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Stabilization of microbial communities by responsive phenotypic switching
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Clonal microbes can switch between different phenotypes and recent theoretical work has shown that stochas-
tic switching between these subpopulations can stabilize microbial communities. This phenotypic switching need
not be stochastic, however, but could also be in response to environmental factors, both biotic and abiotic. Here,
motivated by the bacterial persistence phenotype, we explore the ecological effects of such responsive switching
by analyzing phenotypic switching in response to competing species. We show that the stability of microbial
communities with responsive switching differs generically from that of communities with stochastic switching
only. To understand the mechanisms by which responsive switching stabilizes coexistence, we go on to analyze
simple two-species models. Combining exact results and numerical simulations, we extend the classical stability
results for the competition of two species without phenotypic variation to the case in which one species switches,
stochastically and responsively, between two phenotypes. In particular, we show that responsive switching can
stabilize coexistence even when stochastic switching on its own does not affect the stability of the community.
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I. INTRODUCTION

One of the classical results of theoretical ecology is that
large random ecological communities are very likely to be
unstable [1]. This is a statistical result, based on the analysis
of random matrices representing the Jacobians of otherwise
unspecified population dynamics [1]. It may appear to con-
tradict the large biodiversity of nature, but actual biological
interactions are not random: Rather, they are the product of a
long history of evolution, during which population dynamics
pruned a possibly much larger set of species [2]. Nevertheless,
the mathematical constraints from random matrix theory that
restrict the evolution of this biodiversity can be revealed by
this statistical take on population stability, because it enables
some analysis of generic large ecological communities and
their huge parameter space. Such statistical analyses there-
fore complement the exact results for small systems that are
not available for larger systems. The power of this statistical
approach has been demonstrated in a large body of work,
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which, for example, analyzed the effect of the interaction
type and structure on the stability of the community [3–6],
revealed the stabilizing effect of higher-order interactions and
explicit resource dynamics [7,8], or explored yet other related
problems [9–13].

In this context, recent theoretical work has revealed that
subpopulation structure such as phenotypic variation can
stabilize microbial communities [14,15]. In particular, we
have argued that abundant phenotypic variation is generically
destabilizing [15], essentially because introducing phenotypic
variation increases the effective number of species in the sys-
tem, which is known to be destabilizing [1,3]. More subtly
however, stochastic switching to a rare phenotype such as the
bacterial persister phenotype [16–18] can stabilize communi-
ties [15].

Although such stochastic phenotypic switching is optimal
in infrequently changing environments [19], frequent envi-
ronmental cues, be they biotic or abiotic, favor responsive
phenotypic switching associated to some kind of sensing
mechanism [19]. Indeed, recent experimental evidence sug-
gests that such sensing is implicated in the bacterial stress
response and, in particular, in switching to stress-resilient
phenotypes akin to bacterial persisters [16–18]. For example,
formation of persisters under stress has recently been asso-
ciated with production of the “alarmone” ppGpp, suggesting
a stress-dependent persistence response [16,18]. Data show-
ing that sublethal antibiotic concentrations increase persister
concentration [20] are also consistent with responsive contri-
butions to the persistence switching rates. (Early experiments
exposing Escherichia coli to antibiotics had suggested that
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direct sensing is absent from the persistence response [21].
However, these experiments could not, as already noted in
Ref. [19], exclude effects such as a dependence of switching
rates on antibiotic concentration.) The cues for this responsive
switching may be toxins produced by other bacterial species,
such as the colicinogens produced by certain strains of E. coli
that have garnered attention in the context of bacterial “rock–
paper–scissors” games [22–25]. Indeed, a very recent paper
[26] provides experimental evidence linking such toxins to a
stress response: A “suicidal” subpopulation of Pseudomonas
aeruginosa actively migrates up antibiotic gradients while
upregulating the release of its own bacteriocins, suggesting
an attack response against toxin-producing competitors [26].
Responsive mechanisms are thus starting to be appreciated as
a feature of microbial populations, but their ecological role in
microbial communities remains unclear.

Here, we address these ecological implications of re-
sponsive switching theoretically by analyzing its effects on
the stability of competitive microbial communities with a
rare, slowly growing, and weakly competing, persister-like
phenotype. In the first part of this paper, we extend the
two-phenotype model of Ref. [15] to include responsive
phenotypic switching. We show how the statistical stability
properties of this model differ from those of a model with
stochastic switching only, even if the second phenotype is
rare. These statistical results emphasize the importance of the
type of phenotypic switching for stability, but leave unan-
swered the question: Under which conditions does phenotypic
switching, be it stochastic or responsive, stabilize or destabi-
lize this community? We address this question in the second
part of this paper: We extend the classical results for the
stability of Lotka–Volterra systems [27] by analyzing a min-
imal model of two competing species in which one species
switches, both stochastically and in response to the other
species, between two phenotypes. Using numerical simula-
tions and by deriving exact results for still simpler models,
we show in particular that responsive switching can promote
coexistence even in cases in which stochastic switching on its
own does not affect the stability of the community.

II. STATISTICAL STABILITY OF RESPONSIVE
PHENOTYPIC SWITCHING

In this section, we introduce a model for the competition
of N species that switch, both responsively and stochastically,
between two phenotypes. This model extends that of Ref. [15].
We show that its statistical stability properties are generically
different from those of the corresponding model with stochas-
tic switching only.

A. Model

We consider the competition of N � 2 well-mixed species
that have two phenotypes, B and P, each, between which
they switch stochastically. In addition, the B phenotypes of
each species respond to the other species by switching to the
corresponding P phenotype [Fig. 1(a)]. We denote by Bn and
Pn the respective abundances of the B and P phenotypes of
species n, for 1 � n � N . With Lotka–Volterra competition

FIG. 1. Models of stochastic and responsive phenotypic switch-
ing. (a) In the model of Sec. II, each species has two phenotypes,
B and P, and switches stochastically between them. Moreover, the B
phenotype of each species responds to other species by switching to
the P phenotype. (b) In the minimal two-species model of Sec. III, the
second species has a single competitor phenotype A, which causes
B to switch to P. Dashed lines: Stochastic switching. Solid lines:
Responsive switching.

terms [27], the dynamics of the vectors B = (B1, B2, . . . , BN )
and P = (P1, P2, . . . , PN ) are thus [28]

Ḃ = B(b − C · B − εD · P)

− εB(k + R · B + S · P) + �P, (1a)

Ṗ = εP(p − E · B − F · P)

+ εB(k + R · B + S · P) − �P, (1b)

where b, p are growth rates, the nonnegative entries of
the matrices C, D, E, F are competition strengths, k, � are
nonnegative rates of stochastic switching, and R, S are non-
negative rates of responsive switching. The diagonal entries
of R, S vanish, so that microbes do not switch phenotype
in response to the presence of other microbes of their own
species. We stress that Eqs. (1) are deterministic, as are all
subsequent models in this paper: In particular, they do not
resolve the individual, stochastic switching events, but only
their mean behavior expressed by the deterministic rates of
stochastic switching.

The functional form of the responsive switching rates in
Eqs. (1), with a direct dependence on the competitor abun-
dances, implies a neglect of the dynamics of the chemical cues
of the responsive switching. This is justified since our model
aims to elucidate the effect of this responsive switching on
stability, rather than the effect of these chemical dynamics
that was analyzed, e.g., in Ref. [29]. The same argument
justifies, for instance, neglecting resource dynamics in spite
of their known effect on stability [8]. The linear dependence
of responsive switching on the abundances of other species is,
however, a simplifying assumption, just as the logistic Lotka–
Volterra interaction terms [27] in Eqs. (1) are the simplest
choice of interaction terms. The full dynamics of the system
(and in particular, the existence of non-steady-state attractors
like limit cycles) are expected to depend on the details of
the functional forms of the interaction terms and switching
rates. Nevertheless, any such functional forms linearize to the
logistic interaction terms and linear switching rates in Eqs. (1)
close to an equilibrium. These details do not therefore affect
the stability properties of equilibria. Moreover, as shown in
Appendix A, the logistic nonlinearities in Eqs. (1) are suf-
ficient for their dynamics to be bounded. For these reasons,
we believe these simplifying assumptions to be appropriate
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for our statistical analysis of phenotypic dynamics and in
particular of the stability of the equilibria of Eqs. (1).

The parameter ε in Eqs. (1) scales the growth and competi-
tion of the P phenotypes, and the stochastic and responsive
switching rates into the P phenotypes. In the limit ε � 1,
the P phenotype is therefore a slowly growing and weakly
competing phenotype such as bacterial persisters [16–18].

B. Reduced and averaged models

How does the stability of a microbial community with
responsive phenotypic switching differ from that of a commu-
nity with stochastic switching only? To answer this biological
question and thus understand the ecological effects of the
type of phenotypic switching, it is tempting to compare the
mathematical stability of equilibria of Eqs. (1) to that of
equilibria of a corresponding reduced model with stochastic
switching only, in which R = S = O. Such a comparison
does not however answer our biological question, because
the populations at equilibrium of Eqs. (1) and this reduced
model are in general different. This direct comparison cannot
therefore decide whether stability differences result from this
difference of populations or from the differences in pheno-
typic switching.

To understand the two types of phenotypic switching, we
do not therefore compare Eqs. (1) to this reduced model, but
instead to an averaged model that has the same population at
equilibrium as Eqs. (1). While the reduced model takes values
of interaction parameters or switching rates from Eqs. (1), the
averaged model replaces these values with effective values
that are determined by the condition of equality of populations
at equilibrium. We introduced such averaging of models in
Ref. [15]. There, we pointed out that equality of populations
at equilibrium does not lead to simple relations between the
eigenvalues of the corresponding Jacobians, so there is no
reason to expect their stability properties to be the same. The
present discussion develops these ideas.

Stability differences between Eqs. (1) and the corre-
sponding averaged model thus reveal the ecological roles of
responsive and stochastic phenotypic switching. By contrast,
stability differences between the reduced and averaged models
stem from the differences of the reduced and the averaged, ef-
fective model parameters. In an actual biological community,
these parameters can evolve independently from the evolu-
tion of a phenotypic substructure, and so stability differences
need not result from this phenotypic substructure. This raises
interesting questions akin to those asked in Ref. [19]: For
example, does evolving a more complex phenotypic substruc-
ture require more evolutionary adaptations than evolving the
effective parameters directly? Answering such questions re-
quires, however, coupling Eqs. (1) to an evolutionary model.
This is beyond the scope of this paper, in which we will
therefore focus on the stability differences between Eqs. (1)
and the corresponding averaged model. These stability dif-
ferences can be imputed directly to responsive phenotypic
switching.

After this rather abstract discussion of reduced and aver-
aged models, we now write down the averaged model with

stochastic switching only,

Ḃ = B(b − C · B − εD · P) − εk′B + �P, (2a)

Ṗ = εP(p − E · B − F · P) + εk′B − �P. (2b)

This is the model that we have analyzed in Ref. [15]. To
establish the correspondence between Eqs. (1) and Eqs. (2),
we notice that an equilibrium E = (B∗, P∗) of Eqs. (1) is also
an equilibrium of Eqs. (2) if k′ = k + R · B∗ + S · P∗ and all
other growth rates, competition strengths, and switching rates
are unchanged. At equilibrium, responsive switching thus
modifies only the effective rate of stochastic switching. It is
not therefore possible to distinguish, at equilibrium, between
purely stochastic switching and a dependence of switching
rates on the presence of other species. This aspect, we have
noted in the Introduction, has previously been discussed from
an experimental point of view in the context of E. coli per-
sistence [19,21]. Somewhat conversely, the rate of stochastic
switching in a reduced model would be the rate k of Eqs. (1);
stability differences between Eqs. (2) and this reduced model
could therefore also result, independently from responsive
switching, from evolution of the rates of stochastic switching.

Despite the correspondence at E of Eqs. (1) and Eqs. (2),
it is clear that their dynamics away from E are in general dif-
ferent. It is for this reason that correspondence at equilibrium
does not, as we have already noted above, translate to corre-
sponding stability properties. In what follows, we therefore
analyze these stability properties to understand the ecological
effect of responsive switching.

C. Results

In the spirit of the random matrix approach to ecological
stability, we compare the stability of Eqs. (1) and Eqs. (2) by
sampling their parameters randomly and computing stability
statistics. Since the coexistence equilibria of Eqs. (1) and
Eqs. (2) cannot be found in closed form, we cannot sample the
model parameters directly; rather, as discussed in more detail
in Appendix A, we sample the coexistence state itself and
some model parameters directly, leaving linear equations to be
solved for the remaining parameters to ensure that the chosen
coexistence state is steady [15].

For these random systems, we find that, as the number N
of species increases, stable coexistence equilibria of Eqs. (1)
are increasingly unlikely to be stable with the dynamics of
Eqs. (2), and vice versa [Fig. 2(a)]. Thus stable coexistence
with responsive switching is increasingly unlikely to be stable
with stochastic switching only, and vice versa. This trend
persists for ε � 1, although the probabilities are reduced in
magnitude [Fig. 2(b)]. Responsive switching can thus stabilize
and destabilize equilibria of Eqs. (1). However, coexistence is
less likely to be stable with responsive switching than with
stochastic switching only [Fig. 2(c)], although the probabili-
ties are nearly equal for small ε [Fig. 2(c)].

In the limit ε � 1, coexistence states can be determined
in closed form by asymptotic expansion in ε � 1, similarly
to calculations in Ref. [15]: Writing B∗ = B0 + εB1 + O(ε2),
P∗ = P0 + εP1 + O(ε2), we find B0 = C−1 · b, B1 = P0 = 0,
P1 = (k + R · B0)B0/�, as derived in Appendix A, where we
also give asymptotic expressions for the Jacobians of Eqs. (1)
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FIG. 2. Stability of random microbial communities with re-
sponsive phenotypic switching. (a) Probability of a random stable
equilibrium of the model with responsive switching R [Eqs. (1)]
or of the model with stochastic switching only S [Eqs. (2)] be-
ing unstable in the other model: Plots of P (S unstable | R stable)
[filled marks] and P (R unstable | S stable) [open marks] against the
number N of species in the system. (b) Same plot, but focused on
low probabilities. (c) Ratio of the probabilities of random equilib-
ria of R and S being stable. Inset: Same plot, focused on small
probability differences. Each probability was computed from up to
5 × 108 random systems. Parameter values: ε = 1 (circles), ε = 0.01
[30], asymptotic equilibria (diamonds), ε = 0.01, exact equilibria
(squares). Error bars are the 95% confidence intervals [31] larger than
the plot markers.

and (2) at E = (B∗, P∗). Sampling asymptotic coexistence
equilibria using this solution, we confirm our findings above,
although results differ at a quantitative level because of the
different sampling methods [Fig. 2(b)].

The models with and without responsive switching thus
generically lead to different stability results. The Jacobians
at E , J∗ with responsive switching and K∗ with stochastic
switching only, are related by

J∗ = K∗ + ε

(−B∗R −B∗S
B∗R B∗S

)
, (3)

which follows from calculations in Appendix A. We stress that
this is an exact result and not an asymptotic approximation.
Even in view of this linear relation, the fact that the two
models give different stability results is not fundamentally
surprising [15]: This stability difference simply reflects the
fact that linear relations between matrices do not imply linear
relations between their determinants. What is perhaps more
unexpected is that, although J∗ = K∗ + O(ε), the stability re-
sults differ even in the limit ε � 1. We have previously related
behavior of this ilk to the possibility of eigenvalues with small
real parts being stabilized or destabilized by the higher-order
terms of an expansion in ε [15].

We had to restrict to small values of N when computing
the numerical results in Fig. 2, because it becomes increas-
ingly difficult to sample increasingly rare [1,3] stable systems
as N increases. The strength of the classical random matrix
approach [1,3] to stability is that it can often circumvent
this difficulty by analyzing random Jacobians without fur-
ther specification of the underlying population dynamics and
hence of their equilibria. This simplification is not however
available for the questions addressed here, because we need to
relate “full” and averaged models (in this case, with and with-
out responsive switching). Nonetheless, the trends in Fig. 2
suggest that the stability differences found numerically there
are amplified for larger values of N .

There is, however, a more important limitation of this
stability analysis: One may argue that instability of an equi-
librium is not biologically or ecologically significant, because
it does not imply extinction of a species. Indeed, the dynamics,
perturbed away from the unstable equilibrium, may converge
to a different equilibrium, a limit cycle, or a more complex
attractor, and so the species may still coexist. A more rele-
vant question is therefore: Does stability of one model (with
responsive switching or with stochastic switching only) not
only fail to predict stability, but also fail to predict coexistence
in the other model? Unlike predicting stability, predicting
coexistence requires the full dynamics of the system and its
non-steady-state attractors, and so the predictions depend, as
noted above, on the details of the interactions and switching
rates. Analyzing the effect of these details on coexistence is
beyond the scope of this paper. Here, we restrict to the logistic
interactions and linear switching rates in Eqs. (1), evolve un-
stable equilibria numerically and, as described in Appendix A,
determine whether the species coexist permanently [32].

Figure 3 shows the distributions of the long-time dynamics
of equilibria that are unstable with responsive switching or
with stochastic switching only, respectively, but are stable in
the other model. The possible long-time dynamics are perma-
nent coexistence or extinction of some species; in both cases,
we distinguish between convergence of the remaining species
to an equilibrium or to a limit cycle. The small proportion of
systems for which the numerical solution does not converge
(Fig. 3) may include systems in which more complex attrac-
tors arise. We note in particular that extinction of some species
is not a rare outcome (Fig. 3): It is actually the most likely
outcome if both phenotypes have similar abundances [ε = 1,
Fig. 3(a)], while convergence to a limit cycle of all species is
more likely if one phenotype is rare [ε � 1, Fig. 3(b)].

From these distributions, we estimate, for both models,
the probabilities of extinction of some species for systems
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FIG. 3. Distributions, in the models with responsive switching
R [Eqs. (1)] or with stochastic switching only S [Eqs. (2)], of the
long-time dynamics of unstable equilibria that are stable in the other
model. Distributions are shown for exact equilibria with (a) ε = 1,
(b) ε = 0.01 [30], and different numbers of species N . Each distribu-
tion was estimated by numerical integration of up to 5 × 103 unstable
systems. For a small proportion of the systems (#), the numerical
solution did not converge. Vertical bars represent 95% confidence
intervals [31].

perturbed away from an equilibrium that is stable in the other
model (Fig. 4). The increase of these probabilities with the
number of species N qualitatively matches the increase of
the probabilities of an equilibrium that is stable in one model
being unstable in the other model (Fig. 2). We can therefore
extend our previous conclusion: Stability of an equilibrium in
one model does not even in general imply permanent coexis-
tence in the other model.

Finally, we could similarly compare the stability of Eqs. (1)
to that of an averaged model without phenotypic switch-
ing (Appendix A). However, in view of the correspondence
of Eqs. (1) and Eqs. (2), the qualitative conclusions of
such a comparison must parallel those of comparing models
with stochastic switching only and averaged models with-
out phenotypic variation. These two models we compared in
Ref. [15], where we concluded that stochastic switching to an
abundant phenotype is destabilizing, but stochastic switching
to a rare phenotype, corresponding to ε � 1, is stabilizing.
Here, we can therefore conclude similarly that responsive
switching to an abundant phenotype generically destabilizes
the community (compared to the case in which there is no
phenotypic variation), but that responsive switching to a rare
phenotype has a stabilizing effect.

FIG. 4. Permanent coexistence in random microbial communi-
ties with responsive phenotypic switching. (a) Probability, in the
models with responsive switching R [Eqs. (1)] and with stochastic
switching only S [Eqs. (2)], respectively, of extinction of some
species in a random system perturbed away from an equilibrium
stable in the other model: Plots of P (S extinct | R stable) [filled
marks] and P (R extinct | S stable) [open marks] against the number
N of species. (b) Same plot, but focused on low probabilities. Each
probability was computed from up to 5 × 108 exact equilibria of
random systems [analyzed in Figs. 2(a) and 2(b)] and by numerical
integration of up to 5 × 103 unstable systems (analyzed in Fig. 3).
Parameter values: ε = 1 (circles) and ε = 0.01 [30] (squares). Thick
error bars correct the estimates of probabilities for the systems in
which the numerical integration to long times did not converge
(Fig. 3); thin error bars add 95% confidence intervals [31]. Only
those error bars larger than the plot markers are shown.

However, all of these results are fundamentally statisti-
cal in nature. While they show how responsive phenotypic
switching affects stability on average, they do not yield any
insight into the conditions under which phenotypic switching
stabilizes or destabilizes the community. To understand the
mechanisms underlying these stability differences, we there-
fore complement this statistical analysis with an analysis of
reduced two-species models in the next section.

III. STABILIZATION OF TWO-SPECIES COEXISTENCE
BY RESPONSIVE SWITCHING

In this section, we reduce the N-species model (1) to a
minimal two-species model of responsive phenotypic switch-
ing. In the context of this model, we analyze the mechanisms
by which stochastic and responsive switching affect stability
numerically. We confirm some of these numerical results by
deriving exact results for simplified models in Appendix B.
These exact results extend the classical results [27], which we
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TABLE I. Parameters of the two-species model (4), representing the interactions in Fig. 1(b), and their interpretations. The parameters
have been divided into three groups. Only one of the persister logistic parameters appears in each of the simplified models (B1), (B2),
and (B3).

Group Parametera Interpretationb

α Magnitude of effect of B–A interaction on B
ζ Growth rate of ACompetitor logistic parameters
η Strength of within-species competition of A
ϑ Magnitude of effect of B–A interaction on A

β Rate of responsive switching from B to P
Phenotypic switching rates γ Rate of stochastic switching from B to P

δ Rate of stochastic switching from P to B

ι Magnitude of effect of P–A interaction on A
κ Magnitude of effect of B–P interaction on B
μ Growth rate of PPersister logistic parameters
ξ Magnitude of effect of P–A interaction on P
 Magnitude of effect of P–B interaction on P
ς Strength of within-species competition of P

aThe equations have been nondimensionalized by rescaling time and population abundances to remove two (dimensional) parameters, viz., the
growth rate and the strength of the within-species competition of B.
bPhenotype abbreviations (B: bacteria; P: persisters; A: competitors) used in this column are as in Fig. 1(b).

rederive in Appendix C, for the stability of the two-species
Lotka–Volterra competition model.

A. Minimal two-species model

The simplest setting for responsive phenotypic switching
is the competition of two well-mixed species [Fig. 1(b)]. The
first species has a single phenotype, A, while the second one
has two phenotypes, B and P, between which it switches
stochastically. Moreover, phenotype B responds to the com-
petitor phenotype A by switching to P [Fig. 1(b)]. To interpret
this model in terms of actual biological systems, it is useful
to think of P as a phenotype resilient to stress conditions,
akin to the bacterial persister phenotype [16–18], and to which
the common, “normal” phenotype B switches in response to
toxins produced by A. With this interpretation and for simplic-
ity, we shall sometimes refer to B, P, A and their respective
abundances B, P, A as bacteria, persisters, and competitors
[33], and we shall sometimes assume the model parameters to
scale accordingly.

Thus, again using Lotka–Volterra competition terms [27],
the nondimensionalized dynamics of the system are

Ḃ = B(1 − αA − B − κP) − βAB − γ B + δP, (4a)

Ṗ = P(μ − ξA − B − ςP) + βAB + γ B − δP, (4b)

Ȧ = A(ζ − ηA − ϑB − ιP), (4c)

wherein α, β, γ , δ, ζ , η, ϑ, ι, κ, μ, ξ,, ς � 0 are dimen-
sionless nonnegative parameters. To obtain this form of the
equations, we have scaled time and the population sizes so as
to remove the parameters that would otherwise appear in the
logistic growth term B(1 − B) of the bacteria in the absence
of persisters and competitors [34]. The interpretation of the
model parameters in Eqs. (4) is given in Table I.

We have not explicitly introduced a positive parameter
ε � 1 scaling the competition dynamics of and switching rates

to persisters, but we expect

α, δ, ζ , η, ϑ = O(1), β, γ , ι, κ, μ, ξ,, ς = O(ε) (5)

from the interpretation of the model in terms of bacteria,
persisters, and competitors and by comparison of Eqs. (1) and
(4). We will not assume ε � 1, but we will sometimes invoke
ε � 1 below and in the calculations in Appendices B, C,
and D to restrict parameter ranges or impose inequalities
between parameters.

B. Results

In this subsection, we analyze model (4) numerically and
ask: Under which conditions and to what extent does respon-
sive switching stabilize or destabilize coexistence?

1. Numerical setup

The full model (4) is too complicated for meaningful
analytical progress to be made. Nevertheless, its equilibria
can be found numerically and efficiently by precomputing,
using MATHEMATICA (Wolfram, Inc.), the exact polynomial
equations satisfied by the equilibria from Gröbner bases [35].
We verify the polynomial root finding using a test based on
Sturm’s theorem [36]. For each computed equilibrium, we
check its accuracy using the right-hand sides of Eqs. (4)
evaluated there. We determine the stability of the computed
equilibria using the Routh–Hurwitz conditions [27]. Analo-
gously, we determine the stability of equilibria of the averaged
models (with stochastic switching only and without pheno-
typic variation) corresponding to Eqs. (4). Unstable equilibria
are integrated numerically, similarly to the calculations in
Sec. II, to determine whether the species coexist permanently
notwithstanding a particular coexistence equilibrium being
unstable. To reduce the number of systems that need to be
integrated in this way, we use a result that we establish in
Appendix D: Coexistence in Eqs. (4) is permanent if all
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trivial steady states are unstable and provided that the persister
scalings (5) are satisfied.

The setup for our numerical calculations is as follows: We
fix a population of bacteria and competitors by fixing the com-
petition parameters α, η, ϑ . We then compute stability dia-
grams in the (ζ , β ) plane for random choices of the remaining
model parameters γ , δ, ι, κ, μ, ξ,, ς , which we constrain to
satisfy the persister scalings (5). We report these numerical re-
sults by plotting, for each point in the (ζ , β ) diagram, stability
statistics (such as the proportion of random systems in which
coexistence is stable or permanent at this point). It is important
to note that these statistics, while providing a convenient way
of visualizing the generic properties of the stability diagrams,
have no real biological meaning. Indeed, the averaged models
vary between these random instantiations of the full model,
since the bacteria-persister competition parameters are held
fixed while the switching parameters and the remaining com-
petition parameters are varied.

2. Discussion

Figure 5 shows numerical stability diagrams of Eqs. (4).
The classical results for two-species Lotka–Volterra model
(Appendix C) suggest distinguishing the cases η/α > ϑ and
η/α < ϑ , which indeed give rise to qualitatively different
stability diagrams (Fig. 5).

In both cases however, sufficient levels of responsive
switching destabilize coexistence compared to the averaged
model with stochastic switching only. This effect is less pro-
nounced for ϑ < η/α [Fig. 5(a)] than for ϑ > η/α [Fig. 5(b)].
This destabilization is that which we already noted when
discussing the statistical stability of responsive switching in
the previous section: Figure 2(c) has already shown that co-
existence is more likely to be stable in models with stochastic
switching only than in those with responsive switching.

In the context of the minimal two-species model (4), we
can however address the mechanisms underlying this average
destabilization. This will allow us to identify the conditions
under which responsive switching can even be stabilizing.
To this end, we analyze the effect of the P phenotype, i.e.,
the effect of the parameters ι, κ, μ, ξ,, ς that describe its
interactions with the A and B phenotypes (Table I), on the
stability and permanence of coexistence: We plot, in Figs. 6
and 7, stability diagrams of Eqs. (4) for the cases in which one
and only one among ι, κ, μ, ξ,, ς is nonzero. We empha-
size that these parameters are of the same order, as expressed
by the persister scalings (5). This means that neglecting the
effect represented by one (say, persister growth) compared
to another (say, persister-competitor interactions) is not in
general ecologically consistent. For this reason, these “one-
parameter” models are not “more minimal” than Eqs. (4).
However, the “one-parameter” diagrams in Figs. 6 and 7 can
reveal the individual mathematical effects of these parameters,
and our results will show how they can help unravel mecha-
nisms of (de)stabilization.

The full stability diagram of Eqs. (4) is not of course
a trivial superposition of the stability diagrams in Figs. 6
and 7. Nonetheless, we recognize features of these dia-
grams in the stability diagrams of Eqs. (4) plotted in Fig. 5.
It is therefore all the more striking that, for the same

FIG. 5. Numerical stability diagrams of Eqs. (4) in the (ζ , β )
diagram in the cases (a) η/α > ϑ and (b) η/α < ϑ . The color of each
point in the stability diagrams represents the proportion of N = 1000
random systems for which coexistence is stable or permanent at that
point. The insets plot the proportion of systems for which coexistence
is destabilized, �, compared to the averaged model with stochastic
switching only. The symbol ⊕ in parentheses [(b), inset] indicates
that a nonzero proportion of systems (too small to be visualizable
by the color scheme) is stabilized (or becomes permanent) compared
to the averaged model. Parameter values: α = 0.8, η = 1.2, and (a)
ϑ = 1.1, (b) ϑ = 1.9, γ , ι, κ, μ, ξ, , ς ∼ U[ε, 2ε], with ε = 0.1,
and δ ∼ U[0.8, 1.6].

parameter values for which Fig. 5 shows destabilization of
coexistence due to responsive switching, the “one-parameter”
diagrams show the possibility of stabilization of coexis-
tence: Persister-competitor interactions [ι > 0, Figs. 6(a) and
6(b)] and persister growth [μ > 0, Figs. 6(c) and 6(d)]
are stabilizing. Moreover, Figs. 7(a) and 7(b) show a very
slight destabilizing effect of competitor-persister interactions
(ξ > 0). Finally, the different types of competition between
bacteria and persisters (Table I) correspond to the cases κ > 0
[Figs. 6(e) and 6(f)],  > 0 [Figs. 7(c) and 7(d)], and ς > 0
[Figs. 7(e) and 7(f)]. They yield very similar stability dia-
grams and are neither stabilizing nor destabilizing for the
generic parameter values used in Figs. 6 and 7. Of the six
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FIG. 6. Effect of the parameters ι, μ, κ on the stability and permanence of coexistence. Numerical stability and permanence results for
Eqs. (4) if only one of the persister parameters ι, κ, μ, ξ, , ς is nonzero: ι > 0 [(a), (b)], μ > 0 [(c), (d)], and κ > 0 [(e), (f)]. The analytical
results in Appendix B confirm some of these results. The cases η/α > ϑ [(a), (c), (e)] and η/α < ϑ [(b), (d), (f)] lead to qualitatively different
diagrams. The color of each point in the stability diagrams represents the proportion of N = 1000 random systems for which coexistence
is stable or permanent at that point. The insets similarly plot the proportion of systems for which coexistence is stabilized (or becomes
permanent), ⊕, or destabilized, �, compared to the averaged model with stochastic switching only; there is no (de)stabilization where there
is no inset. Parameter values: α = 0.8, η = 1.2, and ϑ = 1.1 [(a), (c), (e)] or ϑ = 1.9 [(b), (d), (f)]. The remaining parameters (if not set to
zero) were sampled uniformly and independently, constrained by the persister scalings (5): γ , ι, κ, μ, ξ, , ς ∼ U[ε, 2ε], with ε = 0.1, and
δ ∼ U[0.8, 1.6].

FIG. 7. Effect of the parameters ξ,, ς on the stability and permanence of coexistence. Numerical stability and permanence results for
Eqs. (4) if only one of the persister parameters ι, κ, μ, ξ, , ς is nonzero: ξ > 0 [(a), (b)],  > 0 [(c), (d)], and ς > 0 [(e), (f)]. Panels (a),
(c), and (e) have η/α > ϑ , while panels (b), (d), and (f) have η/α < ϑ . Plots are analogous to and parameter values are equal to those in Fig. 6.
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FIG. 8. Stabilization of coexistence by “elevated” persister
growth μ or persister-competitor interaction ι. Plots, in (ζ , β ) space
and for (a) η/α > ϑ and (b) η/α < ϑ , of the proportion of N = 1000
random instantiations of Eqs. (4) for which coexistence is stabilized
(or becomes permanent), ⊕, or destabilized, �, compared to the
averaged model with stochastic switching only. Proportions are rep-
resented by the colors of the points in the diagrams, with symbols
in parentheses indicating that the stability or permanence of a pro-
portion of systems too small to be visualizable by the color scheme
changes compared to the averaged model. The “elevation” of ι, μ

increases from top to bottom. Parameter values: α = 0.8, η = 1.2,
(a) ϑ = 1.1 or (b) ϑ = 1.9, and δ ∼ U[0.8, 1.6], as in Figs. 5–7; also,
γ , μ, ξ, , ς ∼ U[ε/ f , 2ε/ f ], μ, ι ∼ U[ε f , 2ε f ], with ε = 0.1
and where f ∈ {1 (top), 1.5, 2, 2.5 (bottom)} “elevates” the values
of ι, μ.

persister parameters ι, μ, κ, ξ,, ς , only the first two have
thus, on their own, a strong effect on stability or permanence
of coexistence when coupled to responsive switching.

This suggests that coexistence can be stabilized by tuning
the persister parameters so that the stabilizing parameters ι, μ

exceed the others, while still remaining “small”, as required
by the persister scalings (5). This is confirmed by the numer-
ical results in Fig. 8. The stabilizing effect of “elevating” ι, μ

is less pronounced for ϑ < η/α [Fig. 8(a)] than for ϑ > η/α

[Fig. 8(b)], mirroring the weaker destabilizing effect of “unel-
evated” ι, μ in the former case.

How do we interpret this stabilization by elevated ι, μ in
the context of our analysis based on a weakly-competing,
persister-like phenotype P [Fig. 1(b)]? The “elevated” growth
rate μ that stabilizes coexistence with responsive switching
might correspond to a phenotype that relies on a different
food source (and therefore competes weakly with both the
normal phenotype B and the competitors A); the growth rate μ

may still be small because the alternative food source may be
scarce, or more difficult to metabolize. Similarly, an elevated,
but small persister-competitor interaction rate ι may result
from toxins produced by the persisters and acting specifically
on the competitors. That the ecological fitness of the pheno-
types we have just described should be linked to responsive
switching in particular is not surprising.

The elevated growth and and interaction with competitors
of this phenotype are consistent with a persister phenotype,
because the corresponding parameters remain “small” in the
sense of the persister scalings (5). While the bacterial per-
sister phenotype [16–18] is sometimes considered to be a
dormant phenotype [37], small levels of growth or interaction
with competitors are mathematically different from absence
thereof. Our theoretical results stress this point by suggesting
that even such phenotypes can contribute crucially to stability
and permanence of coexistence in a microbial community.

3. Analytical results

We have already noted that the full model (4) does not al-
low much analytical progress. However, some of the effects of
the parameters ι, μ, κ and hence some of the features in their
stability diagrams (Fig. 6) and in the full stability diagram
of Eqs. (4) in Fig. 5 can be understood analytically. (We are
not aware of similar analytical results for the other persister
parameters ξ,, ς .) In Appendix B, we derive and discuss
these analytical results, which extend the classical results
for the two-species Lotka–Volterra model [27] to the sim-
plest mathematical models of responsive switching. Again,
these “one-parameter” mathematical models are not “more
minimal” ecological models than Eqs. (4). However, they are
sufficiently simple to allow analytical understanding of the
numerical results that have led us to identifying the stabilizing
phenotype discussed above. We shall postpone the detailed
discussion of these analytical results to Appendix B, but em-
phasize three of their features here.

First, the exact calculations show that there are regions
of parameter space in which all steady states of the “one-
parameter” models involving ι, μ, κ are unstable, but in
which coexistence is still permanent. This emphasizes the
importance of non-steady-state attractors for permanence of
coexistence and stabilization of coexistence by responsive
switching for these models. This result also stresses how phe-
notypic switching increases the complexity of the dynamics:
No limit cycles (and no more complex attractors) arise in
the classical two-species Lotka–Volterra competition model
[27]. Thus analysis of the linear stability of the steady states
(Ref. [27] and Appendix C) provides a complete biological
picture of the community for the average model, but does not
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yield a similarly complete picture of a two-species community
with phenotypic variation.

Second, these results and further calculations in
Appendix C show that stochastic switching on its own
does not affect the stability of coexistence in these models.
Responsive switching can thus be stabilizing even when
stochastic switching has no effect on stability. This statement
can be extended numerically to the other “one-parameter”
models and permanence of coexistence. Indeed, the
“one-parameter” (de)stabilization diagrams comparing the
full model (4) to its average without phenotypic variation
(not shown) are identical to those comparing model (4) to
its average with stochastic switching only (Figs. 6 and 7,
insets). This means that stochastic switching on its own
does not even affect the permanence of coexistence in
these “one-parameter” models. However, these results do
not extend beyond the “one-parameter” models: The full
(de)stabilization diagrams for the comparison of model (4)
and its average without phenotypic variation (not shown) are
different from those in Figs. 5 and 8. From those numerical
results, we can in fact conclude that elevated ι, μ as in Fig. 8
also stabilize the averaged model with stochastic switching
only compared to that without phenotypic variation.

Finally, the analytical results stress that even small rates
of stochastic switching, β = O(ε), affect stability, but only
if the B and A phenotypes are similar enough, as expressed
by the scaling requirement η − αϑ � O(ε2). Our choice
of allowing, in our numerical calculations, “large” values
β = O(1), which are not consistent with the persister scalings
(5), is therefore one of numerical convenience that does not
affect the biological validity of our analysis. The existence of
such a requirement is not unexpected: An asymptotically rare
phenotype P should not change the stability of communities in
which one of the A and B phenotypes strongly dominates the
other, i.e., η − αϑ = O(1). This case of strong dominance is
perhaps less relevant to our analysis, because one expects such
strong dominance to lead to one species simply outcompeting
the other. By contrast, weak dominance of one species may
build up the evolutionary pressure that could lead to the emer-
gence of stabilizing features such as the responsive switching
analyzed here. In this context, our earlier results in Sec. II
and in Ref. [15] show that the effect of a rare phenotype is
amplified as the number of species increases. This might be
relatable to a combinatorial and statistical increase of species
interactions lacking such strong dominance.

IV. CONCLUSIONS

In this paper, we have analyzed the ecological implica-
tions of phenotypic variation and, in particular, responsive
phenotypic switching in the context of microbial communi-
ties in which the species have a rare, slowly growing and
weakly competing, persister-like phenotype. We have shown
that the statistical properties of stability and permanence of
coexistence are different in models with responsive pheno-
typic switching and in corresponding averaged models with
stochastic phenotypic switching only, and we have empha-
sized the need to define these averaged models carefully. This
statistical analysis showed that coexistence is less likely to
be stable on average with responsive switching than with

stochastic switching only. However, numerical results for a
minimal two-species model revealed those parameters (and
hence the ecological conditions) in combination with which
responsive switching can stabilize two-species communities.
Exact results for simplified mathematical models showed fur-
ther that responsive switching can stabilize coexistence even
when stochastic switching on its own does not affect the
stability of the community. Additionally, our numerical results
emphasized the importance of non-steady-state attractors for
coexistence of all species, even for the simplified two-species
models, but analytical understanding of these attractors is still
lacking.

All of our results thus hint at a complex relationship be-
tween ecological stability and phenotypic variation, of which
this and previous studies [14,15] have only scratched the
surface. Focusing, as we did in this paper, on a minimal two-
phenotype structure with the asymptotic separation afforded
by a rare, persister-like phenotype has enabled more detailed
and mechanistic understanding. However, extending these re-
sults to many-species systems and more general phenotypic
structures remains an important challenge for future work.
Reference [14] has already begun to address these questions
in the context of stochastic phenotypic switching. However, to
understand which phenotypic interactions stabilize or desta-
bilize many-species systems, further analytical progress, for
simple models of communities of more than two species, will
be crucial. This is because statistical exploration of many-
species systems requires more guidance due to the quadratic
increase of the number of interaction parameters with the
number of species. Such analytical progress may benefit from
the information-theoretic approaches used in evolutionary
population dynamics [38,39]. Moreover, different stability-
affecting structures in microbial communities have now been
identified: They range from phenotypic variation (this paper
and Refs. [14,15]) and species modularity [6] to higher-order
interactions [7] or resource and signaling dynamics [8,29].
However, the interplay of these structures remains unclear.
Future theoretical work will therefore need to ask: Which
of these effects (if any) dominates the overturning of May’s
stability paradigm [1] in actual ecological communities?

The deterministic equations in this paper describe well-
mixed populations, with the deterministic parameter that we
call the stochastic switching rate representing a mean over
individual, stochastic events of phenotypic switching. For a
rare phenotype such as the persister phenotype, this approx-
imation may break down because persister abundances may
be small not only in relative terms [30], but also in absolute
terms [40]. Future work will need to address more generally
such stochastic effects and their contribution to the stability of
ecological communities. Simulations resolving rare stochastic
events will allow disentangling the contributions of individual
events from those of their mean deterministic behavior.

Meanwhile, our paper has predicted that the combination
of responsive switching to a rare persister-like phenotype and
its slow growth and weak interaction with competitors can
favor coexistence in microbial communities. This ecological
prediction remains to be tested experimentally and the weak
growth, interaction with competitors, and responsive switch-
ing rates of persisters remain to be quantified in microbial
communities. Some experimental support for the importance
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of this parameter combination might already be given by the
recent paper [26] showing that a nonreproducing subpopula-
tion of P. aeruginosa releases bacteriocins while migrating
up antibiotic gradients. More importantly, these experiments
emphasize the role of spatial dynamics in the response to
antibiotic stress. Future theoretical work will therefore also
need to add such spatial dynamics into the models that we
have analyzed here.

More generally, identifying experimental systems in which
the role of responsive phenotypic switching can be ad-
dressed experimentally is another key challenge for future
work. In particular, experimental systems for these questions
must allow disentangling the effect of responsive phenotypic
switching, say, and the effect of the change of the equilib-
rium population that results from “turning off” responsive
switching. This is precisely the problem that we highlighted
when discussing reduced models and solved, theoretically,
by defining averaged models for stability comparison: In-
troducing these averaged models enabled us to make such
complex, albeit mathematical ecological perturbations. It is
this ability that explains the power of theoretical approaches
for guiding experimental exploration of problems in ecology.
For this reason, the importance of these theoretical approaches
mirrors the outstanding importance of microbial communities
[41]—and hence that of understanding the biological and
mathematical effects that stabilize or destabilize them—for
the world that surrounds us.

ACKNOWLEDGMENTS

We thank B. G. Stokell for a conversation on confidence in-
tervals. This work was supported in part by the Schlumberger
Chair Fund. R.E.G. was supported by Established Career
Fellowship No. EP/M017982/1 from the Engineering and
Physical Sciences Research Council and Grant No. 7523 from
the Marine Microbiology Initiative of the Gordon and Betty
Moore Foundation. N.M.O. was supported by Discovery Fel-
lowship No. BB/T009098/1 from the Biotechnology and
Biological Sciences Research Council, a Wellcome Trust In-
terdisciplinary Fellowship, and, at earlier stages of this work, a
Herchel Smith Postdoctoral Research Fellowship. P.A.H. was
supported by the Max Planck Society, and, at earlier stages of
this work, by a Nevile Research Fellowship from Magdalene
College, Cambridge and a Hooke Research Fellowship at the
Mathematical Institute, University of Oxford.

APPENDIX A: DETAILS OF THE STATISTICAL
ANALYSIS OF EQS. (1)

This Appendix provides details of the statistical analysis of
Eqs. (1): It discusses the conditions under which the dynamics
of Eqs. (1) are bounded, explains the random sampling of
systems, provides the calculations of the Jacobians of the
equilibria of Eqs. (1) and the asymptotic calculations in the
limit ε � 1, and defines an averaged model without pheno-
typic variation for completeness.

FIG. 9. Bounded dynamics of Eqs. (1). For any nonnegative
initial conditions, (Bn, Pn) will eventually enter the pentagonal
bounding region (thick lines), and remain in that region for all times.
If Cnn = 0 and bn < εkn or Fnn = 0 and pn < �n, the sides of the
bounding region are modified (dashed lines).

1. Bounded dynamics of Eqs. (1)

We begin by establishing sufficient conditions for the dy-
namics of Eqs. (1) to be bounded, and therefore to be realistic
biologically.

We assume that, for each n ∈ {1, 2, . . . , N}, the B pheno-
type of species n satisfies Cnn �= 0 or bn < εkn, and that its P
phenotype satisfies Fnn �= 0 or pn < �n. Then, from Eqs. (1),

Ḃn + Ṗn � Bn[(bn − εkn) − CnnBn]

+ εPn[(pn − �n) − FnnCn]. (A1)

Consider first the generic case in which Cnn, Fnn �= 0. Then
Ḃn + Ṗn < 0 if Bn > bn/Cnn and Pn > pn/Fnn. Moreover, if
Pn < pn/Fnn or Bn < bn/Cnn, then from Eqs. (1),

Ḃn � Bn(bn − εkn) − CnnB2
n + �nPn

< Bn(bn − εkn) − CnnB2
n + �n pn/Fnn, (A2a)

Ṗn � ε
[
Pn(pn − �n) − FnnC

2
n + knBn

]
< ε

[
Pn(pn − �n) − FnnC

2
n + knbn/Cnn

]
. (A2b)

It follows that Ḃn < 0 if Pn < pn/Fnn and Bn > Bmin
n ,

for some Bmin
n > 0. We will not need an explicit expres-

sion for Bmin
n , but can assume without loss of generality

that Bmin
n > bn/Cnn; similarly, Ṗn < 0 if Bn < bn/Cnn and

Pn > Pmin
n , for some Pmin

n > pn/Fnn. These bounds are inde-
pendent of the other species, and thus show that, irrespective
of the initial conditions, the dynamics of (Bn, Pn) will enter
the bounded region in Fig. 9, and remain in that region.

A similar argument shows that the dynamics are bounded
if Cnn = 0, but bn < εkn or Fnn = 0, but pn < �n (Fig. 9).

On identifying parameters appropriately, these conditions
also provide sufficient conditions for the dynamics of the two-
species model (4) or the simplified models (B1), (B2), and
(B3) to be bounded.

2. Sampling of random systems

We follow the approach that we introduced in Ref. [15] to
sample random instantiations of Eqs. (1) and their coexistence
equilibria.
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In more detail, we choose the competition strengths
C, D, E, F, the stochastic switching rates k, �, the responsive
switching rates R, S, and the equilibria B∗, P∗ independently
from the uniform U [0, 1] distribution. This leaves linear equa-
tions to be solved for the remaining parameters b, p; to ensure
that they are nonnegative, we choose a common random scal-
ing for the switching rates k, � and R, S.

Using the asymptotic solution derived below, the model
parameters can be sampled directly, i.e., we can sample b, p
randomly, and use that solution to compute B∗, P∗. To avoid
a breakdown of asymptoticity, we sample parameters in the
interval [ε1/4, 1] rather than [0,1]. We also discard those sam-
pled systems for which any component of the right-hand sides
of Eqs. (1) is greater than ε. Moreover, we ensure feasibility of
B∗ by sampling b as a linear combination of the (normalized)
columns of C.

Finally, to sample exact equilibria (again indirectly)
for ε � 1, we adapt our previous strategy by imposing
P = εB(k + R · B), up to a random O(ε2) correction, to en-
sure that p = O(1).

3. Jacobian of equilibria of Eqs. (1)

The Jacobian of an equilibrium E = (B∗, P∗) of Eqs. (1) is

J∗ =
(

J1 J2
J3 J4

)
, (A3)

wherein

J1 = (b − C · B∗ − εD · P∗)I − B∗C

− ε(k + R · B∗ + S · P∗)I − εB∗R, (A4a)

J2 = −εB∗D + �I − εB∗S, (A4b)

J3 = −εP∗E + ε(k + R · B∗ + S · P∗)I + εB∗R, (A4c)

J4 = ε(c − E · B∗ − εF · P∗)I − εP∗F − �I + εB∗S, (A4d)

with I being the identity. Using k′ = k + R · B∗ + S · P∗,
Eq. (3) follows immediately.

4. Asymptotic coexistence equilibria of Eqs. (1) for ε � 1

As announced in the main text, we seek an expansion
of the coexistence state (B∗, P∗) in powers of ε � 1 by
writing

B∗ = B0 + εB1 + O(ε2), P∗ = P0 + εP1 + O(ε2).

(A5)

On expanding Eqs. (1), we find

0 = B0(b − C · B0) + �P0 + ε[B1(b − C · B0) − B0C · B1

− B0D · P0 + �P1 − B0(k + R · B0 + S · P0)] + O(ε2),

(A6a)

0 = −�P0 + ε[P0(p − E · B0 − F · P0) − �P1

+ B0(k + R · B0 + S · P0)] + O(ε2). (A6b)

Solving at order O(ε0), P0 = 0 	⇒ B0 = C−1 · b, unless
det C = 0, which we assume not to be the case. Then, at
order O(ε1), P1 = (k + R · B0)B0/�, and hence B0C · B1 = 0,
which implies B1 = 0, as claimed in the main text. On substi-
tuting these results into Eq. (A3), we find

J∗ =
( −B0C �I

O −�I

)
+ ε

( −(k + R · B0)I −B0D
(k + R · B0)I (p − E · B0)I

)
︸ ︷︷ ︸

K∗+O(ε2 )

+ε

( −B0R −B0S
B0R B0S

)
+ O(ε2), (A7)

in which O is the zero matrix and I is again the identity. In the
first two terms of Eq. (A7) and up to smaller corrections, we
recognize the Jacobian K∗ of the corresponding model with
stochastic switching only, because k′ = k + R · B0 + O(ε).
We use these expansions to sample coexistence equilibria of
random systems with ε � 1 directly, and to determine their
stability numerically.

5. Permanent coexistence in Eqs. (1)

To determine whether coexistence is permanent where
a coexistence equilibrium is unstable, we perturb the sys-
tem away from that unstable equilibrium, and evolve it
numerically using the stiff solver ode15s of MATLAB (The
MathWorks, Inc.). During the numerical solution, we repeat-
edly test for convergence to a stable equilibrium or a stable
limit cycle. In particular, limit cycles and their stability are
determined using the shooting method described in Ref. [42].

There is one particular numerical difficulty associated
with this: The numerical integration generally fails, even
at stringent tolerances, if the dynamics approach an attrac-

tor intersecting one of the planes Bn = 0 or Pn = 0. Some
species abundances become arbitrarily small (while remaining
nonzero at finite times) on such a trajectory. Since such small
abundances lack biological meaning, we simply remove these
species from the system. In more detail, we declare species
n to go extinct at time tn = argmin {max {Bn(t ), Pn(t )} < ε},
where ε � 1 is fixed, and integrate the system constituted by
the remaining species for t > tn. We choose ε = 10−6 and find
empirically that this reduces considerably the proportion of
systems for which the numerical integration would otherwise
fail.

6. Averaged model without phenotypic variation

In the same way as we have associated to Eqs. (1) an
averaged model with stochastic switching only [Eqs. (2)], we
can also associate to Eqs. (1) a model without phenotypic
variation,

Ḃ
′ = B′(b′ − C′ · B′), (A8)
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with a unique coexistence equilibrium B′
∗ = C′−1 · b′. As we

have noted in Ref. [15], this equilibrium is consistent with an
equilibrium E = (B∗, P∗) of Eqs. (1) or (2) if and only if the
population sizes, births, and competition at equilibrium are
equal, i.e.,

B′
∗ = B∗ + P∗, b′B′

∗ = bB∗ + εpP∗, (A9a)

B′
∗C′B′

∗ = B∗CB∗ + ε(B∗DP∗ + P∗EB∗ + P∗FB∗). (A9b)

These conditions uniquely determine the effective parameters
b′ and C′ of the averaged model and its equilibrium B′

∗. Again,
the corresponding reduced model would inherit its birth rates
b and competition parameters C from Eqs. (1). Stability dif-
ferences between this reduced model and Eqs. (A8) need not
therefore result from the phenotypic substructure, but could
also stem from these parameter differences, i.e., evolution of
the B phenotypes. We emphasize that this averaging does not
imply that the dynamics of the sum B + P resulting from
Eqs. (1) are of the averaged form (A8), and so the dynam-
ics of Eqs. (1) and Eqs. (A8) are in general different away
from E .

APPENDIX B: ANALYSIS OF SIMPLIFIED MODELS

In this Appendix, we derive analytical results for three
simplified models to establish some of the features seen nu-
merically in the stability diagrams in Fig. 6 and hence Fig. 5.

The reason for introducing these simplified models is that
the full two-species model (4) does not easily lend itself to an-
alytical progress. Indeed, on computing a Gröbner basis [35]
for the steady-state version of Eqs. (4) using MATHEMATICA,
we find that even just computing the coexistence equilibria
of Eqs. (4) requires solving a quartic equation. To enable
some analytical progress, we therefore introduce a simplified
version of Eqs. (4),

Ḃ = B(1 − αA − B) − βAB − γ B + δP, (B1a)

Ṗ = βAB + γ B − δP, (B1b)

Ȧ = A(ζ − ηA − ϑB − ιP). (B1c)

Compared to the full system (4), all but one of the competition
terms involving the persisters (Table I) have been removed in
this system. We stress that Eqs. (B1) are not the asymptotic
limit of Eqs. (4) for slowly growing and weakly competing
persisters. Again, Eqs. (B1) are thus not an ecological model,
but a mathematical model: Including this one persister com-
petition term, while leaving the system amenable to analytical
progress, introduces nontrivial behavior.

We will also consider two other simplified models that are
obtained similarly,

Ḃ = B(1 − αA − B) − βAB − γ B + δP, (B2a)

Ṗ = μP + βAB + γ B − δP, (B2b)

Ȧ = A(ζ − ηA − ϑB), (B2c)

and

Ḃ = B(1 − αA − B − κP) − βAB − γ B + δP, (B3a)

Ṗ = βAB + γ B − δP, (B3b)

Ȧ = A(ζ − ηA − ϑB). (B3c)

The three simplified models (B1), (B2), and (B3) thus cor-
respond to allowing exactly one of ι, μ, κ (Table I) to be
nonzero. The equilibria of the analogous simplified models
corresponding to the remaining logistic parameters involving
persisters, viz., ξ,, ς (Table I), are determined by equa-
tions that are at least cubic, and hence do not allow much
analytical progress.

In what follows, we derive exact stability, feasibility,
and permanence results for each of the models (B1), (B2),
and (B3).

1. Stability and permanence of coexistence in Eqs. (B1)

The simplified model (B1) has five steady states: three
trivial steady states,

O = (0, 0, 0), A = (0, 0, ζ /η), B = (1, γ /δ, 0), (B4a)

and, if βι �= 0, two coexistence equilibria,

C+ = (b+, p+, a+), C− = (b−, p−, a−), (B4b)

where

a± = 1

2αβι

(
−Y ±

√
Y 2 + 4αβδιV

)
, (B5a)

b± = 1

2βι

(
X ∓

√
X 2 − 4βδιU

)
, (B5b)

p± = b±
δ

(βa± + γ ), (B5c)

wherein

U = αζ − η, V = ϑ − ζ + γ ι

δ
, (B6a)

X = δ(U + αV ) + ιβ, Y = δ(U + αV ) − ιβ, (B6b)

so that X 2 − 4βδιU = Y 2 + 4αβδιV and X = Y + 2βι. In
particular, X � Y . If β = 0 or ι = 0, then there is but a single
coexistence state C = (b, p, a), with

b = U

W
, a = V

W
, p = b

δ
(βa + γ ), (B7)

wherein W = U + αV . From Eqs. (B5c) and (B7), it is im-
mediate that p±, p > 0 if b±, b > 0 and a±, a > 0, and so we
need not consider p±, p to determine feasibility.

a. Feasibility of the coexistence equilibria

We now ask whether the coexistence equilibria are feasible.
In Table II, we analyze the possible sign combinations of the
variables U,V, X,Y defined in Eqs. (B6) and that appear in
the coordinates of the equilibria in Eqs. (B5). This shows that
only C+ is feasible if U,V > 0, while only C− is feasible
if U,V < 0. Neither coexistence state is feasible if U < 0,
V > 0, but it is possible for both coexistence states to be
feasible if U > 0, V < 0 provided that X > 0, Y < 0 and that
C± are real (Table II). These conditions reduce to

βι > δ|U + αV | and [δ(U + αV ) + βι]2 > 4βδιU .

(B8)

The second, quadratic condition implies that

βι < δ
(√

U − √−αV
)2

or βι > δ
(√

U + √−αV
)2

.

(B9)
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TABLE II. Feasibility of the coexistence equilibria C± of
Eqs. (B1): Discussion of the sixteen possible sign combinations
of U,V, X,Y , defined in Eqs. (B6). For some combinations, the
resulting signs of a± or b±, defined in Eqs. (B5), are given, and the
symbol C is used for some combinations to indicate that the resulting
values of a± or b± may have nonzero imaginary parts. Some sign
combinations, marked # in the final column, are inconsistent with
definitions (B6); for other sign combinations, this column gives the
corresponding feasibility results.

U V X Y a± b±

+ + + + ± + only C+ is feasible
+ + + − ± + only C+ is feasible
+ + − + # (X < 0,Y > 0 ⇒ X < Y )
+ − + + −/C C± are not feasible
− + + + ± ∓ C± are not feasible
+ + − − # (U,V > 0 ⇒ X > 0)
+ − + − +/C +/C C± can both be feasible
− + + − ± ∓ C± are not feasible
+ − − + # (X < 0,Y > 0 ⇒ X < Y )
− + − + # (X < 0,Y > 0 ⇒ X < Y )
− − + + # (U,V < 0 ⇒ Y < 0)
+ − − − −/C C± are not feasible
− + − − ± ∓ C± are not feasible
− − + − + ∓ only C− is feasible
− − − + # (X < 0,Y > 0 ⇒ X < Y )
− − − − + ∓ only C− is feasible

Since (x − y)2 � |x2 − y2| < (x + y)2 for all x, y > 0, the
first possibility is not consistent with the first condition in
Eqs. (B8), while this condition holds in the second case. It
follows that both coexistence states are feasible if and only if

U > 0, V < 0, and β > β∗ = δ

ι

(√
U + √−αV

)2
.

(B10)

In particular, U > 0 and V < 0 requires

ζ > max
{
ϑ + γ ι

δ
,
η

α

}
. (B11)

Moreover, letting W = U + αV again, the conditions X > 0,
Y < 0 imply that β∗ι > δ|W |. Combining these results yields

β∗ > βmin
∗ =

∣∣∣∣δι (η − αϑ ) − αγ

∣∣∣∣. (B12)

This additional region of feasibility does not arise if β = 0 or
ι = 0. Indeed, it is immediate from Eqs. (B7) that coexistence
is feasible in that case if and only if U,V,W = U + αV all
have the same sign, and hence if and only if U,V > 0 or
U,V < 0.

b. Stability of the coexistence equilibria

We now turn to the question of stability of the coexistence
equilibria. Before discussing the general case βι �= 0, we dis-
cuss two special cases with βι = 0. The Jacobian evaluated at
a coexistence equilibrium (b, p, a) is⎛

⎝−b − βa − γ δ −(α + β )b
βa + γ −δ βb
−ϑa −ιa −ηa

⎞
⎠. (B13)

Stability of the coexistence equilibria if β = 0. In the
absence of responsive switching, i.e., if β = 0, and from
Eq. (B13), the characteristic polynomial of the Jacobian at
C = (b, p, a), defined by Eqs. (B7), is

P(λ) = W 2λ3 + c2λ
2 + c1λ − δUVW, (B14)

wherein

c1 = δUW + (γ + δ)ηVW − UV w, (B15a)

c2 = [U + ηV + (γ + δ)W ]W, (B15b)

with w = W − αγ ι/δ. The Routh–Hurwitz conditions [27]
imply that C is stable only if δUVW < 0. Recalling that
C is feasible if and only if U,V,W = U + αV all have
the same sign, it follows that C is stable only if U,V < 0.
Moreover, if U,V < 0 and hence W < 0, then c2 > 0 and
c1c2 > −δUVW 3; the second inequality is easily checked by
direct multiplication, noting that w < W < 0. The Routh–
Hurwitz conditions then imply that C is stable if and only if
U,V < 0.

Stability of the coexistence equilibria if ι = 0. In the case
ι = 0, in which the competition dynamics do not involve
P directly, we find that the characteristic polynomial of the
Jacobian at C = (b, p, a), defined by Eqs. (B7), still has the
form in Eq. (B14), with modified coefficients

ĉ1 = c1 + βV (ηV − ϑU ), ĉ2 = c2 + βVW. (B16)

Similarly to the case β = 0 discussed above, C is stable if
and only if U,V < 0 and ĉ1ĉ2 > −δUVW 3 by the Routh–
Hurwitz conditions [27]. Noting that U,V,W are independent
of β, the latter condition can be written as a quadratic
in β, d2β

2 + d1β + d0 > 0. Since d0 = c1c2 + δUVW 3 > 0
for U,V < 0, this holds for small enough β. Moreover, if
U,V < 0 and ηV − ϑU < 0, all the terms in the definitions
(B16) are positive, so d1, d2 > 0 and hence ĉ1ĉ2 > −δUVW 3.
If ηV > ϑU however, we find d2 = V 2W (ηV − ϑU ) < 0
and hence d2β

2 + d1β + d0 < 0 for sufficiently large β.
Now U,V < 0 ⇐⇒ ϑ < ζ < η/α, while ηV > ϑU if and
only if ζ < 2ηϑ/(η + αϑ ) ≡ ζ∗, with ϑ < ζ∗ < η/α since
αϑ − η = W < 0. In particular, stable coexistence requires
ϑ < η/α. If, additionally, ζ∗ < ζ < η/α, coexistence is stable
for all β, but if ϑ < ζ < ζ∗, coexistence is only stable for
small enough β.

The condition d2 < 0 is, if U,V < 0 and hence W < 0,
equivalent with ηa < ϑb. This says that destabilization at
large β requires the death rate of competitors at steady state
due to interspecies competition to exceed that due to in-
traspecies competition (Table I).

Stability of the coexistence equilibria if βι �= 0. Next,
we discuss the stability of C± = (b±, p±, a±), defined in
Eqs. (B5) for the case βι �= 0. From Eq. (B13), the charac-
teristic polynomial is

P±(λ) = λ3 + c±
2 λ2 + c±

1 λ + c±
0 , (B17)

where, in particular and using W = U + αV ,

c±
0 = a±b±[−δW + βι(b± − αa±)] = ∓a±b±�, (B18)

wherein �2 = X 2 − 4βδιU = Y 2 + 4αβδιV and � > 0.
Hence c±

0 ≶ 0, and the Routh–Hurwitz conditions [27] imply
in particular that C+ is unstable. Further, on comparing to our
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earlier feasibility results, stable coexistence is only possible at
C− and if U,V < 0 or conditions (B10) are satisfied.

Moreover, c−
2 = b− + (β + η)a− + γ + δ > 0 if C− is

feasible, and hence, by the Routh–Hurwitz conditions, stabil-
ity is, assuming feasibility, equivalent with c−

1 c−
2 > c−

0 . We
are left to analyze this necessary and sufficient condition.

We begin by noting that a region of instability must arise at
large β provided that ι < ϑ . Indeed, using MATHEMATICA to
simplify complicated expressions, we find that, for β � 1,

c−
0 ∼ −δV, c−

1 ∼ δ

[
1 + V

(
ϑ

ι
− 1

)]
,

c−
2 ∼ 1 + γ + δ − V δ

ι
, (B19)

and hence c−
1 c−

2 − c−
0 ∼ v0 + v1V + v2V 2, with, in particular,

v0 = δ(1 + γ + δ) > 0 and v2 = −(ϑ − ι)(δ/ι)2. Now, from
the persister scalings (5), we expect ι < ϑ , so that v2 < 0.
Since v0 > 0, it follows that C− is unstable at large β if and
only if |V | is large enough. This condition is different from the
one that we obtained above when discussing ι = 0, for which
we showed that instability must occur at large β if |V | is small
enough. This emphasizes that the limit ι = 0 is singular.

This asymptotic condition for instability at large β is in-
dependent of α, η, and thus of U . Hence instability may, but
need not occur in the region U,V < 0. If such a region of
instability exists then, because A,B are unstable if U,V < 0,
all steady states are in fact unstable in this region. This dis-
cussion also shows that instability must occur at large β under
the conditions described by Eqs. (B10).

Coexistence is stable, however, for small β if U,V < 0
and hence W < 0. Indeed, a straightforward calculation shows
that C− → C as β → 0 at fixed ι �= 0, with C defined as
in Eqs. (B7). Since C is stable for U,V < 0, so is C− for
sufficiently small β by continuity.

Moreover, C− is stable for V < 0 and |V | sufficiently
small. Indeed, notice that � = |βι − δU | + O(V ).
Now, if U < 0, βι − δU > 0. If U > 0, feasibility requires
βι > δU + O(V ) from Eqs. (B10), and so
�= βι− δU + O(V ) in either case. Direct computation
then yields c−

1 c−
2 − c−

0 = v0 + O(V ) > 0, so C− is stable, as
claimed.

The question whether C− is stable more generally under
the conditions in Eqs. (B10) requires somewhat more effort.
First, we discuss the limit in which β, ζ � 1, considering all
other parameters to be O(1) quantities. Moreover, we assume
that r = βι/αδζ = O(1). With these scalings, U > 0 and
V < 0, so the feasibility conditions (B10) reduce to r > 4. We
then find

c−
0 ∼ δζ

√
1 − 4r−1, c−

2 ∼ β

2α

(
1 −

√
1 − 4r−1

)
, (B20a)

c−
1 ∼ βη

2α2

(
1 −

√
1 − 4r−1

)
− δζ

αι
[α(ϑ − ι) + η], (B20b)

and hence c−
1 c−

2 − c−
0 > 0 for sufficiently large β if and only

if c−
1 > 0, which is if and only if

r
(

1 −
√

1 − 4r−1
)

> 2s, where s = 1 + α(ϑ − ι)/η,

(B21a)

or, equivalently, if and only if

4 < r < r∗ ≡ s2

s − 1
and 1 < s < 2. (B21b)

Assuming that ϑ > ι as discussed above, we have s > 1.
We conclude that there exists a region of parameter space in
which coexistence is stable for β, ζ � 1 under the condition
in Eqs. (B10) if and only if α(ϑ − ι) < η. We also note that
α(ϑ − ι) < η is implied by the condition W < 0.

Finally, we consider stability near the feasibility boundary
β = β∗ defined in Eqs. (B10). By continuity, stability near
this boundary follows from stability at the boundary. Now, by
definition � = 0 and hence, from Eq. (B18), c−

0 = 0 at this
boundary, so stability there is equivalent with c−

1 > 0 since
c−

2 > 0. Using � = 0, direct calculation shows that

(2αβι)2c−
1 = [η − α(ϑ − ι)]β(βι − δW )(βι + δW + 2δη)

+α(η − αϑ )[(βι)2 − (δW )2]

+ 2α2δβι(βι + δW ) (B22a)

= [η − α(ϑ − ι)](βι − δW )[β(βι + δW + 2δη)

+α(βι + δW )]

+α2(βι + δW )[(2δ − ι)βι + διW ]. (B22b)

The discussion around Eqs. (B10) implies that βι > |δW |.
Hence c−

1 > 0 if η > αϑ from Eq. (B22a). If ι < δ, then
(2δ − ι)βι + διW > ι(βι + δW ) > 0, so Eq. (B22b) shows
that c−

1 > 0 continues to hold if α(ϑ − ι) < η < αϑ provided
that ι < δ. We expect this to be true from the persister scalings
(5). If ι > δ however, parameter values such that c−

1 < 0 can
be found numerically (not shown). All of this shows that
coexistence is stable if η > α(ϑ − ι), provided that ι < δ.
Moreover, rearranging Eqs. (B22a) or (B22b) yields

(2αβι)2c−
1 = ι2[η − α(ϑ − ι)]β3 + dβ2 + βδW {αδι

− [η − α(ϑ − ι)](αδϑ + δη + αγ ι)}
+ αδ2W 2(αϑ − η), (B22c)

in which the value of the coefficient d is of no consequence.
Hence, if η < α(ϑ − ι), then c−

1 < 0 and coexistence is unsta-
ble for sufficiently large β; we obtained the same result above.
Here, we note additionally that, if η < α(ϑ − ι), then W > 0,
and so the linear and constant terms of the cubic (B22c) are
positive, while its cubic term is negative, so it has exactly
one positive real root. Since C− is stable for |V | sufficiently
small, this root of c−

1 corresponds to a point on the feasibility
boundary � = 0. Thus the boundary of the unstable region
intersects the feasibility boundary.

c. Coexistence beyond coexistence equilibria

We now extend these results on the coexistence of the two
species described by Eqs. (B1) beyond coexistence at steady
state. We begin by analyzing the stability of the trivial equilib-
ria. We go on to discuss the alternative outcomes of extinction
of one species and permanent coexistence [32] of the two
species by proving that the two species coexist permanently
if all trivial steady states are unstable.

Stability of the trivial steady states. First, we determine
the stability of the trivial steady states O,A,B defined in
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Eqs. (B4a), and which are feasible for all parameter values.
The Jacobian of Eqs. (B1) evaluated at O is⎛

⎝1 − γ δ 0
γ −δ 0
0 0 ζ

⎞
⎠. (B23a)

In particular, this Jacobian has an eigenvalue ζ > 0, so O is
always unstable, with small perturbations expelled from the
plane A = 0.

The stability of the other trivial steady states depends on
U,V . The Jacobian at A is⎛

⎝−(γ + βζ/η) − U/η δ 0
γ + βζ/η −δ 0

−ζ

⎞
⎠, (B23b)

in which the entries left blank clearly do not affect stability.
Similarly, the Jacobian at B is⎛

⎝−1 − γ δ

γ −δ

0 0 −V

⎞
⎠. (B23c)

Direct computation of eigenvalues shows that A is stable
if and only if U > 0, while B is stable if and only if V > 0.
In more detail, B is an attractor in the plane A = 0, but expels
orbits out of that plane if and only if V < 0.

It follows that, if U > 0 or V > 0, then there exist (fea-
sible) initial conditions with which Eqs. (B1) converge to
A or B, and hence lead to extinction of one species. Thus
permanent coexistence of the two species is not possible in
general.

Permanent coexistence. The above shows that permanent
coexistence irrespective of the initial conditions is only pos-
sible if U,V < 0 and hence A and B are unstable, assumed
henceforth.

From the conditions obtained in Appendix A, the dynamics
of Eqs. (B1) are bounded. Hence extinction of one species
requires the dynamics of Eqs. (B1) to converge to a (stable)
limit set L that intersects the boundary BPA = 0. We claim
such a limit set L cannot exist if A and B are unstable.

To prove [43] this claim, we begin by noting that, from
Eqs. (B1), B = 0 	⇒ Ḃ > 0 and P = 0 	⇒ Ṗ > 0 unless
B = P = 0; also, if A = 0, then Ȧ = 0. Hence L ∩ {BPA = 0}
lies in the union of the plane � = {A = 0; B, P > 0} and the
ray {B = P = 0; A � 0} [Fig. 10(a)].

Next, we observe that the dynamics of Eqs. (B1) do not
allow L ⊂ �: if this were the case, the Poincaré–Bendixson
theorem [44] would imply that L is (1) a fixed point, (2) a
limit cycle, or (3) a connection of equilibria. However, (1) is
not possible because O and B are both unstable, the latter by
assumption; (2) is not possible because a limit cycle would
necessarily contain the only interior equilibrium, B, which
is impossible because the latter is, as we have noted below
Eq. (B23c), stable in the plane A = 0 [Fig. 10(b)]; (3) is not
possible, because this connection would either contain the
point B [Fig. 10(c)], or be a homoclinic connection of O
circling B [Fig. 10(d)], both of which are impossible because
B is stable in the plane A = 0. That no limit cycle exists
can also be established (less geometrically) using Dulac’s
criterion [44].

FIG. 10. Permanent coexistence of the two species described by
Eqs. (B1) if A,B are unstable. (a) Orbits of Eqs. (B1) are expelled
from B = 0 and P = 0. (b) Nonexistence of a (stable) limit cycle
L in � = {A = 0; B, P > 0}. (c) Nonexistence of a connection L
containing B in �. (d) Nonexistence of a homoclinic connection
of O in �. (e) Nonexistence of a connection containing O → B.
(f) Nonexistence of a connection containing A, because one of the
connections of A is not feasible.

Extending these arguments, L cannot in fact intersect �,
for if it did, then it would contain a connection O → B,
which is impossible because, as noted above, the directions
transverse to � are unstable for both O and B [Fig. 10(e)].

Hence L must intersect {B = P = 0; A > 0}, so must con-
tain A and and two of its connections. Since it cannot contain
the connection O → A by the above, it must contain the
two other connections of A. However, direct computation of
the eigenvectors of the corresponding Jacobian in Eq. (B23b)
shows that one of these is not feasible [Fig. 10(f)]. This is the
final contradiction showing that L cannot intersect BPA = 0.

This argument shows that both species coexist permanently
if A,B are unstable.

d. Stability diagrams of Eqs. (B1)

The exact results derived above yield the stability diagrams
shown in Fig. 11 for ι > 0; we will not discuss the singular
case ι = 0. They reproduce some of the features of the nu-
merical stability diagrams in Figs. 6(a) and 6(b).

Figure 11 shows how the combination of responsive
switching and persister-competitor interactions (βι > 0) leads
to new behavior compared to the case in which these effects
are absent (βι = 0): There are additional regions of feasibility
and stability at large enough rates of responsive switching
β > βmin

∗ , with βmin
∗ given by Eq. (B12). Given the persister

scalings (5), it is important to note that βmin
∗ = O(ε) is pos-

sible even if ι = O(ε), provided that η − αϑ � O(ε2). This
condition expresses the requirement that the intraspecies com-
petitions of phenotypes B and A be sufficiently close to their
interspecies competitions (Table I).

To understand the stabilization of coexistence by respon-
sive switching observed numerically [Figs. 6(a) and 6(b),
insets], we compare Eqs. (B1) to their averages without phe-
notypic variation and with stochastic switching only. The
calculations in Appendix C show that there is a one-to-one
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FIG. 11. Feasibility and stability of the coexistence states C±
of the simplified model (B1) in the (ζ , β ) diagram for ι > 0, in
the cases (a) η/α > ϑ + γ ι/δ and (b) η/α < ϑ + γ ι/δ, assuming
scalings (5). Coexistence is feasible in the region bounded by the
thick solid black lines. Both C+ and C− are unstable in the region
marked “unstable”, but C− is stable (and C+ is unstable) in the region
marked “stable”. The exact boundary of the region of instability that
arises at sufficiently large β (gray lines) must be computed numer-
ically; a region of stability at large ζ , β must exist in case (a), but
only exists in case (b) if α(ϑ − ι) < η. The boundary of this region
asymptotes to the straight line βι/αδζ ≡ r = r∗, where r∗ is defined
in Eq. (B21b) and depends only on α(ϑ − ι)/η. In the hatched region
of parameter space, the trivial steady states A and B are unstable,
and the two species coexist permanently. This is also the region of
stable steady-state coexistence for averages of Eqs. (B1) with respect
to C− without phenotypic variation and with stochastic switching
only (Appendix C). In the shaded region of parameter space (which
need not exist), all steady states of Eqs. (B1) are unstable.

correspondence, both in terms of parameters and in terms of
feasibility and stability, between these two averaged models.
In other words, stochastic switching on its own does not
affect stability. However, there is no such correspondence
between these averaged models and Eqs. (B1) for β > 0
(Appendix C): Responsive switching stabilizes coexistence in
a region in which the competitor growth rate ζ is sufficiently
large (Fig. 11).

The conditions for stability of the trivial steady states A
and B derived above are independent of the rate of respon-
sive switching β. Responsive switching does not therefore

help in driving the competitors to extinction, but Fig. 11
shows that it makes stable steady-state coexistence possible in
ζ > max {ϑ + γ ι/δ, η/α} where extinction of bacteria and
persisters is the only possible steady state in either averaged
model (Fig. 11). All of these observations show how the
combination of responsive switching and persister-competitor
interactions (βι > 0) favors coexistence.

The shaded region of parameter space in Fig. 11(a), in
which all steady states of Eqs. (4) are unstable, stresses the
importance of non-steady attractors: Since A and B are thus
unstable, coexistence is permanent, but is not at steady state,
since C−,C+ are unstable, too. In particular, the mathematical
observation that responsive switching destabilizes the coex-
istence equilibrium in this region of parameter space does
not contradict our ecological picture of responsive switching
stabilizing coexistence: It simply implies that coexistence can-
not be at steady state in this case, and hence that responsive
switching induces oscillatory population dynamics. However,
classifying all attractors (i.e., not only the stable equilibria)
of Eqs. (B1) and (even for stable steady states) the initial
conditions that lead to them is beyond the scope of this
paper.

As noted above, our analytical results show that responsive
switching stabilizes the coexistence equilibrium compared to
the averaged models in different regions of parameter space
(Fig. 11). In these regions of parameter space, the averaged
model without phenotypic variation must lead to extinction
of one species, because it has no non-steady-state attractors
[27]. However, we have no analytical proof of the nonexis-
tence of such attractors in the averaged model with stochastic
switching only. Hence, in this model, permanent coexistence
(albeit not at steady state) might still be possible in the regions
of parameter space where responsive switching stabilizes the
coexistence equilibrium. These analytical results cannot there-
fore exclude the possibility that it is any phenotypic switching,
rather than responsive switching specifically, that makes coex-
istence permanent. That it is indeed responsive switching that
makes coexistence permanent must be shown numerically, as
we have done in Figs. 6 and 7.

2. Stability and permanence of coexistence in Eqs. (B2)

The simplified model (B2) has three trivial steady states
similar to those of Eqs. (B1) defined in Eqs. (B4a). They are

O = (0, 0, 0), A = (0, 0, ζ /η), B = I (1, γ /(δ − μ), 0),
(B24a)

wherein I = 1 + γμ/(δ − μ). Clearly, O and A are feasible,
but, letting τ = δ − μ, B is feasible if and only if τ > 0.
Moreover, model (B2) has a single coexistence equilibrium,

C = (b, p, a), (B24b)

with

b = U

W
, a = V

W
, p = b

τ
(βa + γ ), (B25)

wherein

U = αζ − η − μ

τ
(γ η + βζ ), V = ϑ

(
1 + μγ

τ

)
− ζ ,

(B26a)
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W = αϑ − η − μβϑ

τ
= ϑU + ηV

ζ
. (B26b)

If a, b > 0, then p > 0 if and only if τ > 0, assumed hence-
forth. The coexistence state C is then feasible if and only if
U,V,W have the same sign, which is, from Eq. (B26b), if and
only if U,V have the same sign. We also note that the results
of Appendix A show that τ > 0 is a sufficient condition for
the dynamics of model (B2) to be bounded.

a. Stability of the coexistence equilibrium

We now analyze the stability of the coexistence equilib-
rium. We will assume that μ > 0; the case μ = 0 is equivalent
to the case ι = 0 for Eqs. (B1) analyzed in the first part of
this Appendix. We will first discuss the case β = 0 before
analyzing β �= 0. The Jacobian evaluated at C is⎛

⎝−b − (βa + γ )δ/τ δ −(α + β )b
βa + γ −τ βb
−ϑa 0 −ηa

⎞
⎠. (B27)

Stability of coexistence if β = 0. If β = 0, i.e., in the
absence of responsive switching, the Jacobian (B27) has char-
acteristic polynomial

P(λ) = W 2λ3 + c2λ
2 + c1λ − τUVW, (B28)

wherein

c1 = [τU + ηV (γ δ/τ + τ ) − UV ]W, (B29a)

c2 = [U + ηV + (γ δ/τ + τ )W ]W. (B29b)

The Routh–Hurwitz conditions [27] imply that coexistence
is stable only if τUVW < 0, i.e., only if U,V < 0 using
the feasibility conditions. Conversely, if U,V < 0 and hence
W < 0, then c2 > 0 and c1c2 > −τUVW 3, of which the sec-
ond inequality is easily checked by direct multiplication. The
Routh–Hurwitz conditions thus imply that coexistence is sta-
ble if and only if U,V < 0.

Stability of coexistence if β �= 0. If β �= 0, the character-
istic polynomial of the Jacobian (B27) still has the form in
Eq. (B28), with modified coefficients

ĉ1 = c1 + βV (ηV − ϑU )δ/τ, ĉ2 = c2 + βδVW/τ. (B30)

As in the above analysis of the case β = 0, the Routh–Hurwitz
conditions [27] imply that coexistence is feasible and stable if
and only if U,V < 0 and ĉ1ĉ2 > −τUVW 3.

The latter condition is not implied by U,V < 0, although
coexistence is stable if |U | or |V | is sufficiently small away
from the singular point U = V = 0. We prove this claim by
expanding the final Routh–Hurwitz condition in U and V ,
assuming all other parameters to be O(1) quantities. Using
MATHEMATICA to handle complicated expressions, we obtain

ĉ1ĉ2 + τUVW 3 = V 4η2u(u + ζητ )

ζ 3τ 2
+ O(U ), (B31a)

= U 4ϑ2

ζ 3
(γ δϑ+ζ τ+ϑτ 2)+O(V ), (B31b)

wherein u = βδζ + γ δη + ητ 2, which proves our claim. A
region of instability must however arise for β, ζ � 1. This

follows from the expansion

ĉ1ĉ2 + τUVW 3 = −
[
ϑ2μ2

τ 3
(δ + μ)

]
ζ 3β4 + O(ζ 2β4, ζ 3β3).

(B31c)

Within this region of instability, U,V < 0, and so A,B are
unstable there, too, whence all steady states of Eqs. (B2) are
unstable in that region.

Moreover, Eqs. (B30) show that ĉ1 → c1 and ĉ2 → c2 as
β → 0. Since c1c2 + τUVW 3 > 0, it follows that, for suffi-
ciently small β, ĉ1ĉ2 + τUVW 3 > 0, too. In other words, for
small β, C is stable if and only if U,V < 0.

If ϑ < η/α, then U,V < 0 is possible if β = 0, but, if
ϑ > η/α, this requires ζ > ϑ (1 + μγ /τ ) and

β > β∗ = τ

μ
α −

(
γ + τ

μ

)
η

ζ
, (B32)

using Eqs. (B26a). In particular, this implies the lower bound

β∗ > βmin
∗ = δ − μ

μϑ
(αϑ − η). (B33)

We are left to discuss the stability of C near the singu-
lar point U = V = 0 for ϑ > η/α. This corresponds, in the
(ζ , β ) plane, to ζ = ζ min

∗ ≡ ϑ (1 + μγ /τ ) and β = βmin
∗ > 0

for ϑ > η/α. Near this point, we write

ζ

ζ min∗
= 1 + ζ̄ ,

β

βmin∗
= 1 + β̄, (B34)

with ζ̄ , β̄ > 0. Inserting these definitions into Eqs. (B26a)
shows that the domain U,V < 0 in which C is fea-
sible corresponds, at leading order, to β̄ > ηζ̄ /w, with
w = αϑ − η > 0. Similarly, from Eqs. (B26), (B29), and
(B30), the stability boundary ĉ1ĉ2 + τUVW 3 = 0 corre-
sponds, again at leading order, to the straight lines β̄ = 0,
β̄ = g0ζ̄ , where

g0 = η

w

γμ + τ

(γμ + τ ) + (γ δ + τ 2)

(
1 − ϑ − δw

μη

)
, (B35)

and additionally, if the roots g± of the quadratic

(μτ 2w)g2 − [μτ 2η + wδϑ (γμ + τ ) − μηϑ (δγ + τ 2)]g

+ 2δηϑ (γμ + τ ) = 0 (B36)

are real, to the straight lines β̄ = g+ζ̄ , β̄ = g−ζ̄ . Clearly,
β̄ = 0 is outside β̄ > ηζ̄ /w. It is also easy to see that
g0 < η/w, whence so is β̄ = g0ζ̄ . A region of instability near
the singular point U = V = 0 can therefore arise only if g±
are real, and g+ > η/w or g− > η/w. Now g± are real if and
only if

D ≡ [μτ 2η + wδϑ (γμ + τ ) − μηϑ (δγ + τ 2)]2

− 8μτ 2wδηϑ (γμ + τ ) � 0, (B37)

while g± > η/w if and only if, additionally,

wδϑ (γμ + τ ) − μηϑ (δγ + τ 2) − μτ 2η � ∓
√

D. (B38a)

Direct computation shows that

[wδϑ (γμ + τ ) − μηϑ (δγ + τ 2) − μτ 2η]2 − D

= 4ηϑμτ 2[wδ(γμ + τ ) + ημ(δγ + τ 2)] � 0, (B38b)
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and so inequality (B38a) holds if and only if

wδϑ (γμ + τ ) � μη[ϑ (δγ + τ 2) + τ 2]. (B38c)

This implies in particular that g+ > η/w ⇐⇒ g− > η/w.
We could have obtained this result directly: if only one of
β̄ = g+ζ̄ , β̄ = g−ζ̄ intersected β̄ > ηζ̄ /w, C would
be unstable at one of U = 0, V = 0 for |V | or
|U | sufficiently small, but this would contradict
Eq. (B31a) or Eq. (B31b). Equations (B37) and (B38c)
give the necessary and sufficient conditions for a
region of instability to arise near the singular point
U = V = 0.

b. Stability of the trivial steady states and permanence

As in the analysis of Eqs. (B1) in the first part of this
Appendix, we discuss the stability of the trivial steady states
to obtain conditions for permanent coexistence. Again, O is
clearly unstable, because the Jacobian of Eqs. (B2) at this
equilibrium is ⎛

⎝1 − γ δ 0
γ −τ 0
0 0 ζ

⎞
⎠, (B39a)

with an unstable eigenvalue ζ > 0. The Jacobian at A is⎛
⎝−U/η − (γ + βζ/η)δ/τ δ 0

γ + βζ/η −τ 0
−ζ

⎞
⎠. (B39b)

Again, entries that do not affect stability have been left blank.
Similarly, the Jacobian evaluated at B is⎛

⎝−1 − γ (δ + μ)/τ δ

γ −τ

0 0 −V

⎞
⎠. (B39c)

On computing the eigenvalues of these Jacobians and since
we assume that τ > 0, we conclude, again, that A is stable if
and only if U > 0, while B is stable if and only if V > 0. We
note from Eqs. (B26a) that U > 0 is not possible and hence
that A is unstable if β > α(δ/μ − 1).

The geometric properties of these Jacobians are identical
to those of the corresponding equilibria of Eqs. (B1) analyzed
in the first part of this Appendix; this follows from direct com-
putation of their eigenvectors. Hence the argument deployed
there to establish permanence of coexistence carries over to
model (B2): If A and B are both unstable, i.e., if U,V < 0,
then the two species coexist permanently.

c. Stability diagrams of Eqs. (B2)

These results yield the stability diagrams drawn in Fig. 12
for μ > 0; again, we will not discuss the singular case μ = 0.
These diagrams confirm some of the features present in the
numerical stability diagrams in Figs. 6(c) and 6(d), too.

The combination of responsive switching and persister
growth (βμ > 0) leads to new behavior compared to βμ = 0
for β > βmin

∗ , with βmin
∗ now given by Eq. (B33). Again,

βmin
∗ = O(ε) is possible even if μ = O(ε), provided that

αϑ − η � O(ε2). This is precisely the condition that we dis-
cussed when analyzing model (B1).

FIG. 12. Feasibility and stability of the coexistence state C of
the simplified model (B2) in the (ζ , β ) diagram for μ > 0, in the
cases (a) η/α > ϑ and (b) η/α < ϑ . Coexistence is feasible in
the region bounded by the thick solid black lines, and is stable or
unstable in the regions marked “stable” or “unstable”, respectively.
A region of instability (gray lines) arises at sufficiently large β, ζ .
The exact boundary of this region must be computed numerically.
Equations (B37) and (B38c) express the necessary and sufficient
conditions for the two different behaviors (“or”) that are possible
in panel (b). In the hatched region of parameter space, the trivial
steady states A and B are unstable, and the two species coexist
permanently. The solidly hatched region in panel (a) is also the
region of stable steady-state coexistence for an average of Eqs. (B2)
without phenotypic variation and with stochastic switching only
(Appendix C); the dashed hatching in panel (b) signifies that steady-
state coexistence cannot be stable in the averaged model for η/α < ϑ

(Appendix C). In the shaded regions of parameter space, all steady
states of Eqs. (B2) are unstable.

To assess the effect of responsive switching on coexistence
in Eqs. (B2), we consider again the corresponding aver-
aged models without phenotypic variation and with stochastic
switching only. The calculations in Appendix C determine
the range of stability of these averaged models (Fig. 12).
Again, they show that stochastic switching on its own does
not affect the stability of the system. Moreover, these results
emphasize the importance of establishing correspondences
to averaged models for comparing the stability properties of
different models: The range of competitor growth rates ζ for
which coexistence is stable increases with the rate of respon-
sive switching β initially [Fig. 12(a)], but the parameters of
the averaged models vary correspondingly, and so responsive
switching is neither stabilizing nor destabilizing for small
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β. However, large levels of responsive switching destabi-
lize C if ϑ < η/α [Fig. 12(a)]. This destabilization of the
coexistence equilibrium does not mean, however, that respon-
sive switching destabilizes coexistence: As shown above, in
the region of large β, ζ where C is feasible but unstable, the
trivial steady states A and B are unstable, too, so the two
species still coexist permanently. The fact that all steady states
of Eqs. (B2) are unstable there simply means that the two
species do not coexist at steady state. Similarly, Fig. 12(b)
shows that the combination of responsive switching and per-
sister growth is stabilizing if ϑ > η/α and the competitors
grow sufficiently fast. Again, for large β, ζ , the two species
cannot coexist at steady state, but our calculations imply that
they do coexist permanently. This emphasizes the importance
of non-steady-state attractors for coexistence. As already dis-
cussed for model (B1), this stabilization argument cannot
exclude the possibility of permanent, non-steady-state coex-
istence in the model with stochastic switching only (which
is not possible in the averaged model without phenotypic
variation); this possibility must be addressed numerically, as
we have done in the discussion of Figs. 6 and 7.

The condition for stability of B, which we have computed
above, is independent of the rate of responsive switching, β.
Again, responsive switching cannot therefore drive the com-
petitors to extinction. Moreover, we have shown that A, in
which the bacteria and persisters are extinct, is stable only
if β < α(δ/μ − 1). Not only does responsive switching thus
destabilize A and hence extinction of bacteria and persisters.
It also makes permanent coexistence (albeit not necessarily at
steady state) possible at large enough competitor growth rates
ζ > I max {η/α, ϑ} (Fig. 12), where extinction of bacteria
and persisters is the only possible steady state in the absence
of responsive switching, i.e., at β = 0. All of this supports
the idea that the combination of responsive switching and
persister growth (βμ > 0) favors coexistence.

3. Stability and permanence of coexistence in Eqs. (B3)

Model (B3) has three trivial steady states and two coexis-
tence equilibria. They are

O = (0, 0, 0), A = (0, 0, ζ /η), B = J−1(1, γ /δ, 0),

(B40a)

with J = 1 + γ κ/δ, and

C+ = (b+, p+, a+), C− = (b−, p−, a−), (B40b)

where

a± = 1

2βηκ

(
Y ∓

√
Y 2 − 4βδηκV

)
, (B41a)

b± = 1

2βϑκ

(
−X ±

√
X 2 + 4βδϑκU

)
, (B41b)

p± = b±
δ

(βa± + γ ), (B41c)

wherein

U = αζ − η, V = ϑ −
(

1 + γ κ

δ

)
ζ , (B42a)

TABLE III. Feasibility of the coexistence equilibria C± of
Eqs. (B3): Discussion of the sixteen possible sign combinations
of U,V, X,Y , defined in Eqs. (B42). For some combinations, the
resulting signs of a± or b±, defined in Eqs. (B41), are given, and the
symbol C is used for some combinations to indicate that the resulting
values of a± or b± may have nonzero imaginary parts. Some sign
combinations, marked # in the final column, are inconsistent with
definitions (B42); for other sign combinations, this column gives the
corresponding feasibility results.

U V X Y a± b±

+ + + + + ± only C+ is feasible
+ + + − # (X > 0,Y < 0 ⇒ X > Y )
+ + − + + ± only C+ is feasible
+ − + + ∓ ± C± are not feasible
− + + + −/C C± are not feasible
+ + − − # (U,V > 0 ⇒ Y > 0)
+ − + − # (X > 0,Y < 0 ⇒ X > Y )
− + + − # (X > 0,Y < 0 ⇒ X > Y )
+ − − + ∓ ± C± are not feasible
− + − + +/C +/C C± can both be feasible
− − + + # (U,V < 0 ⇒ X < 0)
+ − − − ∓ ± C± are not feasible
− + − − −/C C± are not feasible
− − + − # (U,V < 0 ⇒ X < 0)
− − − + ∓ + only C− is feasible
− − − − ∓ + only C− is feasible

X = δ

ζ
(ϑU + ηV ) − βκζ , Y = δ

ζ
(ϑU + ηV ) + βκζ ,

(B42b)

so that X 2 + 4βδϑκU = Y 2 − 4βδηκV and Y = X + 2βκζ .
In particular, X � Y . Similarly to the analysis of model (B1)
in the first part of this Appendix, if β = 0 or κ = 0, then there
is but a single coexistence state C = (b, p, a), where

b = U

W
, a = V

W
, p = b

δ
(βa + γ ), (B43)

with W = (ϑU + ηV )/ζ . From Eqs. (B41c) and (B43), it is
again immediate that p±, p > 0 if b±, b > 0 and a±, a > 0,
and so, again, we need not consider p±, p to determine feasi-
bility.

a. Feasibility of the coexistence equilibria

We now have to ask whether the coexistence equilibria C±
and C are feasible. The calculations are similar to those for
model (B1) in the first part of this Appendix. In Table III,
we analyze the possible sign combinations of the variables
U,V, X,Y , defined in Eqs. (B42), that appear in the coordi-
nates of the equilibria in Eqs. (B41). We infer that only C+ is
feasible if U,V > 0, while only C− is feasible if U,V < 0.
Neither coexistence state is feasible if U > 0, V < 0, but both
coexistence states are feasible if U < 0, V > 0 provided that
X < 0, Y > 0 and that C± are real (Table III). Similarly to
the analysis of Eqs. (B1), we conclude that both coexistence
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states are feasible if and only if

U < 0, V > 0, and β > β∗ = δ

κζ 2

(√−ϑU +
√

ηV
)2

.

(B44)

In particular, U < 0 and V > 0 requires

ζ < min
{
ϑ

(
1 + γ κ

δ

)−1
,
η

α

}
. (B45)

Moreover, letting W = (ϑU + ηV )/ζ again, the conditions
X < 0, Y > 0 imply that β∗ > δ|W |/κζ . These results also
yield the lower bound

β∗ > βmin
∗ = |δ(η − αϑ )/κ − γ η|

min {η/α, ϑ/(1 + γ κ/δ)}2 . (B46)

This additional region of feasibility does not arise if β = 0
or κ = 0. Indeed, similarly to the analysis of model (B1),
Eqs. (B43) show that coexistence is feasible in that case if
and only if U , V , W = (ϑU + ηV )/ζ all have the same sign,
and hence if and only if U,V > 0 or U,V < 0.

b. Stability of the coexistence equilibria

Next, we analyze the stability of the coexistence equilibria.
We can assume that κ > 0, since the case κ = 0 is equivalent
to the case ι = 0 for Eqs. (B1) discussed in the first part of
this Appendix. In now familiar fashion, we discuss the cases
β = 0 and β �= 0 separately, but note that, in both cases, the
Jacobian evaluated at a coexistence equilibrium (b, p, a) is⎛

⎝−b − (βa + γ ) δ − κb −(α + β )b
βa + γ −δ βb
−ϑa 0 −ηa

⎞
⎠. (B47)

Stability of coexistence if β = 0. If β = 0, the characteris-
tic polynomial of Eq. (B47) evaluated at C = (b, p, a) defined
in Eqs. (B43) is

P(λ) = W 2λ3 + c2λ
2 + c1λ − δUVW, (B48)

where

c1 = (δ + γ κ )UW + VW (γ + δ)η − UV (W + γ κη/δ),

(B49a)

c2 = W [U + ηV + (γ + δ)W ]. (B49b)

In particular, the Routh–Hurwitz conditions [27] imply that
C is stable only if δUVW < 0. Since C is feasible if and
only if U,V,W have the same sign, a necessary condition for
stability is U,V < 0. Now, using ζW = ϑU + ηV ,

c1c2 + δUVW 3 =W [U + ηV + (γ + δ)W ]{U 2ϑ (δ + γ κ )/ζ

+ V 2(γ + δ)η2/ζ + ηUV [(γ + δ)ϑ/ζ

+ (δ + γ κ )/ζ − γ κ/δ]}
− UVW 2(U + ηV + γW ). (B50)

In particular, a sufficient condition for c1c2 + δUVW 3 > 0
under U,V,W < 0 and hence for C to be stable by the Routh–
Hurwitz conditions is δ[δ + ϑ (γ + δ)] + γ κ (δ − ζ ) > 0. If
δ > ζ , this holds true; if δ < ζ , it holds assuming the persister
scalings (5), but c1c2 + δUVW 3 < 0 is possible and hence

instability can occur if δ < ζ and the persister scalings are
not satisfied (not shown).

Stability of coexistence if β �= 0. Finally, we discuss the
stability of the two coexistence states C± = (b±, p±, a±), de-
fined in Eqs. (B41) for βκ �= 0. The Jacobian in Eq. (B47) has
characteristic polynomial

P±(λ) = λ3 + c±
2 λ2 + c±

1 λ + c±
0 , (B51)

where, in particular and using W = (ϑU + ηV )/ζ ,

c±
0 = a±b±[−δW + βκ (ηa± − ϑb±)] = ∓a±b±�, (B52)

wherein �2 = X 2 + 4βδϑκU = Y 2 − 4βδηκV and � > 0.
Hence c±

0 ≶ 0, and the Routh–Hurwitz conditions [27] imply
in particular that C+ is unstable. From our earlier feasibility
results, it now follows that stable coexistence is only possible
at C− and if U,V < 0 or conditions (B44) are satisfied.

Moreover, c−
2 = b− + (β + η)a− + γ + δ > 0 if C− is

feasible, and hence, by the Routh–Hurwitz conditions, if C− is
feasible, then it is stable if and only if c−

1 c−
2 > c−

0 . Although,
as in the analysis of Eqs. (B1) and (B2) in the previous parts
of this Appendix, we have no complete characterization of the
region of parameter space in which this condition holds, we
can show that C− is stable in certain limits.

First, we notice that C− is stable for sufficiently large β.
This follows from the expansion

c−
1 c−

2 − c−
0 = ζ 3

η2
β2 + O(β ), (B53a)

obtained using MATHEMATICA to assist with manipulating
complicated algebraic expressions.

Next, � = |βζκ − V δη/ζ | + O(U ) from its definition. If
V < 0, then βζ 2κ > V δη is clearly true. From Eqs. (B44),
this inequality also holds if V > 0 and C− is feasible. Hence
� = (βζκ − V δη/ζ ) + O(U ), and we find

c−
1 c−

2 − c−
0 = ζ

η2
u(u + ζη) + O(U ) > 0, (B53b)

where u = βζ + (γ + δ)η. Hence C− is stable for small
enough |U | if it is feasible, i.e., if U,V < 0 or conditions
(B44) hold.

Moreover, as β → 0 at κ �= 0, C− → C, so, by continuity,
C− is stable for small enough β, since C is, at least under the
conditions discussed above and in particular if the persister
scalings (5) are satisfied.

Finally, we discuss the stability of C− on, and hence by
continuity near, the feasibility boundary β = β∗ defined in
Eqs. (B44). On this boundary, � = 0 and hence c−

0 = 0. Since
c−

2 > 0, stability is equivalent with c−
1 > 0 there, as in the

analysis of Eqs. (B1). Direct computation yields

(2βκ )2ηϑc−
1

= βκ (βζκ − δW )[βζκ + δW + 2η(δ + γ κ )]

+ (βζκ + δW )[(αϑ − η)(2βδϑ − βζκ + δW )

+ 2βδκηϑ]. (B54a)

From Eqs. (B44), feasibility requires V > 0, and so, from
definition (B42a), ϑ > ζ . Moreover, we expect, from the
persister scalings (5), that δ > κ . Thus 2βδϑ − βζκ > βζκ .
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Since βζκ > δ|W |, Eq. (B54a) then shows that c−
1 > 0 pro-

vided that αϑ > η. Conversely, if αϑ < η or κ < δ, then
c−

1 < 0 is possible (not shown), but we are not aware of simple
conditions that ensure the presence or absence of instability in
that case. However, after inserting the explicit expressions for
β = β∗ and W in terms of the other model parameters into
Eq. (B54a) and expanding using MATHEMATICA,

c−
1 = 64δ3η3ϑ3

ζ 4
+ O(ζ−3), (B54b)

and hence C− is stable on the feasibility boundary β = β∗
for sufficiently small ζ . We stress that this does not follow
from Eq. (B53a), since the “sufficiently large” there depends
on the other model parameters and, in particular, on ζ . Again
expressing β = β∗ and W in terms of the other model param-
eters, we also find

c−
1 = 4δη

ϑ
(δ + γ κ )2W 2 if ζ = ϑ

(
1 + γ κ

δ

)−1
, (B54c)

= 4αδ3ϑ

ηκ
(αϑ − η + ηκ )W 2 if ζ = η

α
. (B54d)

If η/α < ϑ/(1 + γ κ/δ) < ϑ , then αϑ − η > 0. This thus
shows that c−

1 > 0 at ζ = min {η/α, ϑ/(1 + γ κ/δ)}, and
hence, on referring to Eq. (B45), that C− is stable at the
“endpoint” of the feasibility boundary under discussion. For
ζ = η/α, this result confirms a particular case of the conclu-
sion that we drew from Eq. (B53b).

c. Stability of the trivial steady states and permanence

Finally, we analyze the stability of the trivial steady states
to obtain conditions for permanent coexistence. As usual, O
is always unstable, with the Jacobian of Eqs. (B3) at this fixed
point being ⎛

⎝1 − γ δ 0
γ −δ 0
0 0 ζ

⎞
⎠, (B55a)

with an unstable eigenvalue ζ > 0. Again omitting entries that
do not affect the stability, the Jacobian at A is⎛

⎝−U/η − (γ + βζ/η) δ 0
γ + βζ/η −δ 0

−ζ

⎞
⎠. (B55b)

The Jacobians at O and A are thus actually equal to the
Jacobians of the corresponding steady states for model (B1)
given by Eqs. (B23a) and (B23b). Moreover, the Jacobian
evaluated at B is⎛

⎝−γ − J−1 δ − κJ−1

γ −δ

0 0 −V J−1

⎞
⎠, (B55c)

with J = 1 + γ κ/δ again. On referring to the results for
Eqs. (B1) in the first part of this Appendix, we find that A
is stable if and only if U > 0. Moreover, on computing the
eigenvalues of the matrix in Eq. (B55c), we obtain again that
B is stable if and only if V > 0.

What is more, the eigenvectors of Jacobians in Eqs. (B55)
are easily seen to have the same geometric properties as those
of the corresponding Jacobians of model (B1) analyzed in

FIG. 13. Feasibility and stability of the coexistence states C±
of the simplified model (B3) in the (ζ , β ) diagram for κ > 0, in
the cases (a) η/α > ϑ/(1 + κγ /δ) and (b) η/α < ϑ/(1 + κγ /δ),
assuming that the persister scalings (5) hold. Coexistence is feasible
in the region bounded by the thick solid black lines. Both C+ and
C− are unstable in the region marked “unstable”, but C− is stable
(and C+ is unstable) in the region marked “stable”. Whether C− is
unstable in a subregion of the “stable” region must be determined
numerically. In the diagonally hatched region of parameter space in
panel (a), the trivial steady states A and B are unstable, and the
two species coexist permanently. If the “unstable” region intersects
this region, all steady states of Eqs. (B3) are unstable within this
intersection. The horizontally hatched region is the region of stable
steady-state coexistence for averaged models of Eqs. (B3) without
phenotypic variation and with stochastic switching only; coexistence
may be stable in the average with respect to C− and in that with
respect to C+ (Appendix C).

the first part of this Appendix. We can therefore conclude, as
we have done there, that the two species coexist permanently,
irrespective of the initial conditions, if A and B are unstable,
i.e., if U,V < 0.

d. Stability diagrams of Eqs. (B3)

We assemble all of these analytical results into the sta-
bility diagrams shown in Fig. 13 for κ > 0. Again, we will
not discuss the singular case κ = 0. These exact diagrams
establish some of the features that we have already seen in
the numerical stability diagrams in Figs. 6(e) and 6(f).
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Once again, the combination of responsive switching
and bacteria-persister interactions (βκ > 0) leads to ex-
panded regions of feasibility and stability, compared to
βκ = 0, if β > βmin

∗ , with βmin
∗ now given by Eq. (B46).

As for models (B1) and (B2), βmin
∗ = O(ε) is possible even

if κ = O(ε) provided that η − αϑ � O(ε2). This is the now
familiar requirement that the intra-species competitions of
bacteria and competitors be sufficiently close to their inter-
species competitions (Table I).

We conclude our discussion by comparing Eqs. (B3) to
their averages without phenotypic variation and with stochas-
tic switching only. As shown in Appendix C, the conditions
for stability of coexistence of the averaged model with
stochastic switching only are precisely those of the aver-
aged model without phenotypic variation. This equivalence
assumes that δ[δ + ϑ (γ + δ)] + γ κ (δ − ζ ) > 0, expected to
hold given the persister scalings (5). Thus stochastic switching
on its own has again no effect on stability. The comparison
for β > 0, shown in Fig. 13, stresses again the importance of
careful model averaging: Although the region of parameter
space in which coexistence is stable widens with increasing
β, the corresponding variation of the model parameter means
that coexistence is stable in the averaged model if and only if it
is feasible. Thus, if regions of instability as sketched in Fig. 13
exist, then steady-state coexistence is destabilized there by
the combination of responsive switching and competition be-
tween bacteria and persisters (βκ > 0). Again, this argument
does not preclude non-steady-state coexistence there, unless
there is a region, as sketched in Fig. 13(a), in which all steady
states are unstable and hence coexistence is permanent.

Anyway, numerical experiments (not shown) indicate that,
while such regions of instability do exist, they are rare for
parameter values consistent with the persister scalings (5).
We have no analytical understanding of this observation,
however. Signatures of the possible regions of instability for
model (B3) sketched in Fig. 13 are absent from the numerical
stability diagrams in Figs. 6(e) and 6(f), too. This suggests
that the destabilizing effect of the combination of respon-
sive switching and bacteria-persister competition (βκ > 0)
is weaker than the stabilizing effect of responsive switching
with persister-competitor interactions (βι > 0) and persister
growth (βμ > 0) revealed by the analyses of models (B1) and
(B2), respectively, and also seen in the numerical results in
Figs. 6(a), 6(b) and 6(d).

APPENDIX C: COEXISTENCE WITHOUT
PHENOTYPIC VARIATION

In this Appendix, we briefly rederive the classical results
for the stability of two-species Lotka–Volterra competition
models [27]. We then obtain the stability conditions for aver-
aged models of this Lotka–Volterra form and that correspond
to the simplified models (B1), (B2), and (B3). We combine
these results with the stability calculations in Appendix B
to compare the stability of coexistence in these simplified
models and in their averages without phenotypic variation and
with stochastic switching only.

1. Coexistence in a two-species Lotka–Volterra model
without phenotypic variation

Coexistence in a two-species Lotka–Volterra competition
model without phenotypic variation is a classical problem,
discussed, for example, in Ref. [27]. To be able to compare
this model to the models with phenotypic variation considered
in the main text, it will be useful to rederive the results briefly.
We consider the competition between species A′, B′ described
by the differential equations

Ḃ′ = B′(ω′ − α′A′ − χ ′B′), Ȧ′ = A′(ζ ′ − η′A′ − ϑ ′B′),
(C1)

wherein α′, ζ ′, η′, ϑ ′, χ ′, ω′ � 0 are parameters. As in our
derivation of Eqs. (4) and (B1), we could have scaled time and
A′, B′ to set some parameters equal to 1, but we have not done
so in order to be able to interpret Eqs. (C1) as an average of a
model with phenotypic variation in the next subsection [34].
Equations (C1) have a single coexistence state C′ = (b′, a′),
where b′ = u′/w′ and a′ = v′/w′, with

u′ = α′ζ ′ − η′ω′, v′ = ϑ ′ω′ − ζ ′χ ′, (C2a)

w′ = α′ϑ ′ − η′χ ′ = χ ′u′ + α′v′

ω′ . (C2b)

Hence the coexistence state is feasible if and only if u′, v′
have the same sign. The Jacobian matrix evaluated at this
steady state is (−χ ′b′ −α′b′

−ϑ ′a′ −η′a′

)
. (C3)

Since tr = −χ ′b − η′a′ < 0, classical stability results of
Ref. [27] imply that coexistence is stable if and only if
0 < det = −u′v′/w′. Hence coexistence state is feasible and
stable if and only if u′, v′ < 0, or equivalently, if and only if

ϑ ′ω′

χ ′ < ζ ′ <
η′ω′

α′ . (C4)

Equations (C1) have two additional nonzero steady states,
namely A′ = (0, ζ ′/η′) and B′ = (ω′/χ ′, 0), at which the
Jacobian matrix evaluates to( −u′/η′ 0

−ϑ ′ζ ′/η′ −ζ ′

)
and

(−ω′ −α′ω′/χ ′
0 −v′/χ ′

)
, (C5)

respectively. Hence A′ and B′ are stable if and only if u′ > 0
and v′ > 0, respectively. Comparing these parameter ranges
for stability, it follows that either exactly one of A′,B′,C′

is stable, or A′,B′ are both stable. From arbitrary initial
conditions, Eqs. (C1) converge to the stable steady state if is
unique; if A′,B′ are both stable, then a separatrix through
C′ separates initial conditions converging to A′ from those
converging to B′ [27].

2. Averages without phenotypic variation of the two-species
model (4) and of the simplified models (B1), (B2), and (B3)

We seek to describe the populations B, P, A that evolve
according to Eqs. (4) by an averaged model without pheno-
typic variation and two populations B′, which corresponds to
B and P, and A′, which corresponds to A [Fig. 1(b)]. We have
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introduced this averaging in Ref. [15], and we have motivated
it again here, in Sec. II.

a. Derivation of the averaged model

A coexistence equilibrium C = (b, p, a) of Eqs. (4) is con-
sistent with the equilibrium C′ = (b′, a′) of Eqs. (C1) if and
only if the populations, the births, and the competition are
equal at equilibrium, i.e., if and only if

b′ = b + p, a′ = a, (C6a)

ω′b′ = b + μp, ζ ′a′ = ζa, (C6b)

α′a′b′ = a(αb + ξ p), ϑ ′a′b′ = a(ϑb + ιp),

(C6c)

χ ′b′2 = b2 + (κ +  )bp + ς p2, η′a′2 = ηa2. (C6d)

These conditions are to Eqs. (4) what conditions (A9) are to
Eqs. (1). We let q = p/b, so, on introducing Q = (1 + q)−1,
they reduce to

α′ = Q(α + ξq), ζ ′ = ζ , ω′ = Q(1 + μq), (C7a)

ϑ ′ = Q(ϑ + ιq), η′ = η, χ ′ = Q2[1 + (κ +  )q + ςq2].

(C7b)

Hence Eq. (C4), the stability condition for the averaged
model, becomes

ϑ + ιq

1 + (κ +  )q + ςq2
<

ζ

1 + μq
<

η

α + ξq
. (C8)

b. Equivalence of the simplified models (B1), (B2), and (B3)
with β = 0 to a model without phenotypic variation

If ξ =  = ς = 0 and β = 0, then q = γ /τ , where
τ = δ − μ. Feasibility requires τ > 0. In the cases μ= κ = 0,
ι = κ = 0, μ = ι = 0, the interval in Eq. (C8) thus reduces to

ϑ + γ ι

δ
< ζ <

η

α
, (C9a)

ϑ <
ζ

1 + μγ /τ
<

η

α
, (C9b)

ϑ

1 + κγ /δ
< ζ <

η

α
, (C9c)

respectively, which, from the calculations in Appendix B, are
precisely the respective stability conditions for Eqs. (B1),
(B2), and (B3), with β = 0. This establishes the one-to-one
correspondence between these simplified models and the cor-
responding averaged models claimed in the main text. We note
that, for model (B3), this requires an additional condition on
the model parameters discussed in the analysis of that model;
this condition follows from the persister scalings (5).

c. Stability of the averages of the simplified
models (B1), (B2), and (B3) for β �= 0

If now ξ =  = ς = 0, but β �= 0, then q = (γ + βa)/τ ,
where, again, τ = δ − μ > 0. We discuss the three simpli-
fied models (B1), (B2), and (B3) severally, simplifying the
interval (C8) using the explicit expressions for a derived in
Appendix B.

For model (B1), μ = κ = 0 and a = a±, defined in
Eq. (B5a) and corresponding to the equilibria C±. The sta-
bility conditions (C8) of the averaged model become

U < 0, V + ιβ

δ
a± < 0,

with U = αζ − η, V = ϑ − ζ + γ ι

δ
, (C10)

as in definitions (B6a). Since a± > 0 by feasibility, a neces-
sary condition for stability is U,V < 0, but this is inconsistent
with feasibility of C+ (Appendix B), which is therefore unsta-
ble in the averaged model. Now, using the expression for a−
in Eq. (B5a), we find

V + ιβ

δ
a− = 1

2αδ

(
Z −

√
Z2 + αδ2UV

)
, (C11)

where Z = δ(αV − U ) + ιβ, and infer that the second con-
dition above is satisfied if U,V < 0. Since this condition is
necessary for stability, C− is stable in the average of model
(B1) if and only if U,V < 0.

For model (B2), ι = κ = 0 and a is given in Eqs. (B25)
and corresponds to the single coexistence equilibrium C. The
interval (C8) yields the inequalities

V

(
1 + μϑβ

τW

)
< 0, U

(
1 + μϑβ

τW

)
< 0, (C12)

wherein

U = αζ − η − μ

τ
(γ η + βζ ), V = ϑ

(
1 + μγ

τ

)
− ζ ,

(C13)

are as in Eqs. (B26a), and W = (θU + ηV )/ζ . Feasibil-
ity of C requires U,V , and hence W to be of the same
sign (Appendix B). Clearly, U,V,W > 0 is not compatible
with inequalities (C12). If U,V,W < 0, then they require
1 + μβϑ/τW < 0, which reduces to ϑ < η/α. Hence coex-
istence in the averaged model corresponding to Eqs. (B2) is
stable (and feasible) if and only if ϑ < η/α and U,V < 0.

Finally, for model (B3), ι = μ = 0 and a = a±, where a±
are defined in Eq. (B41a) and correspond to the equilibria C±.
The stability interval (C8) reduces to

U < 0, V <
βκζ

δ
a±,

with U = αζ − η, V = ϑ −
(

1 + γ κ

δ

)
ζ , (C14)

as defined in Eqs. (B42a), too. Since a± > 0 by feasibility,
the second condition is clearly satisfied if V < 0. We may
therefore suppose that U < 0 and V > 0. Now, on letting
Y = δ(ϑU + ηV )/ζ + βκζ as in Eqs. (B42b) and using the
explicit form of a± given in Eq. (B41a), the second condition
in Eqs. (C14) becomes

∓
√

Y 2 − 4βδηκV >
2δη

ζ
V − Y. (C15)

We observe that

2δη

ζ
V − Y < 0 ⇐⇒ β >

δ

κζ 2
(ηV − ϑU ). (C16)
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Since we assume that U < 0,V > 0, feasibility of C± re-
quires, from Eq. (B44),

β >
δ

κζ 2
(
√

ηV + √−ϑU )2 >
δ

κζ 2
(ηV − ϑU ), (C17)

where the second inequality holds since (x + y)2 > x2 + y2

for x, y > 0. This shows that inequalities (C16) hold true.
Moreover,

(Y 2 − 4βδηκV ) −
(

2δη

ζ
V − Y

)2

= 4UV δ2ηϑ

ζ 2
< 0,

(C18)

since U < 0, V > 0. It follows from inequalities (C16) and
(C18) that condition (C15) holds true. On comparing with
the feasibility conditions derived in Appendix B, we infer
that C− is stable in the averaged model if and only if it is
feasible. Moreover, C+ is stable (and feasible) in its averaged
model (which is in general different from that for C+) if and
only if conditions (B44) hold. Appendix B has shown that C+
is an unstable equilibrium of Eqs. (B3). We therefore stress
that, while responsive switching (β > 0) thus destabilizes the
coexistence equilibrium C+, coexistence in the unaveraged
Eqs. (B3) may still be stable at the other coexistence equi-
librium C−.

These results also enable us to compare the simplified
models (B1), (B2), (B3) with responsive switching to aver-
aged models with stochastic switching only: The latter have
an effective switching rate γ ′ = γ + βa. This follows simi-
larly to the correspondence of Eqs. (1) and (2) established in
Sec. II and implies that q′ = γ ′/τ = (γ + βa)/τ as above,
i.e., conditions (C9), with q replaced by this q′, are precisely
the conditions that we have just analyzed. This means that the
averaged model with stochastic switching only is stable if and
only if the averaged model without phenotypic variation is
stable. We stress however that there is no reason to expect this
“complete” correspondence to hold for the full two-species
model (4).

APPENDIX D: STABILITY OF THE TRIVIAL STEADY
STATES OF Eqs. (4) AND PERMANENT COEXISTENCE

While we did not obtain any analytical results bearing
on the stability (or indeed the feasibility) of the coexistence
equilibria of Eqs. (4), more meaningful progress can be made
as far as the stability of the trivial steady states is concerned.
These results extend our results for the simplified models by
proving that coexistence is permanent for model (4) whenever
these trivial steady states are all unstable.

We begin by noting that the trivial steady state
O = (0, 0, 0) of model (4) is always unstable. Next, Eqs. (4)
have a trivial steady state A = (0, 0, ζ /η), which is feasible
for all parameter values. The Jacobian of Eqs. (4) evaluated at
A is⎛

⎝1 − (α + β )ζ/η − γ δ 0
γ + βζ/η −τ − ξζ/η 0

−ζ

⎞
⎠, (D1a)

wherein, again, τ = δ − μ and entries left blank clearly do not
affect stability; we shall assume that τ > 0, consistently with
the persister scalings (5). This Jacobian has one eigenvalue

−ζ < 0, which results from the trivial connection O → A.
Classical stability results [27] imply that A is stable if and
only if the sub-Jacobian(

1 − (α + β )ζ/η − γ δ

γ + βζ/η −τ − ξζ/η

)
, (D1b)

has tr < 0 and det > 0. These conditions are at most quadratic
in ζ and can therefore be solved to show that

tr < 0 ⇐⇒ ζ > ζ0, det > 0 ⇐⇒ ζ < ζ− or ζ > ζ+,

(D2)

where

ζ0 = (1 − γ − τ )η

α + β + ξ
, (D3a)

ζ± = η

2(α + β )ξ

(
−z ±

√
z2 + 4(α + β )ξ (τ + γμ)

)
,

(D3b)

with z = ατ − βμ − (1 − γ )ξ . In particular, ζ− < 0. Also, if
ζ = ζ0, then

det =−[1 − γ − (α + β )ζ0/η]2 − δ(γ + βζ0/η) < 0, (D4)

so ζ− < ζ0 < ζ+ using the second of Eqs. (D2). Hence the
necessary and sufficient condition for stability of A is ζ > ζ+.

More importantly, if the sub-Jacobian in Eq. (D1b) is un-
stable, its eigenvectors are(

−φ ±
√

φ2 + 4δη(βζ + γ η), 2(βζ + γ η)
)
, (D5)

with φ = (α + β )ζ − (1 + τ − γ )η − ζ ξ , and so one of the
eigendirections is not feasible. This shows that the geomet-
ric properties of A match those of the corresponding trivial
steady state of Eqs. (B1) analyzed in Appendix B.

If any more feasible trivial steady states exist, they are of
the form B = (b, p, 0), where b, p > 0 satisfy the simultane-
ous equations

b(1 − γ − b − κ p) + δp = p(−τ − b − ς p) + γ b = 0.

(D6)

The Jacobian of Eqs. (4) evaluated at B is, on simplification
using Eqs. (D6),⎛

⎝−δq − b δ − κb
γ −  p −γ /q − ς p

0 0 ζ − ϑb − ιp

⎞
⎠, (D7a)

where q = p/b and, once again, entries left blank do
not affect stability. This Jacobian has one eigenvalue
ζ − ϑb − ιp, associated with perturbations out of the plane
A = 0, which may be of either sign. We note that the sub-
Jacobian (−δq − b δ − κb

γ −  p −γ /q − ς p

)
, (D7b)

has trace and determinant

tr = −δq − b − γ /q − ς p < 0, (D8a)

det = δp(ςq +  ) + γ b(1/q + κ ) + (ς − κ )pb > 0,

(D8b)
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respectively. We have assumed, in the final line and con-
sistently with the persister scalings (5), that ς > κ . [It is
because of the need for this additional assumption in this argu-
ment that we have provided separate proofs of our permanence
result for the simplified models (B1), (B2), and (B3), which do
not require such an additional assumption.] It follows that the
remaining eigenvalues at B have negative real parts, and that
the stability of B is determined by the sign of ζ − ϑb − ιp;
determining this sign requires solving Eqs. (D6). For our pur-
poses, it suffices to note that this implies that if B is unstable,
then the direction transverse to A = 0 is unstable. Hence the
geometric properties of B match those of the corresponding
steady state of Eqs. (B1) in Appendix B.

Compared to the discussion in Appendix B, there re-
mains however one more case to be discussed before
we can conclude that coexistence in Eqs. (4) is perma-
nent if all trivial steady states are unstable by the results
of Appendix B. Indeed, there could be multiple steady
states of the form B = (b, p, 0), and so, using the notation
introduced in Appendix B, the limit set L could also
be a connection of several such states. This is however
impossible because each of them is stable in the plane
A = 0. We can therefore conclude that, also in the full model
(4), coexistence is permanent if all trivial steady states are
unstable.
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