cannot explain the negligible or
reduced slip velocity measured in their experiments. As we have shown above, the
presence of surfactants, as modelled in this study, provides a consistent explanation
for the reduced or negligible slip they measured.

The experimental and numerical study of Schäffel et al. (2016) also provides
compelling evidence that viscous effects from a gas phase are generally negligible
or second-order effects. They report experimental local and effective slip lengths in
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microfluidic channel flows over a SHS made of pillars. Since their geometry differs
from the rectangular gratings considered in our model, the effect of Marangoni
stresses due to the presence of surfactant is more difficult to estimate. Any surfactants
in their experiments are transported over a complex two-dimensional interface with
multiple local stagnation points, rather than a one-dimensional interface with two clear
stagnation points. Nevertheless, their comparison between experimentally measured
slip lengths and the slip lengths obtained from numerical simulations is revealing.
Using their notation, the local experimental slip lengths, named blocal,exp (see their
figure 2b), is approximately 7 %–93 % lower (depending on the location at the
interface) than the slip lengths obtained numerically, which already account for
viscous effect from the gas phase (named bcp, see their figure 4b). Moreover, they find
that if viscous effects from the gas phase are neglected in the numerical simulations,
the effective (global) slip length increases only slightly, from beff ,th = 4.0 µm to
4.3 µm, compared with beff = 1.7 µm as measured experimentally. They attribute the
58 % reduction in the experimental effective slip length to ‘interface contamination’,
i.e. surfactant, explaining that viscous effects from the gas phase cannot explain the
discrepancy with their numerical simulations.

Based on our own simulations and the studies of Schäffel et al. (2016), Peaudecerf
et al. (2017) and Song et al. (2018), we find that viscous effects from a gas phase
inside SHS gratings can generally be neglected for most practical applications, as
intuitively expected and commonly assumed in the SHS literature. Indeed, in many
applications or experimental studies on SHS, the liquid and gas phases are often water
and air, respectively, such that ε ≈ 0.02 is very small. Moreover, the grating depth
Ĥg can often be made sufficiently large so as to minimize viscous effects from the
gas phase. The criterion found based on our simulations is Ĥg & 10−5 m, which is
technically feasible in many applications and often necessary in experiments to prevent
collapse of the plastron during the filling of the chamber. We note that, in general,
this criterion depends on the geometry, such as the ratios Hg and Hg/g, and whether
the flow is confined in a channel or unbounded in a semi-infinite domain. For further
detail about viscous effects from the gas phase in surfactant-free SHS flow, we refer
the reader to the theoretical and numerical studies of Schönecker & Hardt (2013),
Schönecker, Baier & Hardt (2014) and Crowdy (2017b). These studies also show that
gas viscous effects are mainly important at large ε or small Hg, consistently with
our findings. In these particular regimes, both viscous effects from the gas phase
and surfactant Marangoni stresses would need to be modelled in order to assess their
respective contribution on the drag reduction of the SHS.

7.5.3. Interface deformation
Another physical mechanism not considered in the present study is the effect

of interface deformation. Many studies have investigated the effect of lateral or
longitudinal curvature of the air–water interface of SHSs (see e.g. Crowdy (2017b),
Kirk et al. (2017), Game, Hodes & Papageorgiou (2019) and references therein). They
have found positive or negative impact depending on the curvature sign (whether it
points towards the liquid phase or the gas phase), geometry (transverse or longitudinal
SHSs), whether the flow is bounded or unbounded (Kirk et al. 2017) and the Reynolds
number (Game et al. 2019).

The deformation of the interface could be due to the gravity force, viscous forces
or a pressure difference across the interface. These forces must be compared with
the surface tension, which resists deformations associated with an increase in surface
area of the interface, i.e. flattening the plastron in this specific problem. In general,
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gravity can be neglected since the smallest length scale in microfluidic applications
is much smaller than the capillary length, which in this case has a typical value of
l̂c=

√
σ̂0/(1ρ̂ âg)≈ 2.7× 10−3 m. For this estimate we have chosen the representative

values of σ̂0 ≈ 7.2 × 10−2 N m−1 for the surface tension, âg = 9.81 m s−2 for the
gravitational acceleration and 1ρ̂ ≈ 1000 kg m−3 for the air–water density difference.
Similarly, viscous forces are neglected in most applications due to small capillary
numbers near the interface CaI = uICa = µ̂ûI/σ̂ . We typically find CaI . 10−3 for a
surfactant-free air–water interface across our range of parameters. We note the effect
of surfactant would on the one hand tend to reduce σ , thus enhancing interfacial
deformation. On the other, as we have shown in this study, surfactant would reduce uI ,
thus limiting interfacial deformation. The reduction of uI can occur at concentrations
much smaller than concentrations necessary to change the surface tension noticeably
(Chang & Franses 1995). Hence, we intuitively expect that viscous forces would have
negligible effect, even when combined with surfactant, in regimes where surfactants
affect uI . The capillary length and the capillary number depend on the properties of
the fluids on either side of the interface. Although air–water systems, as assumed
above, are the most common across real applications, laboratory and field experiments,
these characteristic numbers would need to be examined carefully in more specialized
applications (e.g. liquid metals for micro-cooling, Lam et al. 2015).

The effect of pressure difference is one of the most common cause of interfacial
deformation (e.g. Game et al. 2019). Interfacial curvature typically depends on
the ratio of the pressure difference and the surface tension, 1p/σ , following the
Young–Laplace law. Thus, surfactant could enhance curvature by reducing σ , thereby
affecting the performance of the SHS. Similar to what we noted for viscous effect,
we expect the negative impact of surfactant on uI via Marangoni effects to be
generally more important than via interface deformation. If the pressure difference
is large enough, there can exist some regimes where both interface deformation and
Marangoni stresses are important. The combined effects on SHS performance of
negative Marangoni effects and positive or negative interfacial deformation effects
would be an important topic for future research.

7.5.4. Three-dimensional effects
Although the geometry used in our model is two-dimensional, we expect the

model to give a reasonable estimate of the impact of surfactants for flows above
three-dimensional rectangular longitudinal SHS gratings, similar to those used by
Peaudecerf et al. (2017) and many other studies. For three-dimensional gratings with
small aspect ratio w/g = 1/15, Song et al. (2018) observed three-dimensional flows
with recirculations along the side boundaries or via the interior, depending on whether
the interface was convex or concave. Overall, they found significant reduction of the
slip velocity at the interface due to surfactant contamination, which shows that these
three-dimensional recirculation flows are secondary effects compared to the mean
two-dimensional effects due to the surfactant-induced Marangoni forces. For cases
without this recirculation pattern, we expect surfactants to be advected along the
grating, forming a longitudinal surfactant gradient which is approximately uniform
in the spanwise direction (i.e. across the grating width). Owing to spanwise viscous
friction, we can also note that our model would give a lower bound prediction on the
surfactant-induced Marangoni shear, or conversely, an upper bound for the effective
slip length and maximum drag reduction.
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8. Conclusions
In this study, we present a reduced-order scaling model to account for the impact

of soluble surfactants in channel flows with superhydrophobic surfaces. The drag
reduction potential of superhydrophobic surfaces can be severely reduced if surfactants
adsorbed onto the plastron induce Marangoni forces opposed to the flow. These
Marangoni forces develop when a gradient of surfactant establishes along the interface.

To simplify the governing equations of this problem, we first linearized the kinetics
source terms for the surfactant flux between the bulk and the interface, as well
as the coupling condition balancing the viscous force and the surfactant-induced
Marangoni force. This linearization holds for small surfactant concentration Γ � 1,
which is a reasonable assumption for most applications where surfactants are not
artificially added. Then, integrating the transport equations in the bulk and at the
interface, we find a linear relationship between the interfacial slip velocity at mid-gap
and the interface-averaged surfactant-induced Marangoni shear, given by (3.28). This
relationship depends explicitly on the non-dimensional numbers k∗ = kMa, which
combines both the non-dimensional bulk background surfactant concentration k and
the Marangoni number Ma, as well as Pe, PeI , g, Bi and χ .

To obtain a global effective slip length and to predict how surfactant transport
can affect the flow rate and the drag reduction potential of the SHS, we solve
the continuity and momentum conservation equations for low-Reynolds-number flow.
Using a technique based on the work of Lauga & Stone (2003) for surfactant-free SHS
flow, we solve Stokes’ equation with mixed boundary conditions and a prescribed
shear profile at the interface. In the case of a uniform interfacial shear γMa, the
interfacial velocity relates linearly to 1− γMa, where the coefficient of proportionality
depends on the geometric non-dimensional parameters of the SHS, namely the
grating length g and the gas fraction φ. We close the problem and eliminate the
interface velocity by using our earlier result, based on the surfactant problem, that
also related interface velocity to shear. Hence, we find that the average Marangoni
shear γMa depends on seven non-dimensional parameters: k∗, Pe, PeI , Bi, χ , g
and φ, following (4.29). The dependence on the geometry is implicit through the
function F0(g, φ), which can be solved from the linear problem (4.12) assuming
a surfactant-free Stokes flow in the same geometry. We find that the effective slip
length is λe = 2(1 − γMa)E0/(1 − (1 − γMa)E0), see (4.34), where E0 = Qd,0/2 with
Qd,0 the added volume flow rate in a SHS channel flow without any surfactant.
The corresponding added flow rate Qd and drag reduction DR due to the SHS, in
the general case of a surfactant-contaminated flow, can be determined from the
effective slip length following (4.31) and (4.36), respectively. These equations show
how the slip length, the added flow rate and the drag reduction are affected by the
surfactant-induced Marangoni shear rate at the interface.

In order to test the regime of validity and the accuracy of our model, we performed
137 finite-element numerical simulations of the full governing equations in steady,
pressure-driven, laminar channel flows, inclusive of soluble surfactants following
(2.2)–(2.13). We varied the governing non-dimensional groups across a broad range of
values to explore the vast parameter space of this problem (see figure 8, appendix A,
table 1 and the supplementary table S1). The model predictions for λe, DR and γMa
follow well the numerical results across almost all the parameter space explored.
The model coefficients are determined through a least-squares fit for λe, yielding
a1 = 2.30, a2 = 0.319, δ0,3 = 1.68 and δ1,3 = 0.0528. The flows that are least well
captured by our model correspond to the ‘partial stagnant cap regime’, which is also
found in air bubbles rising in surfactant-contaminated water. This regime occurs at

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

85
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 C
en

tr
e 

of
 In

te
rn

at
io

na
l S

tu
di

es
, o

n 
08

 D
ec

 2
01

9 
at

 1
6:

42
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.857
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Slip length model with surfactant traces 883 A18-39

very large F0PeI,g, and low DI,g or low KI,g. The partial SC regime exhibits a sharp
increase in the shear rate at the transition between a shear-free upstream part and
a no-slip downstream part of the interface, which differs from our assumption of a
uniform Marangoni shear along the interface. Nevertheless, at least for the simulations
performed here, our model predictions are sufficiently accurate for practical purposes.
It will be important to test the accuracy of our model also in more complex flows.

Canonical SHS models, which completely neglect surfactant effects, can yield a
large error in the prediction of the slip length and of the drag reduction, as shown in
figures 4 and 5. In particular, the error is very large, by several orders of magnitude,
at large Marangoni stresses. Hence, models neglecting surfactant can significantly
overestimate the drag reduction potential of the SHS. This is particularly important
in applications where small background environmental surfactant traces are sufficient
to induce strong Marangoni forces, as previously found by Peaudecerf et al. (2017).

Overall, the model we present provides a useful quantitative estimate of the
effect of surfactants on the drag reduction potential of SHSs, across a vast part of the
parameter space except in the partial stagnant cap regime. Our scaling predictions can
be used directly in numerical simulations of flow over a SHS in realistic conditions
where surfactants cannot be neglected. The effective slip length λe can be used in
a Navier-slip boundary condition on the SHS side, without having to solve the full
coupled nonlinear surfactant transport problem. This will reduce considerably the
computational burden associated with realistic simulations of SHS flows. We also
note that our model can be easily adapted for a two-sided SHS channel, via changes
in the boundary conditions in the Stokes flow problem (see § 4.1). This change in
boundary conditions will modify the geometric function F0.

Future work will investigate how the model can be modified for more complex
three-dimensional flows over SHSs, such as pillars or disordered SHSs. Apart from
annular flows (Lee et al. 2008; Song et al. 2018) or very long air–water interfaces
(Peaudecerf et al. 2017), accumulation of surfactant at stagnation points in these
three-dimensional problems can also lead to surfactant-induced Marangoni stresses.
Predicting the magnitude of these forces and the overall effect on the effective slip
length or the drag reduction is a complex problem. Many applications operate at
larger Reynolds numbers, where the effect of turbulence on the surfactant Marangoni
stresses may be important. At intermediate Reynolds numbers, where the viscous
sub-layer forming at the SHS is sufficiently thick compared with the surfactant
diffusive boundary layer thickness, our scaling model may still be applicable, though
the empirical parameters may differ from those found here. At very large Reynolds
numbers, turbulence is likely to enhance the diffusion of surfactant in the bulk and at
the interface, which could change the concentration gradients and result in intermittent
localized Marangoni forces at the interface. These problems have a direct impact on
the performance of SHSs in many applications, and constitute important topics for
future studies.
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Supplementary materials
Supplementary materials are available at https://doi.org/10.1017/jfm.2019.857.

Appendix A. Key dimensionless numbers across all numerical simulations
To help provide a visual overview of the simulations performed, figure 8 plots

the value of each dimensionless group on the vertical axis, with the horizontal axis
indicating different simulations. Ranges for each parameter were also reported earlier
in table 1. Detailed values are included in table S1 of the Supplementary Materials.

Appendix B. Diffusive boundary layer thickness
To determine an estimate of the boundary layer thickness δ for the surfactant

concentration, we build on the result in § 3.2 and perform a scale analysis of the
bulk advection–diffusion equation (3.6), which is expanded below as

u
∂c
∂x
+ v

∂c
∂y
=

1
Pe

(
∂2c
∂x2
+
∂2c
∂y2

)
. (B 1)

In the surfactant adsorption (respectively desorption) boundary layer forming above
the interface, we denote the characteristic variation of the bulk concentration as 1c.
In the streamwise direction, we expect the change 1c to take place between between
x=−g/2 and x= x0 (respectively x0 and g/2), as sketched in figure 2. As explained
in § 3.2, x0 is defined as the interface location where the kinetic flux S vanishes.
Under the assumption of low interfacial concentration (see (3.16) and text above),
we previously found that the adsorption and desorption diffusive boundary layers are
approximately anti-symmetric and of characteristic streamwise length scale ∼g, as
depicted in figure 2(b).

If we focus on the adsorption region of the interface, c at the interface is denoted
as cI , which varies by a scale 1cI between x=−g/2 and x= x0, where S= 0 implies
cI ∼ 1. In addition, the characteristic cross-stream variation, across the boundary layer,
is from cI to 1, implying that this variation in c also scales as 1cI . Therefore, in both
the x− and y− directions, 1c=1cI over characteristic distances g and δ, respectively.

We denote the characteristic streamwise and cross-stream velocities in the diffusive
boundary layer as Uδ and Vδ, respectively. Hence, a scale analysis of equation (B 1)
gives

Uδ

1cI

g
+ Vδ

1cI

δ
∼

1
Pe

(
1cI

g2
+
1cI

δ2

)
, (B 2)

where we can divide throughout by 1cI . Thus, δ is a function of the Péclet number
Pe, the interface length g, as well as Uδ and Vδ. These velocity scales are expected to
depend on the geometrical parameters g and φ, as well as on the interfacial velocity
uI and the characteristic shear rate profile γMa. We now seek an explicit dependence
of Uδ and Vδ on these parameters.

We assume that the diffusive boundary layer thickness is not affected by the
channel height, such that δ < 1. We also assume that a diffusive boundary layer above
a particular interface is independent from the other interfaces, and thus independent
of the gas fraction φ. We retain the dependence on the interface length g. We
can distinguish two main limits influencing Uδ and Vδ, depending on the boundary
condition at the interface. This can either consist of a finite slip and negligible shear
(uI > 0 and γMa� 1), or of no slip and finite shear (uI = 0 and γMa ∼ 1). Hence, in
general, Uδ ∼ uI + γMaδ. The two cases are analysed further below.
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(i) First, for uI > 0 and γMa� 1, according to the analysis in appendix C, we have
Uδ ∼ uI ∼ g for g . 1, and Uδ ∼ uI ∼ 1 for g & 1. We determine the scale for
Vδ using the continuity equation (3.4), which gives Vδ ∼Uδδ/g. Replacing these
velocity scales into (B 2), we find

δ

g
= δ0,1(1+ δ1,1g2Pe)−1/2 for g . 1 (B 3)

and
δ

g
= δ0,2(1+ δ1,2gPe)−1/2 for g & 1, (B 4)

where δ0,1, δ1,1, δ0,2, δ1,2 are empirical parameters.
(ii) Second, for uI negligible and γMa ∼ 1, Uδ depends only on the ratio of the

thickness of the diffusive boundary layer and the channel height: Uδ ∼ δγMa = δ
for δ < 1. This regime is also known as the Lévêque regime (Lévêque 1928;
Landel et al. 2016). Note that Vδ∼ 0 in this case. Replacing these velocity scales
into (B 2), we find the asymptotic behaviour

δ

g
= δ0,3(1+ δ1,3g2Pe)−1/3, (B 5)

for any g> 0, and with δ0,3 and δ1,3 two empirical parameters.

As noted before, the results (B 3)–(B 5) are valid provided δ < 1, which is
satisfied for large enough Péclet numbers or small enough gap length. For an
intermediate regime with partial slip and partial shear, i.e. Uδ ∼ uI + γMaδ, we
expect that the boundary layer thickness has an exponent between −1/2 and −1/3.
The transition between the slip-dominated regime, with scaling (B 3) or (B 4), and
the shear-dominated regime, with scaling (B 5), should be smooth at low Reynolds
numbers.

Appendix C. Asymptotic limits for the slip velocity
The computation of the slip velocity yields distinctive simplified behaviours in the

limits of large and small gap length g, as evidenced in figure 3. In this section, we
analytically derive asymptotic limits for the slip velocity profile uI(x), and confirm
their agreement with the numerically computed values at mid-gap from figure 3.

We start by considering the so-called dual series comprised of equations (4.7) and
(4.11)

2E+
∞∑

n=1

dnαn cos(knx)= 0 for g/2< |x|6 L/2, (C 1a)

E+
∞∑

n=1

dnβn cos(knx)= 1− γMa for |x|< g/2, (C 1b)

with αn and βn defined in equations (4.8) and (4.10), respectively. From this set of
expressions, it is possible to obtain a closed form of the asymptotic behaviour of the
slip velocity by considering only the leading order of αn and βn in the relevant limits.
This is done in a similar fashion to Lauga & Stone (2003) and Teo & Khoo (2009),
who derived expressions for the effective slip length from the asymptotic behaviour
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of the first coefficient E. However, the slip velocity depends on the whole set of
coefficients, and in this case it is not enough to derive an expression for the first
coefficient only. Indeed, recall the form of uI(x) from (4.20)

uI(x)= 2E+
∞∑

n=1

dnαn cos(knx). (C 2)

The derivations of uI(x) and its value at mid-gap uIc = uI(x = 0) in the limits of
large and small g are presented in the next two subsections.

C.1. Limit of large gap length
Consider the limit g→∞, with the gas fraction φ fixed. Since L= g/φ, note that this
case necessarily implies L→∞ as well. Note that, due to our choice of the channel
height ĥ as the length scale for the non-dimensionalization, this limit corresponds to
a ‘narrow’ channel with the top wall close to the plastron. Consequently, we have

kn =
2πn

L
→ 0, (C 3)

and in this limit αn and βn can be expanded as

αn =−
4k3

n

3
+O(k5

n), (C 4a)

βn =−
8k3

n

3
+O(k5

n). (C 4b)

Taking into account that kn∼L−1, the expressions (C 1) and (C 4) lead to the following
expansions of the unknown Fourier coefficients:

E= E(0) +O(L−1), (C 5a)
dn = d (0)

n L3
+O(L2). (C 5b)

Substituting (C 4) and (C 5) into (C 1) we arrive at the leading-order dual series for
E(0) and d (0)

n . After introducing the changes of variable d̂ (0)
n = (2πn)3 d (0)

n and z =
2πx/L, this dual series yields

3
2

E(0) −
∞∑

n=1

d̂ (0)
n cos(nz)= 0 for φπ< |z|6π, (C 6a)

3
8

E(0) −
∞∑

n=1

d̂ (0)
n cos(nz)=

3
8
(1− γMa) for |z|<φπ, (C 6b)

and its coefficients can be obtained exactly. Indeed, after integrating (C 6a) from φπ

to π and (C 6b) from 0 to φπ, one can then sum the two expressions and obtain

E(0) =
φ(1− γMa)

(4− 3φ)
. (C 7)
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The rest of the coefficients d̂ (0)
n can be retrieved multiplying (C 6) by harmonics of the

form cos(mz) with m∈N and m> 1. Then, applying the same procedure of integration
and summation and invoking orthogonality between the functions, we arrive at

d̂ (0)
n =−

3(1− γMa)

(4− 3φ)
sin(nπφ)

nπ
. (C 8)

Using the obtained set of coefficients, one can now evaluate the slip velocity.
Substituting (C 4a) and (C 5) in (C 2), we have

uI(z)= 2E(0) −
4
3

∞∑
n=1

d̂ (0)
n cos(nz)+O(L−1). (C 9)

Applying (C 7) and (C 8), one subsequently obtains

uI(z)=
2(1− γMa)

(4− 3φ)

[
φ + 2

∞∑
n=1

sin(nπφ)

nπ
cos(nz)

]
+O(L−1). (C 10)

First, note that for φ= 0 the above expression (C 10) yields uI(x)= 0 at leading order,
as one would expect. We then observe that the expression in brackets in (C 10) is
the Fourier cosine series of a square wave with value 1 for |z − 2jπ| < φπ and 0
for φπ< |z− 2jπ|6 π, where j ∈N. Consequently, by virtue of the uniqueness of a
Fourier series one has, after undoing the change of variables

uI(x)=


2(1− γMa)

(4− 3φ)
+O(L−1) for |x|< g/2,

0 for g/2< |x|6 L/2.
(C 11)

The fact that the slip velocity tends to a constant value as g→∞ is expected, due
to the confinement effect of the top wall. Indeed, the disparity of horizontal and
vertical length scales (g� 1) leads to a lubrication regime in which the slip velocity
asymptotically tends to a constant along the plastron. In such a regime, the velocity
field can be approximated as unidirectional in the central ‘core region’ following the
thin-gap approximation (see for instance the examples in Leal 2007). From (C 11),
the value of the slip velocity at mid-gap uIc = uI(x= 0) would then yield at leading
order

uIc

2(1− γMa)
'

1
4− 3φ

, (C 12)

where uIc has been normalized with 2(1 − γMa) following § 4. Notice that this
normalization implicitly assumes 0 6 γMa < 1, however, in the case γMa = 1, it is
straightforward from (C 11) that uIc = 0 at leading order.

The expression (C 12) is plotted in figure 3(b), confirming the trend of the values
uIc computed numerically. Moreover, note that within this asymptotic regime g→∞,
the expression (C 12) leads to the two following limits

uIc

2(1− γMa)
∼ 1 for φ→ 1, (C 13a)

uIc

2(1− γMa)
∼

1
4

for φ→ 0, (C 13b)

which are corroborated as well by the asymptotic behaviour in figure 3(a).
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C.2. Limit of small gap length
Consider now the limit g→ 0, with the gas fraction φ fixed. Then, as in the previous
case, g → 0 necessarily implies L → 0 as well. This case corresponds to a ‘tall’
channel with distant top walls. We have

kn =
2πn

L
→∞, (C 14)

and therefore αn and βn can be expanded as

αn =−ekn +O(e−kn), (C 15a)
βn =−2knekn +O(e−kn). (C 15b)

Given the functional form of the leading-order terms in (C 15), we introduce the
change of variable d̂n = ekn dn and seek the expansions

E= E(0) + E(1)L+O(L2), (C 16a)

d̂n = d̂ (0)
n + d̂ (1)

n L+O(L2). (C 16b)

After re-scaling the spatial variable z= 2πx/L, we insert (C 15) and (C 16) into (C 1)
and group the O(1) terms to arrive at the leading-order dual series for E(0) and d̂ (0)

n

−2E(0) +
∞∑

n=1

d̂ (0)
n cos(nz)= 0 for φπ< |z|6π, (C 17a)

∞∑
n=1

n d̂ (0)
n cos(nz)= 0 for |z|<φπ, (C 17b)

which leads to E(0) = 0 and d̂ (0)
n = 0. The terms of order O(L) can then be grouped

into the following dual series for E(1) and d̂ (1)
n

−2E(1) +
∞∑

n=1

d̂ (1)
n cos(nz)= 0 for φπ< |z|6π, (C 18a)

∞∑
n=1

n d̂ (1)
n cos(nz)=−

1
4π
(1− γMa) for |z|<φπ. (C 18b)

The coefficients in (C 18) can be obtained exactly following the procedure of Sneddon
(1966). However, in this case it is not necessary to explicitly obtain E(1) and d̂ (1)

n in
order to obtain the slip velocity, since the left-hand side of equation (C 18a) can be
determined exactly for |z|<φπ (see p. 161 of Sneddon 1966)

−2E(1) +
∞∑

n=1

d̂ (1)
n cos(nz)= cos

( z
2

) ∫ φπ

z

h(t)
√

cos(z)− cos(t)
dt for |z|<φπ. (C 19)

Here h(t) can be retrieved from equation (5.4.60) in p. 162 of Sneddon (1966), which
in our case simplifies to

h(t) =
2
π

d
dt

∫ t

0

sin(z/2)
√

cos(z)− cos(t)

(∫ z

0

[
−

1
4π
(1− γMa)

]
du
)

dz
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= −

√
2

4π
(1− γMa) tan

( t
2

)
, (C 20)

where it is worth noting that the closed form of the integral∫ t

0

z sin(z/2)
√

cos(z)− cos(t)
dz=
√

2 π ln(sec(t/2)) (C 21)

has been used in the derivation above, obtained from Sbragaglia & Prosperetti (2007).
The desired slip velocity for 0 6 z< φπ can now be retrieved at leading order by

introducing the expansions (C 15) and (C 16) into (C 2) and using equation (C 19)

uI(z) = L

(
2E(1) −

∞∑
n=1

d̂ (1)
n cos(nz)

)
+O(L2)

= −L cos
( z

2

) ∫ φπ

z

h(t)
√

cos(z)− cos(t)
dt+O(L2). (C 22)

Making use of (C 20), integrating and undoing the change of variable we obtain the
velocity profile

uI(x)=

(1− γMa)
L

2π
arccosh

(
cos(πx/L)
cos(πφ/2)

)
+O(L2) for |x|6 g/2,

0 for g/2 6 |x|6 L/2.
(C 23)

The above formula (C 23), after setting γMa = 0 and a change in the variable
normalization is, at leading order, exactly half of the slip velocity obtained by
Sbragaglia & Prosperetti (2007) for a configuration with longitudinal no-shear
infinite gaps in a semi-infinite domain. This result is consistent with the analysis
of Asmolov & Vinogradova (2012), who conclude that the slip velocity profile in
such a configuration should be larger than that of the equivalent transverse case by
exactly a factor of two.

From (C 23), we can finally obtain the normalized slip velocity at mid-gap at
leading order

uIc

2(1− γMa)
'

g
4πφ

arccosh
(

sec
(

πφ

2

))
, (C 24)

where we have substituted L= g/φ.
From (C 24) we can corroborate the validity of the linear scaling uI ∼ g for g . 1.

Indeed, the asymptote (C 24) is plotted for φ = 0.99 in figure 3(a), showing good
agreement with the numerically computed slip velocity.

Consider now the limit φ → 0 within the regime of small gap length g → 0
investigated in this subsection. Then (C 24) yields, to leading order in g,

uIc

2(1− γMa)
∼

g
8

for φ→ 0. (C 25)

This is congruent with the linear asymptote for small g followed by the values
calculated numerically, which is also shown in figure 3(a).
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The coefficient E, which appears in the expressions for the effective slip length
(4.34) and drag reduction (4.36), can also be obtained in this limit from (C 18)
following Sneddon (1966). We make use of (C 20) to arrive at

E= E(1)L+O(L2) = −

√
2 L
4

∫ πφ

0
h(t) dt+O(L2)

= (1− γMa)
L

4π
ln
(

sec
(

πφ

2

))
+O(L2). (C 26)

Appendix D. Application of our model to experimental studies in the literature
showing reduced slip

We study the experimental results of Peaudecerf et al. (2017) and Song et al. (2018)
to analyse with our theoretical model how surfactant affected their SHS performance.
The slip velocities extrapolated from the measurements of Peaudecerf et al. (2017) on
the interface (z= 0) at mid-gap (y= 0) are: uI ≈ 4× 10−3

± 4× 10−3 for 2 mm long
lanes (see their figure 3d), which is practically negligible; and uI≈5×10−2

±9×10−3

for 30 mm long lanes (figure 3e), which is significantly reduced compared with the
theoretical (surfactant-free) prediction. (Note that we have non-dimensionalized these
velocities using the characteristic velocity U, following the convention used in the
present study.) Similarly, Song et al. (2018) report: uI ≈ 8 × 10−2 for 5 mm long
lanes (see their figure 3b), which is significantly reduced compared with the theoretical
(surfactant-free) prediction; and uI ≈ 8× 10−3 for 15 mm long lanes (figure 5), which
is practically negligible.

The main difficulty in applying our theoretical model, for instance to predict the
reduced slip velocities measured experimentally by Peaudecerf et al. (2017) and
Song et al. (2018), is that the surfactant properties and their concentrations are
completely unknown in their experiments. Instead, we use our model to predict
the concentration of surfactant, for three different possible surfactant types, which
could lead to the measured uI reported in Peaudecerf et al. (2017) and Song et al.
(2018). The three surfactants we choose are: a ‘strong’ poorly soluble surfactant with
properties described in Peaudecerf et al. (2017), a ‘weak’ highly soluble surfactant,
namely sodium dodecyl sulphate (SDS) and an ‘intermediate’ type with similar weak
properties as SDS but rendered almost insoluble in water by reducing its desorption
coefficient to κ̂d = 1 s−1 (instead of κ̂d = 500 s−1 for SDS in water). Surfactants
have a large number of parameters (κ̂d, κ̂a, D̂, D̂I , Γ̂m, A, nσ ), in addition to their
bulk background concentration ĉ0, which are almost all used in our theoretical
model (see (3.27) and (4.29), which we use to compute uI . Thus, by choosing only
three different types of surfactants from the vast parameter space, the analysis in
this section is primarily qualitative. The aim is to show that our theoretical model
provides physically meaningful explanations regarding the impact of surfactant in
experimental studies showing reduced SHS performance such as those of Peaudecerf
et al. (2017) and Song et al. (2018).

Assuming a strong surfactant, our model predicts that a bulk surfactant concentration
ĉ0 ∼ 10−13 mM can reduce uI in the same extent and under the same conditions as
reported by Peaudecerf et al. (2017) for both short and long lanes; and ĉ0 ∼ 10−15

to 10−14 mM for the experiments reported by Song et al. (2018). Assuming the
weak SDS surfactant, our model predicts ĉ0 ∼ 1 to 10 mM (i.e. near the critical
micellar concentration) to obtain the results of Peaudecerf et al. (2017) and ĉ0 ∼ 0.1
to 3 mM for the experimental results of Song et al. (2018). Assuming an intermediate
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surfactant, ĉ0∼10−5 to 10−4 mM would lead to the results of Peaudecerf et al. (2017),
and ĉ0∼ 4× 10−7 to 10−5 mM for the results of Song et al. (2018). These theoretical
predictions show that: (i) a very strong surfactant would require only minute traces,
unavoidable in normal environmental conditions, to strongly affect slip; (ii) whilst
at the other extreme, a weak surfactant such as SDS would require a concentration
of the order of the critical micellar concentration to lead to a no-slip or reduced
slip condition. Then, an intermediate surfactant would require small concentration at
or below a typical environmental background concentration to lead to a no-slip or
reduced slip condition.

Therefore, our theoretical model provides physically sensible predictions with
regard to surfactant types and concentrations that may have contaminated the
experiments of Peaudecerf et al. (2017) and Song et al. (2018). This is consistent
with their conclusions. We note that our theoretical model assumes a two-dimensional
channel geometry with one-dimensional interfaces, whereas the experiments are
three-dimensional with two-dimensional (flat) or three-dimensional (curved) interfaces
bounded laterally by no-slip walls. Hence, we expect our model to overpredict the
interfacial slip velocity (for a given surfactant type and concentration) or overpredict
the background surfactant concentration (for a given surfactant type and interfacial slip
velocity). This means that even lower surfactant concentrations could have affected
the experimental results of Peaudecerf et al. (2017) and Song et al. (2018).
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