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Course Hand-out and Lecture Notes

Lecture notes:

You can obtain a pdf-file of the preliminary lecture notes on the course
webpage.

These will be updated periodically and we aim to provide printouts in the
following week.

Lectures will be given primarily with powerpoint slides. These will be
available online as well as in printed form.

This course contains a significant amount of material that is taken from
the primary literature, and you will be expected to read some of these
original journal articles.

To facilitate this process you will find essentially all required articles on
the course webpage.



Question Sheets & Examples Classes

There will be 4 examples sheets.

The questions will have a range of difficulties. It would be advisable to
consult e.g. Riley, Hobson and Bence , “Mathematical Methods for
Physics and Engineering” or a similar book if you are unfamiliar with
mathematical issues discussed in the lecture.

This book is used in the first year of the natural sciences tripos and is
available as an ebook. Sections on special functions will be of
particular relevance.

For some questions you will have to read research articles from the
primary literature; these are already available on the teaching
webpage.

Solutions for the question sheets will be made available about one
week after the sheet is posted.

The question sheets will be discussed during Examples classes, as
announced on the course webpage.



Other Material

Throughout the course we will quote from experimental results. Many
will be illustrated by videos for specific experiments.

These will be made available on the course webpage.
There will be also links to other external webpages of other labs that
discuss experimental data or explain their measurements in more

detall.

Please use these resources to help your understanding of the
material of the course.



Exam(s)

The course is taught between the physics and math departments.
Due to the structure of the examinations there will be TWO exams.

The Physics exam will be held in January 2015, like the other major
option exams, with a similar structure, and will be designed by
Ulrich Keyser.

The Math exam will be held in the usual time at the end of the
academic year in May/June. It will be designed by Ray Goldstein.

There will be TWO DIFFERENT exams for the physics and math
students, respectively. They will take into account the respective
mathematical inclinations.

HOWEVER, the material from the whole course is examinable for all
students.
(Unless single slides or topics are marked as non-examinable.)



Reading Material

Introductory reading

Murray “Mathematical Biology I. & II.” (Math)

Nelson, “Biological Physics” (Physics)

Philips et al. “Physical Biology of the Cell” (Biology & Physics)
Alberts et al., “Molecular Biology of the Cell” (Biology)

Advanced and Complementary Reading

Parsegian, “van der Waals Forces” (Fluctuation induced forces)

Verwey & Overbeek, “Theory of the Stability of Lyophobic Colloids” (see
above)

Israelachvilli, “Intermolecular and Surface Forces”
Rubinstein “Polymer Physics”
Strobl, “Polymer Physics”

Heimburg, “Thermal Membrane Biophysics”
Andelman & Poon “Soft Condensed Matter Physics in Molecular and Cell
Biology” (Poisson Boltzmann Equation)



Popular Science Books

 E. Schroedinger: “What is Life?”
M. Haw: “The Middle World”



Overview (first part)

Start (today) with review of length scales and basic definitions
(Reynolds numbers, Péclet, diffusion, Stokes-Einstein etc.)

Molecular Interactions
(van der Waals, screened electrostatic interactions)

Fluctuations and associated forces
(review of statistical physics, polymers chains, interfaces, Brownian
motion, diffusion)

Worm-like chain model for polymers

Dynamics
(Stokes problem, elasto-hydrodynamics, instabilities)

Chemical kinetics and pattern formation



Overview (second part)

Test of polymer models with experimental techniques
Using Brownian motion to calibrate molecular forces
Optical tweezers, magnetic tweezers, atomic force microscopy

Protein (un-)folding
(Loading rate dependence)

Electrokinetic phenomena
(Electrophoresis, electro-osmosis, damped oscillators)

Polymers in gels and in electric fields
(Gel electrophoresis, Entropic forces, hydrodynamic interactions)

Molecular machines and membrane pores
(Lipid membranes, torque of molecular motors)



Announcement



Numbers Matter!
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Cells are complicated objects
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Hierarchical Chromosome Organization







Erythrocytes (Red Blood Cells)
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Fluctuating Lipid Vesicle




Artificial Lipid Vesicles — Membrane Tethers

D. Fygenson (UCSB)



Domains on a GUV (Giant Unilamellar Vesicle)

W. Webb (Cornell)



Optical Tweezers: Manipulating Single Molecules




Optical Tweezers: Controlling Particles
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Magnetic Tweezers: Coiling DNA

(Seidel 2005)
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Electrokinetic Effects: Steering Microtubules
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Van den Heuvel et al. Science (2006)




Beating Eukaryotic Flagella
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Molecular Motors: Swimming Bacteria




Bioconvective Rolls

Bioconvection (J.O. Kessler)




Transition from a uniform state
to hexagonal and striped
Turing patterns

Q. Ouyang & Harry L. Swinney

Center for Nonlinear Dynamics and Department of Physics,
The University of Texas, Austin, Texas 78712, USA

CHEMICAL travelling waves have been studied experimentally for
more than two decades'™, but the stationary patterns predicted
by Turing® in 1952 were observed only recently’”, as patterns
localized along a band in a gel reactor containing a concentration
gradient in reagents. The observations are consistent with a mathe-
matical model for their geometry of reactor' (see also ref. 11).
Here we report the observation of extended (guasi-two-
dimensional) Turing patterns and of a Turing bifurcation—a
transition, as a control parameter is varied, from a spatially
uniform state to a patterned state. These patterns form spon-
taneously in a thin disc-shaped gel in contact with a reservoir of
reagents of the chlorite-iodide-malonic acid reaction'?. Figure 1
shows examples of the hexagonal, striped and mixed patterns that
can occur. Turing patterns have similarities to hydrodynamic pat-
terns (see, for example, ref. 13), but are of particular interest
because they possess an intrinsic wavelength and have a possible

relationship to biological patterns'* ",



Classical Turing Patterns

Ouyang and Swinney, 1991 (CIMA)



Unconventional Patterns
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Dictyostelium discoideum
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Spiral Waves in Theory




Back-of-the-envelope thinking

e Size of an atom (in ‘cgs’ units):

c_ he o1 e
- 9m, 02 / 72
‘ /! = — ~ 0.05 nm
OE h: o e?
Y, ’ mi3 (2 h=10""erg s

m~10""g
e ~5-10"erg”*cm"?
e (Calculate Energy using minimizer:

4
E(*) = —% ~ —13.6 eV

No Laguerre polynomials needed...



The Viscous Regime

Laminar Flow I}ﬂnnnalrntim1°




Typical forces and voltages

Let us estimate the typical force encountered by a swimming
bacterium. Suppose it is in a fluid of viscosity n (0.01 for water), has a
radius a on the order of a micron and swims at a speed v on the order
of 10 um/s. Using the Stokes drag law for a sphere the force on it is

F = 6mnav ~ 2 x 10 %dyne ~ 2 x 10N = 0.2 pN

Forces on the cellular scale are on the order of pN. A very useful
way to think about this is to convert thermal energy into pN nm

kT =4 x 10" erg  [kp = 1.38 x 10 Yerg/K]
kT =4 x 1072 =4x 107N x 107" m = 4 pN - nm
With a very similar approach we can also estimate the typical voltages as

kT 4 x 10 erg
- ~ 25mV
e 5 x 10~ 1%esu H




The Reynolds Number

Consider a fluid of density p in which there is a characteristic speed U
and a length scale L. Then it is natural to scale velocities by U and

time by L/U.
Acceleration term of Navier-Stokes equation:

P~ ——— Y ——— Note: this is nonlinear in U

Viscous dissipation term:
82911, U mertlal UL

= Re

To,2 ~ L2 viscous v

v =n/p

Kinematic viscosity

For a bacterium in water, with U ~ 10 pm/s, L ~ 1 pm,
and v ~ 0.01 cm?/s, Re ~ 107°!!



No Coasting at Low Reynolds Number

Ignoring any detailed fluid mechanics, we might imagine the
equation of motion of a bacterium that has just switched off its
flagellar motion to be ot the form:

4 d?x dx
—TR’p— = —6mnR—
3" P Yy
Hence we deduce there is a characteristic time and distance
2 R2 2 RQ’UO
T~ ——— { = voT ~ —
9 77/,0 9 v

For a bacterium in water, with vg ~ 1073 cm/s, R ~ 10~% cm,
and v ~ 0.01 cm?/s, 7 ~ 1077 s and £ ~ 10710 cm!!



Advection & Diffusion

If a fluid has a typical velocity U, varying on |

a length scale L, with a molecular species of tadvection = —

diffusion constant D. Then there are two times: U

We define the Péclet number as the ratio: |_2
t.. =

diffusion
Pe — 1:diffusion . UL D
€= = This is like the Reynolds
tadvection D number comparing UL

inertia to viscous dissipation: Re = ——
V

If U=10 um/s, L=10 um,

Re ~ 104, Pe ~ 101

At the scale of an individual cell,
diffusion dominates advection.

The opposite holds for
multicellularity...



Diffusion and the Stokes-Einstein Relation

If molecules have a diffusion constant D, concentration ¢, and are
advected with speed u, then the flux is:

d;
J:—D—C—}—uc
dx

In the low-Re regime we expect a force balance of the form
Cu = force = —d¢/dx, where ¢ is a suitable potential energy.

At equilibrium, we must have J =0, so 0 = —D% — %c%, or

¢ ~ exp(—¢/D()

If equilibrium statistical mechanics holds then we must conclude that

T
D¢ =kgT or p = el

G

If we is the Stokes drag coefficient for a molecule of radius 2 A we obtain

4 x 10714
20-0.01-2x 108

~10"°cm?/s



Diffusional Time Scales
From the diffusion equation

oc
~ - — DV?
5 Ve

we see by dimensional analysis the scaling

Dt ~ ¢? or twﬁ
D

On the scale of a bacterium (¢ ~ 10~* cm), t ~ 10~ 3s, but
on the scale of a plant (¢ ~ 10 cm), t ~ 107 s, or about 3-4 months!)

Something must take over as a transport mechanism beyond
Several hundred microns for life to function.

See J.B.S. Haldane, “On Being the Right Size”



The Aquatic Plant Chara corallina




Cytoplasmic Streaming (the Movie)

Goldstein, Tuval, van de Meent, PNAS 105, 3663 (2008)
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Streaming in Drosophila oogenesis
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