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Colonies of the green alga Volvox are spheres that swim through the beating of pairs
of flagella on their surface somatic cells. The somatic cells themselves are mounted
rigidly in a polymeric extracellular matrix, fixing the orientation of the flagella so that
they beat approximately in a meridional plane, with axis of symmetry in the swimming
direction, but with a roughly 20 degree azimuthal offset which results in the eponymous
rotation of the colonies about a body-fixed axis. Experiments on colonies of V. carteri
held stationary on a micropipette show that the beating pattern takes the form of a
symplectic metachronal wave (Brumley et al. (2012)). Here we extend the Lighthill/Blake
axisymmetric, Stokes-flow model of a free-swimming spherical squirmer (Lighthill (1952);
Blake (1971b)) to include azimuthal swirl. The measured kinematics of the metachronal
wave for 60 different colonies are used to calculate the coefficients in the eigenfunction
expansions and hence predict the mean swimming speeds and rotation rates, proportional
to the square of the beating amplitude, as functions of colony radius. As a test of the
squirmer model, the results are compared with measurements (Drescher et al. (2009)) of
the mean swimming speeds and angular velocities of a different set of 220 colonies, also
given as functions of colony radius. The predicted variation with radius is qualitatively
correct, but the model underestimates both the mean swimming speed and the mean
angular velocity unless the amplitude of the flagellar beat is taken to be larger than
previously thought. The reasons for this discrepancy are discussed.
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1. Introduction

Volvox is a genus of algae with spherical, free-swimming colonies consisting of up to
50,000 surface somatic cells embedded in an extracellular matrix and a small number of
interior germ cells which develop to become the next generation (figure 1). Discovered
by van Leeuwenhoek (1700), who marveled at their graceful swimming, it was named by
Linnaeus (1758) for its characteristic spinning motion. The colony swims in a direction
parallel to its anterior-posterior axis thanks to the beating of a pair of flagella on each
somatic cell. All flagella exhibit an approximately coplanar, meridional beat, with the
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Figure 1. A colony of Volvox carteri. Small green dots are the somatic cells on the outside
(2, 000 − 6, 000 for V. carteri); larger green spheroids are the interior daughter colonies. The
photograph is taken from above, as the colony swims upwards towards the camera.

power stroke directed towards the rear i.e. from the north pole towards the south pole
except that the plane of beating is in fact offset from a purely meridional plane by an
angle of 10◦ − 20◦. It is believed that this offset causes the observed rotation (Hoops
(1993, 1997)). The colonies are about 0.3% denser than water, and swim upwards in still
water; this is because the relatively dense interior cells are clustered towards the rear,
so when the anterior-posterior axis is deflected from vertical the colony experiences a
restoring gravitational torque that competes with a viscous torque to right the colony
on a timescale of ∼ 10 s. It is remarkable that a typical, free-swimming Volvox colony
swims in a constant (vertical) direction, suggesting axially symmetric coordination of the
flagellar beating, and that it clearly rotates about the axis of symmetry.

1.1. Experimental background

During its 48-hour life cycle, the size of a Volvox colony increases, though the number
and size of somatic cells do not. Thus one would expect the sedimentation speed V
of a colony whose swimming was arrested to increase with colony radius a0, while its
upswimming speed U1 would decrease, both because of the increase in V and because,
even if it were neutrally buoyant, one would expect the viscous drag to increase with size
and hence the swimming speed U to decrease. Presumably the angular velocity about
the axis, Ω, would also decrease. Drescher et al. (2009) measured the swimming speeds,
sedimentation speeds, and angular velocities of 78, 81 and 61 colonies of V. carteri,
respectively, ranging in radius from about 100 µm to about 500 µm. The results are
shown in figure 2, where indeed both U1 and Ω are seen to decrease with a0, while V
increases. The expected swimming speed if the colony were neutrally buoyant would be
U = U1+V (Solari et al. 2006), where linearity is expected because the Reynolds number
of even the largest colony is less than 0.1, so the fluid dynamics will be governed by the
Stokes equations.

The purpose of this paper is to describe a model for Volvox swimming from which
both U and Ω can be predicted, and to compare the predictions with the experiments
of figure 2. The input to the model will be the fluid velocities generated by the flagellar
beating as measured by Brumley et al. (2012, 2015). Detailed measurements were made
of the time-dependent flow fields produced by the beating flagella of numerous V. carteri
colonies. Individual colonies were held in place on a micro-pipette in a 25 × 25 × 5 mm
glass observation chamber; the colonies were attached at the equator and arranged so
that the symmetry axis of a colony was perpendicular both to the pipette and to the field
of view of the observing microscope. The projection of the flow field onto the focal plane
of the microscope was visualised by seeding the fluid medium with 0.5µm polystyrene
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Figure 2. Swimming properties of V. carteri as a function of colony radius a0. Measured values
of the (a) upswimming speed U1, (b) angular velocity Ω, and (c) sedimentation speed V , as
well as (d) the deduced density offset ∆ρ = 9µV/2ga20 compared to the surrounding medium.
Adapted from Drescher et al. (2009).

Figure 3. Distribution of colonies by radius, for which the metachronal wave properties are
characterized. Adapted from figure 1(b) of Brumley et al. (2015).

microspheres at a volume fraction of 2× 10−4, and thirty-second-long high speed movies
were taken. The (projected) velocity field was measured using particle image velocimetry
(PIV); a total of 60 different colonies were investigated, ranging in radius from 48 µm to
251 µm (mean 144± 43 µm), the distribution of which is shown in figure 3.

One example of the time-averaged magnitude of the velocity distribution is shown in
figure 4(a). This is a maximum near the equator because the flagellar beating drives a
non-zero mean flow past the colony, parallel to the axis of symmetry and directed from
front to back. This is consistent with the fact that untethered colonies swim forwards,
parallel to the axis.

More interesting are the perturbations to this mean flow. Time-dependent details of
velocity field can be seen in supp. mat. movies S1 and S2. Close to the colony surface,
backwards and forwards motion, driven by the beating flagella, can be clearly seen;
further away the flow is more nearly steady. Figure 4 contains a series of snapshots
showing unsteady components of the (b) radial velocity, u′r, and (c) tangential velocity,
u′θ. It is immediately evident that the maximum of radial velocity propagates as a wave
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Figure 4. Experimental flow fields. (a) Magnitude (colour) and direction (arrows) of the
time-averaged velocity field measured with PIV. Radial (b) and tangential (c) components of
the unsteady fluid velocity field shown at various times through one flagellar beating cycle. Parts
a and b are adapted from figures 1(c) and (d) respectively of Brumley et al. (2015).

Figure 5. Kymographs of radial (a) and tangential (b) velocity around Volvox colonies,
measured at a radius of r = 1.3× a0.

from front to back, in the same direction as the power stroke of the flagellar beat – a
symplectic metachronal wave (Sleigh (1960)). This is further demonstrated in figure 5
which shows kymographs of ur and uθ measured at a distance r = 1.3×a0 from the colony
surface: the propagating wave is clearly seen in figure 5(a), which includes evidence
of an interesting phase defect, while figure 5(b) suggests that the tangential velocity
behaves more like a standing wave, dominated by the power stroke near the equator.
(The mechanism underlying the coordination of the flagellar beats between the thousands
of quite widely-spaced somatic cells is itself thought to stem from the fluid mechanical
interaction between them. Brumley et al. (2015) developed a model for this coordination,
as well as for phase defects; it will not be expanded on here.)

Each set of velocity measurements by Brumley et al. (2012) are projections onto a single
meridional plane. However, the clear axial symmetry of a Volvox colony, freely swimming
and spinning, indicates that it is reasonable to assume that the flagellar displacement
and the consequent velocity fields are also axisymmetric. The fact that the colonies were
held fixed means that a force and torque were applied to them while the measurements
were being made. This may mean that the flagellar displacements, relative to the colony
surface, differed from those for the same colony when swimming freely. The same goes for
any constraints felt by a pinned colony due to the proximity of the chamber walls, though
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this effect is probably small since the largest colonies have diameter around 500µm, about
one tenth of the minimum chamber dimension. We have no direct evidence on these
questions, and will assume that the two flagellar beats are the same.

The results of Brumley et al. (2012) show that a good fit to to the observations of the
radial velocity perturbations is given by the following simple form:

u′r|r=1.3a0 = σa0ε cos (kθ0 − σt), (1.1)

where θ0 is the polar angle, k, σ are the wave-number and frequency of the wave, and ε
is an amplitude parameter. The mean values of k, σ, ε over all the colonies observed were
k = 4.7, σ = 203 rad s−1, ε ≈ 0.035. Such data for each colony measured will make up
the full input to our model below.

1.2. Theoretical background

The model will be an extension to the swirling case of the spherical envelope (or
‘squirmer’) model for the propulsion of ciliated protozoa introduced by Lighthill (1952)
and Blake (1971b). When the surface of a cell is densely covered with beating cilia, as
for the protist Opalina for example, it is a very good approximation to treat the flow
around it as being driven by the displacement of a stretching flexible sheet, attached
to the tips of all the cilia and moving with them. The sheet will undergo radial and
tangential wave-like displacements, and it needs to stretch to accommodate temporal
variations between the displacements of neighbouring cilia tips (figure 6(a)). In the case
of Volvox carteri the tips of the beating flagella are not very close together; for a colony
of radius 200 µm, the average spacing between somatic cells is ∼ 20 µm, comparable
with the flagellar length, 〈L〉 = 19.9 µm (Brumley et al. (2014)), so the envelope model
may well be somewhat inaccurate. As indicated above, the new feature of our model is
the introduction of azimuthal swirl to the envelope model.

The theory will be given in the next two sections, first extending the Lighthill-Blake
model to include swirl, and second applying the model to Volvox on the basis of the data
of Brumley et al. (2012). The objective is to calculate the mean swimming speed Ū and
mean angular velocity Ω̄, and test the model by comparison with the measurements of
Drescher et al. (2009). The final section will include a discussion of discrepancies and the
model’s limitations.

2. Theory for squirmers with swirl

In the original, zero-Reynolds-number, spherical-envelope model of ciliated micro-
organisms (Lighthill (1952); Blake (1971b)), the radial and tangential Eulerian velocity
components (ur, uθ) are written as infinite series of eigensolutions of the Stokes equation:
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Figure 6. (a) Schematic diagram of a spherical Volvox colony at one instant in time, with
beating flagella and the envelope of flagellar tips. The radius of the extracellular matrix in
which the flagella are embedded is a0. The mean radius of the envelope is a; (R, θ) are the
coordinates of a surface element whose average position is (a, θ0) [Adapted from Blake (1971b),
but replotted with the experimentally-determined metachronal wavenumber]. (b) Measured tip
trajectory over multiple beats of a singleVolvox flagellum. The trajectory is fitted with an ellipse,
which is rotated at an angle ψ with respect to the local colony surface.

assuming axial symmetry. Here (r, θ0) are spherical polar co-ordinates, the Pn(cos θ0) are
Legendre polynomials, and

Vn(cos θ0) =
2

n(n+ 1)
sin θ0P

′
n(cos θ0). (2.2)

A trace of a typical flagellar beat is shown in figure 6(b), adapted from Brumley et al.
(2014), where it can be seen that the trajectory of the tip is approximately elliptical,
with centre about two-thirds of the flagellar length from the surface of the extracellular
medium. Thus a is taken to be the mean radius of a flagellar tip, so we take a ≈ a0+2L/3,
where L is the length of a flagellum. With the origin fixed at the centre of the sphere,
−U(t) is the speed of the flow at infinity (i.e. U is the instantaneous swimming speed
of the sphere). If the sphere is taken to be neutrally buoyant, it experiences no external
force, so the Stokeslet term must be zero, and

U =
2

3
B1 −

1

3
A1 (2.3)

(Blake (1971b)). Corresponding to the velocity field (2.1), the velocity components on
the sphere r = a are

ur(a, θ0) =

∞∑
n=0

An(t)Pn(cos θ0), uθ(a, θ0) =

∞∑
n=1

Bn(t)Vn(cos θ0). (2.4)

From this we can see that A1 should be zero, because it corresponds to longitudinal
translation of the centre, which is incorporated into U . However, we follow Lighthill
(1952) and not Blake (1971b) in retaining a non-zero A0. Blake wished to prohibit any
volume change in his squirmers, which is of course physically correct, although if there
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really were an impenetrable membrane covering the flagellar tips and if, say, all the
flagella beat synchronously, the envelope of their tips would experience a small variation
in volume, so A0 should not be zero. Our choice of sinusoidal velocity and displacement
wave, (1.1) and (3.1) below, in fact requires a non-zero A0 . It turns out that for the
parameter values applicable to Volvox the presence or absence of this term makes little
difference to the predictions of mean swimming speed, and it does not affect the angular
velocity anyway.

The surface velocities in Eq. (2.4) must in fact be generated by the motion of material
elements of the spherical envelope, representing the tips of the beating flagella. In the
Lighthill-Blake analysis, the envelope is represented by the following expressions for the
Lagrangian co-ordinates (R, θ) of the material elements:

R− a = aε

∞∑
n=0

αn(t)Pn(cos θ0) (2.5a)

θ − θ0 = ε

∞∑
n=1

βn(t)Vn(cos θ0). (2.5b)

The functions αn(t) and βn(t) are supposed to be oscillatory functions of time with zero
mean, and the amplitude of the oscillations, ε, is taken to be small. The most intricate
part of the theory is the calculation of the An and Bn in Eq. (2.4) in terms of the αn
and βn in Eq. (2.5). This will be outlined below.

The new feature that we introduce in this paper is to add axisymmetric swirl velocities
and azimuthal (φ) displacements to the above. The φ-component of the Stokes equation
is

∇2uφ −
uφ

r2 sin2 θ0
= 0 (2.6)

and the general axisymmetric solution that tends to zero at infinity is

uφ(r, θ0) =

∞∑
n=1

a Cn
an+1

rn+1
Vn(cos θ0), (2.7)

equal to

uφ(a, θ0) =

∞∑
n=1

a CnVn(cos θ0) (2.8)

on r = a. Now the total torque about the axis of symmetry is −8πµa3C1 and, since the
sphere is our model for a free-swimming Volvox colony, this, like the total force, must be
zero - i.e.

C1 ≡ 0. (2.9)

Analogous to Eq. (2.5), the φ-displacement of the material point (R, θ, φ) on the spherical
envelope is taken to be φ− φ0 where

(φ− φ0) sin θ0 =

∫
Ωdt sin θ0 + ε

∞∑
n=1

γn(t)Vn(cos θ0). (2.10)

Here φ0 is fixed on the rotating sphere, and Ω is the instantaneous angular velocity of
the sphere. The general solution for a squirmer with non-axisymmetric (φ -dependent)
squirming and swirling has been given in terms of vector spherical harmonics by Pak
& Lauga (2014); Ghose & Adhikari (2014); Felderhof (2016) and Felderhof & Jones
(2016). They all calculated the bodys translational and angular velocities corresponding
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to an arbitrary distribution of velocities on r = a, but only Felderhof related the surface
velocities to Lagrangian displacements of surface elements.

The relations between the Eulerian velocities (2.1), (2.7) and the Lagrangian displace-
ments (2.5), (2.10), from which An, Bn, Cn and U , Ω are to be derived from αn, βn, γn,
are:

ur(R, θ) = Ṙ, uθ(R, θ) = Rθ̇, uφ(R, θ) = R sin θφ̇, (2.11)

where an overdot represents the time derivative. Blake (1971b) performed the analysis
for the r- and θ-velocities; here we illustrate the method by deriving the relation between
the Cn and the γn.

The analysis is developed in powers of the amplitude ε, so we take

Cn = εC(1)
n + ε2C(2)

n + ... (2.12a)

Ω = εΩ(1) + ε2Ω(2) + .... (2.12b)

At leading order, O(ε), (2.11c) and (2.10) give

C
(1)
1 = Ω(1) + γ̇1, C(1)

n = γ̇n (n > 1). (2.13)

Immediately, therefore, we see from (2.9) that Ω(1) = −γ̇1, which has zero mean, so the
mean angular velocity, like the mean translational speed, is O(ε2). At second order, the
fact that (R, θ) 6= (a, θ0) is important in the expression for the velocity field:
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= R sin θφ̇. (2.14)

Substituting for R, θ, φ gives:
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Taking the O(ε2) terms in this equation, multiplying by sin2 θ0 and integrating from

θ0 = 0 to θ0 = π (recalling that C
(2)
1 = 0), gives the following explicit expression for

Ω(2):

Ω(2) = −4

5
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[−(n+ 3)βnγ̇n+1 + (n− 1)βn+1γ̇n]. (2.16)

(Some of the required integrals of products of Pn and Vm are given in appendix A). The
corresponding result for the second order term in the translational velocity is:

U (2)/a =
2
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+

∞∑
n=2

(2n+ 4)αnβ̇n+1 − 2nα̇nβn+1 − (6n+ 4)αn+1β̇n − (2n+ 4)α̇n+1βn
(2n+ 1)(2n+ 3)

+

∞∑
n=1

4(n+ 2)βnβ̇n+1 − 4nβ̇nβn+1

(n+ 1)(2n+ 1)((2n+ 3)

−
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n=2

(n+ 1)2αnα̇n+1 − (n2 − 4n− 2)αn+1α̇n
(2n+ 1)(2n+ 3)

. (2.17)

This is the formula given by Blake (1971b), except that he omitted the term involving
α0 which Lighthill (1952) included; Lighthill omitted some of the other terms.

A short cut to predicting U and Ω was proposed by Stone & Samuel (1996), following
Anderson & Prieve (1991). They used the reciprocal theorem for Stokes flow to relate
the translation and rotation speeds of a deformable body with non-zero surface velocity
u′ to the drag and torque on a rigid body of instantaneously identical shape, and derived
the following results for a sphere of radius a, surface S:

U(t) = − 1

4πa2

∫
S

u′dS (2.18a)

Ω(t) = − 3

8πa3

∫
S

n× u′dS, (2.18b)

where n is the outward normal to the sphere. From the first of these (2.3) follows. It
turns out not to be so simple to use these results for squirmers with non-zero radial
deformations, because of the need to calculate the drag to O(ε2) for the rigid deformed
sphere.

3. Application to Volvox

In order to apply the above theory to Volvox, we need to specify the αn, βn, γn. This will
be done by making use of the experimental results on the metachronal wave by Brumley
et al (2012), which led to Eqn. (1.1) for the radial velocity distribution on the envelope
of flagellar tips, plus assumptions about the tangential and azimuthal displacements.
Following Eq. (1.1), we write the radial displacement as

R− a = aε sin (kθ0 − σt), (3.1)

where k is the wave number, σ the radian frequency, and ε � 1. Observations of
flagellar beating show that a flagellar tip moves in an approximately elliptical orbit
(see figure 6(b)). Thus we may write

θ − θ0 = εδ sin (kθ0 − σt− χ), (3.2)

where figure 6(b) suggests δ ≈ 1.68 and the phase difference χ ≈ −π/2. The observation
that the plane of beating of the flagella is offset by 10◦ − 20◦ from the meridional plane
suggests that the functional form of the φ-displacement, relative to the rotating sphere,
is also given by (3.2), multiplied by a constant, τ , equal to the tangent of the offset angle.
Together, then, (2.5), (2.10), (3.1) and (3.2) give:

α0(t) +

∞∑
n=2

αn(t)Pn(cos θ0) = sin (kθ0 − σt) (3.3a)
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∞∑
n=1

βn(t)Vn(cos θ0) = δ sin (kθ0 − σt− χ) (3.3b)

∞∑
n=1

γn(t)Vn(cos θ0) = τδ sin (kθ0 − σt− χ). (3.3c)

It can be seen immediately that γn = τβn, so only (3.3a) and (3.3b) need to be solved
for αn and βn. To do this requires expressions for sin kθ0 and cos kθ0 as series of both
Pn(cos θ0) and Vn(cos θ0):

sin kθ0 =

∞∑
n=0

a(s)n Pn(cos θ0) =

∞∑
n=1

b(s)n Vn(cos θ0) (3.4a)

cos kθ0 =

∞∑
n=0

a(c)n Pn(cos θ0) =

∞∑
n=1

b(c)n Vn(cos θ0). (3.4b)

The results for a
(s)
n etc (see appendix B) are

a(s)n = −k(2n+ 1)
[
1 + (−1)n+1 cos kπ

]
η(k, n) (3.5a)

a(c)n = k(2n+ 1)(−1)n+1 sin kπ η(k, n) (3.5b)

b(s)n =
1

2
(−1)n+1n(n+ 1)(2n+ 1) sin kπ η(k, n) (3.5c)

b(c)n =
1

2
n(n+ 1)(2n+ 1)

[
1 + (−1)n+1 cos kπ

]
η(k, n) (3.5d)

where

η(k, n) =
Γ
(
n−k
2

)
Γ
(
n+k
2

)
16Γ

(
n+3−k

2

)
Γ
(
n+3+k

2

) , (3.6)

and k is assumed not to be an integer. It then follows from (3.3) that

αn(t) = k(−1)n+1(2n+ 1)
[
(−1)n cosσt− cos(σt− kπ)

]
η(k, n) (3.7a)

βn(t) =
γn
τ

=
δ

2
(−1)n+1n(n+ 1)(2n+ 1)

[
(−1)n sin(σt+ χ)− sin(σt+ χ− kπ)

]
η(k, n).

(3.7b)
Now we can put Eqs. (3.7) into Eqs. (2.16) and (2.17), take the mean values, and obtain

final results for the second order contributions to the mean angular and translational
velocities:

Ω̄(2) = 36στδ2η(k, 1)η(k, 2) sin kπ (3.8)

+
3

2
στδ sin kπ

∞∑
n=2

η(k, n)η(k, n+ 1)(−1)n+1(n+ 1)(n+ 2)[(2n+ 3)k sinχ+ 2δn(n+ 1)],

Ū (2) = −2aσδη(k, 1)η(k, 2) sin kπ(12δ +
9

k
sinχ) + aσ sin kπ

∞∑
n=2

(−1)nη(k, n)η(k, n+ 1)

×[2δ2n(n+ 1)2(n+ 2) + 2kδ(n+ 1)(2n2 + 3n+ 2) sinχ− k2(2n2 − 2n− 1)]; (3.9)

note that non-zero α0 makes no difference to Ω̄(2). We may also note that calculations
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Figure 7. Predicted values of (a) mean angular velocity Ω̄, (b) mean swimming speed Ū and
(c) mechanical efficiency, E, as functions of the metachronal wavenumber k. Green dots are
predictions of the squirmer model using the individually measured parameters for each of the
60 Volvox colonies. The solid lines are the predictions using the mean properties (k = 4.7,
σ = 203 rad/s). Other parameters include δ = 1.68, χ = −π/2, τ = tan(20◦). Here the mean
amplitude is ε ≈ 0.05, equivalent to flagella length L = 20 µm

are made easier by recognising that

η(k, n)η(k, n+ 1) =
1

4((n+ 2)2 − k2)((n+ 1)2 − k2)(n2 − k2)
. (3.10)

We now put in parameter values obtained from the experiments of Brumley et al.
(2012) and compare the predicted values of Ū and Ω̄ with the measurements of Drescher
et al. (2009). Rather than merely using the average values of k and σ quoted by Brumley
et al. (k = 4.7, σ = 203 rad/s), we use the individual values for each of the 60 Volvox
colonies from which the averages were obtained, together with their radii a. We also need
the value of the dimensionless amplitude ε. As discussed above, the recorded radius a0
is the radius of the surface of the extra-cellular matrix in which the somatic cells are
embedded, and a = a0 + 2L/3 and hence ε = L/(3a0 + 2L) ≈ L/3a0 (noting the typical
orbit in figure 6(b)). Solari et al. (2011) have shown that flagellar length, as well as colony
radius, increases as a colony of V.carteri or V.barberi ages. The values of L (14.9 µm -
20.5 µm) and a0 quoted by them give values of ε between 0.029 and 0.038; thus we may
be justified in choosing ε = 0.035 as normal. We also use the value of δ (1.68) quoted
above, although trajectories of flagellar tips measured by Brumley et al. (2014) show a
range of values of δ from 1.45 to 1.86. Moreover we use τ = tan(20◦) ≈ 0.36 although we
do not have measurements of the offset angle for individual colonies.

The results for Ū (= ε2Ū (2)) and Ω̄ (= ε2Ω̄(2)) are plotted against k in figure 7,
where the dots use the individual values of k, σ and a in each of the 60 Volvox colonies
measured by Brumley et al. (2015). The continuous curve uses the mean values of σ and
a; all results assume a flagellum of length L = 20 µm, and a mean value of ε of 0.035. It
is interesting that Ū and, to a lesser extent, Ω̄ increase regularly with k over the range of
measured values, but would vary considerably for lower values, even resulting in negative
mean swimming speeds.

Also plotted, in figure 7(c), is the mechanical efficiency

E = 6πµaŪ2/P̄ , (3.11)

where P is the instantaneous rate of working of the stresses at the surface of the sphere,

P = 2πa2
∫ π

0

(
urσrr + uθσrθ + uφσrφ

)
sin θ0dθ0, (3.12)

and σ is the stress tensor. The formula for P in the absence of swirl was given by Blake
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Figure 8. Predicted and measured values of (a) mean angular velocity Ω̄ and (b) mean
swimming speed Ū , as functions of colony radius. Green dots are predictions of this model,
red dots are measurements (on a different population of colonies) by Drescher et al. (2009) (cf.
figure 2). Solid line is the prediction from mean properties of the 60 colonies whose metachronal
wave data have been used.

Figure 9. Same as figure 8 but with mean ε ≈ 0.10 (L = 50 µm).

(1971b), Eq. (9); the additional, third, term due to swirl is equal to

16µπa3
∞∑
n=2

(n+ 2)

n(n+ 1)(2n+ 1)
C2
n (3.13)

(see also Pak & Lauga (2014)). Figure 7(c) shows a local maximum of E at k ' 1.5,
corresponding to negative swimming speed, which may therefore be discounted. For k >
3.0, however, the efficiency increases with k. According to this model, then, it appears
that the swimming mode of Volvox did not come about evolutionarily through energetic
optimisation.

We plot the calculated Ū and Ω̄ against a in figure 8. The green points represent
colony-specific predictions using data from Brumley et al. (2015) and the continuous
curves correspond to the mean values of k, σ and ε referred to above. The red points
represent the experimental values measured by Drescher et al. (2009), again using the
individual values of Ū , Ω̄ and a for each of the colonies measured (data kindly supplied
by Dr. Knut Drescher) rather than an average value. As noted in the introduction,
with reference to figure 2, because the above theory assumes neutral buoyancy, the value
quoted for U is the sum of the actual upwards swimming speed U1 and the sedimentation
speed V of an inactive colony of the same radius.

In figure 8, the predictions for both Ū and Ω̄ are significantly below the measured
values, though the trend with increasing radius is similar. If we had taken the flagellar
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Figure 10. Squirming flow fields. Radial (a) and tangential (b) components of the fluid velocity
field shown at various times through one flagellar beating cycle. The metachronal wave properties
(Eqs. (3.1) and (3.2)) are the same as for the average Volvox colony (k = 4.7, σ = 203 rad/s,
a0 = 144 µm) and other parameters correspond to measured flagella and their trajectories
(L = 20 µm, δ = 1.68, χ = −π/2).

length L to be 50 µm instead of 20 µm, the agreement would seem to be almost perfect
(figure 9). In the next section we discuss in more detail aspects of the model that may
need to be improved.

In addition to calculating Ω̄ and Ū we can use the squirmer model to compute the
time-dependent velocity field, for comparison with the measurements in figures 4 and 5.
Figure 10 shows the radial and tangential velocities as functions of position at different
times during a cycle, for the mean values of k (4.7), σ (203 rad/s) and a0 = 144 µm.
Both velocity components show the metachronal wave, which is not surprising since that
was used as input from Eqs. (3.1) and (3.2). The figure also indicates that the tangential
velocity component decays more rapidly with radial distance than the radial component.
Calculated kymographs of ur and uθ at r = 1.3× a0 are shown in figure 11, and can be
compared with figure 5. There is good qualitative agreement between figures 10 and 11
and figures 4 and 5. Unlike the mean velocity, however, which is lower than measured,
the amplitude of the calculated ur or uθ oscillations, scaling as σa0ε from Eqs. (2.11)
and (3.1), is about 1000 µm s−1, significantly larger than the measured value of about
300 µm s−1 (figure 5).

4. Discussion

The main discrepancy between the theoretical predictions of this paper and the
experimental observations of Drescher et al. (2009) is that, although the maximum fluid
velocity during a cycle, for the experimental parameter values, is much larger in the
model than measured, the predicted mean velocity and angular velocity are significantly
smaller than measured.

The envelope model is clearly a great oversimplification, because even in the context
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Figure 11. Squirmer kymographs. Radial (a) and tangential (b) components of the flow, as
functions of polar angle θ and time t, computed at the fixed radius (r = 1.3 × a0). Other
parameters are the same as in figure 10.

of single-celled ciliates, the cilia tips do not form a continuous surface at all times. Not
only may there be wide spaces between neighbouring tips, but also some tips may, during
their recovery stroke, be overshadowed by others in their power stroke, so the envelope is
not single-valued (Brennen & Winet (1977)). The latter is not a problem for V. carteri,
because the flagellar pairs are more widely spaced, but that in itself adds to the former
difficulty. Blake (1971b) argued that the envelope model would be a better approximation
for symplectic metachronal waves than for antiplectic ones, because the tips are closer
together during the power stroke, when their effect on the neighbouring fluid is greatest;
this is especially true for a ciliate such as Opalina, but is less compelling in the case of
V. carteri, for which typical cell (and hence flagellar) spacings are roughly equal to the
flagellar length. The wide spacing between flagellar tips means that much of the ‘envelope’
is not actively engaged in driving fluid past the surface, and fluid can leak back between
neighbours, so one would expect the model to overestimate the fluid velocity, as it does
if one considers the maximum instantaneous radial or tangential velocity. As reviewed
elsewhere (Goldstein 2015), the volvocine algae include a range of species with differing
interflagellar distances, some of which are significantly smaller than in V. carteri, and one
can anticipate that future studies of those species may shed further light on the validity
of the envelope model.

Why, therefore, is the mean velocity underestimated? It seems likely that the difference
lies in the fact that each flagellum beats close to the no-slip surface of the extracellular
matrix in which the somatic cells are embedded. In the power stroke, a flagellum is
extended and its outer parts, in particular the tip, set neighbouring fluid particles in
motion, over a range of several flagellar radii, at about the same speed as the tip. During
the recovery stroke, on the other hand, the flagellum is much more curved, and the outer
part remains roughly parallel to the colony surface (Blake (1972)). Thus the drag exerted
by the outer part of the flagellum on the fluid will be reduced by a factor approaching
2 compared with the power stroke. Moreover, this outer part is relatively close to the
colony surface, and the no-slip condition on that surface will prevent fluid particles from
moving at the same speed as the tip except very close to it. Both these factors mean that,
although every element of the beating flagellum oscillates with zero mean displacement,
the fluid velocities that it generates do not have zero mean.

As part of the experiments reported by Brumley et al. (2014), movies were taken of
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Figure 12. Particle paths in the vicinity of a flagellum. (a) Trajectories of 0.5µm passive tracers
near an isolated Volvox flagellum held with a glass micropipette. The tracked flagellar waveform
from several beats is also shown. (b) A sphere of radius b moving in a circular trajectory above
and perpendicular to a no-slip boundary produces a time-depending flow, which closely mimics
that of a real flagellum. This simulation of 100 beats shows particle paths from various initial
positions, and corresponds to h = 10µm, R0 = 5µm.

the motion of microspheres in the flow driven by a single beating flagellum on an isolated
V. carteri somatic cell fixed on a micropipette. Experimental details are given briefly
in appendix C. One of these movies is reproduced in supp. mat. movie S3, in which the
difference between the fluid particle displacements in power and recovery strokes can be
clearly seen. The trajectories of a number of the microspheres are shown in figure 12(a).
Supp. mat. movie S4 and figure 12(b) show particle trajectories calculated from a very
simple model (see appendix C), which consists of a small spherical bead following a
circular orbit perpendicular to a nearby rigid plane (such an orbiting bead model of a
beating flagellum has been used extensively in recent years; Lenz & Ryskin (2006); Vilfan
& Jülicher (2006); Niedermayer et al. (2008); Uchida & Golestanian (2011); Brumley
et al. (2012, 2015); Bruot & Cicuta (2016)). The similarity between the measured and
computed trajectories is clear.

It is therefore evident that the net tangential velocity excess of the power stroke over
the recovery stroke of Volvox flagella will be O(ε), so the mean velocity generated will
be O(ε) not O(ε2) as obtained from our squirmer model. That may be a more important
limitation of the model than the wide spacing of the flagella. What is required, in future,
is a detailed fluid dynamic analysis of an array of beating flagella on the surface of a
sphere. This will be an extension of the so-called sublayer model of Blake (1972) and
Brennen & Winet (1977), in which each cilium is represented as a linear distribution of
Stokeslets whose strengths can be estimated using resistive force theory, or calculated
more accurately as the solution of an integral equation using slender-body theory, taking
account of the no-slip boundary by including the Stokeslet image system as derived for
a planar boundary by Blake (1971a). This model is currently being developed.

Three other assumptions in the theory of this paper should be discussed. First is the
choice of a sine wave to represent the displacement of the flagella tips (equations (3.1)
and (3.2)). The choice necessitates some intricate calculations (section 3 and Appendix
B) and it could be argued that the measurements of Brumley et al. (2012) are not
sufficiently refined to justify it. Blake (1971b), among others, proposed that four terms
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in the Legendre polynomial expansions (2.4) would be accurate enough. Moreover, that
would avoid the problem of non-zero values for A0 and α0. However, a sine wave still seems
the most natural choice for a propagating wave, and we have assumed it accordingly.

Another choice made here is to truncate the expansions of derived quantities at O(ε2),
which is likely to lead to errors at larger values of ε (Drummond (1966)); however, even for
figure 9, the assumed value of ε was less than 0.1, so this is unlikely to cause a significant
error in figure 8. A third assumption in this paper is that the elliptical trajectory of each
flagellar tip has its major axis parallel to the locally planar no-slip colony surface. In fact
it will in general be at a non-zero angle ψ to that surface (figure 6(b)). In that case the
calculation becomes somewhat more cumbersome but no more difficult, as outlined in
appendix D. If we choose ψ = 30◦, for example, the results for Ū and Ω̄ are negligibly
different from those in figure 8. The assumption that ψ = 0 is therefore not responsible
for the discrepancy between theory and experiment in that figure.
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Appendix A. Integrals required in the derivation of Eq. (2.16)

We seek to evaluate

Jnm =

∫ π

0

sin2 θ0Pn(cos θ0)Vm(cos θ0) dθ0 (A 1)

and

Knm =

∫ π

0

sin θ0 cos θ0Vn(cos θ0)Vm(cos θ0) dθ0, (A 2)

where Vn is defined by (2.2), using the standard recurrence relations and differential
equation for Legendre polynomials:

xP ′n = nPn + P ′n−1 (A 3)

(2n+ 1)xPn = (n+ 1)Pn+1 + nPn−1 (A 4)

d

dx

[
(1− x2)P ′n

]
= −n(n+ 1)Pn. (A 5)

Here a prime means d
dx and we do not explicitly give the x-dependence of Pn(x). From

(A 1),

Jnm =
2

m(m+ 1)

∫ 1

−1
Pn(1− x2)P ′m dx = 2

∫ 1

−1
In(x)Pn dx (by parts) (A 6)

where

In(x) =

∫ x

Pn dx =
xPn − Pn−1

n+ 1
. (A 7)
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Hence

Jnm =
2

2n+ 1

∫ 1

−1
Pm(Pn+1 − Pn−1) dx =

4

2n+ 1

(
δm,n+1

2n+ 3
− δm,n−1

2n− 1

)
. (A 8)

From (A 2),

Knm =
4

n(n+ 1)m(m+ 1)

∫ 1

−1
xP ′n(1− x2)P ′m dx

=
4

n(n+ 1)

∫ 1

−1
(nIn + Pn−1)Pm dx (by parts and using (A 3))

=
4

n(n+ 1)

∫ 1

−1

(
n

2n+ 1
Pn+1 +

n+ 1

2n+ 1
Pn−1

)
Pm dx (using (A 4))

=
8

2n+ 1

[
δm,n+1

(n+ 1)(2n+ 3)
+

δm,n−1
n(2n− 1)

]
. (A 9)

Appendix B. Proof of Eq. (3.5a)

We prove by induction the first of the formulae in Eq. (3.5); proofs of the others are
similar. Let

Qn(k) =

∫ π

0

sin θPn(cos θ) sin kθ dθ, (B 1)

so that

a(s)n =
2n+ 1

2
Qn(k), (B 2)

from the first of (3.4a). The result we seek to prove is

Qn(k) = (−1)n2k
[
(−1)n+1 + cos kπ

]
η(k, n), (B 3)

where η(k, n) is given by (3.6). From (B 1) and (A 4), we have

Qn+1(k) =

∫ π

0

sin kθ sin θ

[
2n+ 1

n+ 1
cos θ Pn −

n

n+ 1
Pn−1

]
dθ

= − n

n+ 1
Qn−1(k) +

2n+ 1

n+ 1

∫ π

0

sin kθ sin θ cos θ Pn dθ

= − n

n+ 1
Qn−1(k) +

2n+ 1

2(n+ 1)

∫ π

0

[sin (k + 1)θ + sin (k − 1)θ] sin θ Pn dθ

= − n

n+ 1
Qn−1(k) +

2n+ 1

2(n+ 1)
[Qn(k + 1) +Qn(k − 1)] . (B 4)

Now suppose that (B 3) is true for Qn−1 and Qn, for all k, substitute it into the right
hand side of (B 4), and after some algebra indeed obtain (B 3) with n replaced by n+ 1.
The induction can be shown to start, with n = 1 and n = 2, using the standard identities

Γ (z + 1) = zΓ (z) (B 5)

Γ (z)Γ (1− z) = −zΓ (−z)Γ (z) =
π

sin (πz)
. (B 6)

Thus (B 3) and hence (3.5a) are proved.
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Appendix C. Flagellar flow fields

To investigate the time-dependent flow fields produced by individual eukaryotic flag-
ella, Brumley et al. (2014) isolated individual cells from colonies of Volvox carteri,
captured and oriented them using glass micropipettes, and imaged the motion of 0.5µm
polystyrene microspheres within the fluid at 1000 fps. One such movie is included as supp.
mat. movie S3, which shows the time-dependent motion of these passive tracers in the
vicinity of the beating flagellum. Using custom-made tracking routines, we identify the
trajectories of the microspheres, and these are shown in figure. 12(a), together with the
tracked flagellar waveform over several beats. Tracer particles in the immediate vicinity
of the flagellar tip exhibit very little back flow during the recovery stroke.

We consider now the flow field produced by a simple model flagellum, which consists
of a sphere of radius b driven at a constant angular speed ω around a circular trajectory
of radius R0, perpendicular to an infinite no-slip boundary. The trajectory of the sphere
is given by

x1(t) = x0 +R0

(
cosωt ẑ + sinωt ŷ

)
(C 1)

where x0 = h ẑ. The velocity of the particle is then

v1 = ẋ1 = ωR0

(
− sinωt ẑ + cosωt ŷ

)
. (C 2)

The force that this particle imparts on the fluid is given by

F1 = γ1 · v1 = γ0

[
I +

9b

16z(t)
(I + ẑẑ)

]
· v1. (C 3)

We know that z(t) = h + R0 cosωt, and therefore the time-dependent force exerted on
the fluid is

F1(t) = γ0ωR0

[
cosωt ŷ − sinωt ẑ +

9b

16(h+R0 cosωt)

(
cosωt ŷ − 2 sinωt ẑ

)]
. (C 4)

The fluid velocity u(x) at position x is expressed in terms of the Green’s function in the
presence of the no-slip boundary condition (Blake (1971a)):

u(x) = G(x1(t),x) · F1(t) (C 5)

where

G(xi,x) = GS(x− xi)−GS(x− x̄i) + 2z2iG
D(x− x̄i)− 2ziG

SD(x− x̄i) (C 6)

and

GSαβ(x) =
1

8πµ

(
δαβ
|x|

+
xαxβ
|x|3

)
, (C 7)

GDαβ(x) =
1

8πµ

(
1− 2δβz

) ∂

∂xβ

(
xα
|x|3

)
, (C 8)

GSDαβ (x) =
(
1− 2δβz

) ∂

∂xβ
GSαz(x). (C 9)

For a passive tracer with initial position x = X0 at t = t0, its trajectory can be calculated
according to

x(t)−X0 =

∫ t

t0

G
(
x1(τ),x(τ)

)
· F1(τ) dτ. (C 10)

Numerical solutions of Eq. (C 10) are shown in figure 12(b) for various initial positions.
The parameters used are designed to mimic those of real Volvox flagella (h = 10µm,
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R0 = 5µm). A sphere of radius b = 5µm is used, though we emphasise that strictly
speaking this does not come into contact with the plane. The finite value of b is used
simply to generate variable drag as a function of height, in order to produce a net flow.
Additionally, the particle trajectories are independent of the speed of the sphere, and so
the results in figure 12(b) would be unchanged if the sphere were instead driven by either
a constant force, or by a phase-dependent term.

Appendix D. Rotated ellipse

In this section, we consider the case in which the elliptical trajectory of the flagellar
tip is rotated at an angle ψ with respect to the surface of the Volvox colony. In this case,
Eqs. (3.1) and (3.2) can be generalised to become

R− a = cosψ
[
aε sin(kθ0 − σt)

]
− sinψ

[
aεδ sin(kθ0 − σt− χ)

]
, (D 1)

θ − θ0 = cosψ
[
εδ sin(kθ0 − σt− χ)

]
+ sinψ

[
ε sin(kθ0 − σt)

]
. (D 2)

The series expansions for these are then given by

∞∑
n=0

αn(t)Pn(cos θ0) = cosψ sin(kθ0 − σt)− δ sinψ sin(kθ0 − σt− χ), (D 3)

∞∑
n=1

βn(t)Vn(cos θ0) = δ cosψ sin(kθ0 − σt− χ) + sinψ sin(kθ0 − σt), (D 4)

and γn(t) = τβn(t) as before. Equations (A 3) and (A 4) need to be solved for αn and βn,
but this follows easily by linearity using the solutions in Eqs. (3.7a) and (3.7b), together
with appropriate transformations in t. Calculation of Ω̄(2) and Ū (2) is more challenging,
but after considerable algebra, we find the following:

Ω̄(2) = 18στη(k, 1)η(k, 2) sin kπ[(δ2 − 1) cos 2ψ + 1 + δ2 + 2δ cosχ sin 2ψ]

+
3

2
στ sin kπ

∞∑
n=2

η(k, n)η(k, n+ 1)(−1)n+1(n+ 1)(n+ 2)

[
n(n+ 1)(δ2 − 1) cos 2ψ

+k(2n+ 3)δ sinχ+ n(n+ 1)(1 + δ2 + 2δ cosχ sin 2ψ)

]
, (D 5)

and

Ū (2) = −6aση(k, 1)η(k, 2) sin kπ

[
3δ sinχ

k
+ 2(δ2 + 2δ cosχ sin 2ψ + 1) + 2(δ2 − 1) cos 2ψ

]
+

1

2
aσ sin kπ

∞∑
n=2

(−1)nη(k, n)η(k, n+ 1)

[
4kδ(n+ 1)(2n2 + 3n+ 2) sinχ

+k2(2n2 − 2n− 1)
[
(δ2 − 1) cos 2ψ − δ2 + 2δ cosχ sin 2ψ − 1

]
+2n(n+ 2)(n+ 1)2

[
(δ2 − 1) cos 2ψ + δ2 + 2δ cosχ sin 2ψ + 1)

]]
. (D 6)

Note that Eqs. (D 5) and (D 6) reduce to Eqs. (3.8) and (3.9) respectively when ψ = 0.
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