Aspects of Excitable Media, Oscillations

No study of chemical dynamics would be complete without a discussion of biolog-
ical oscillators. We start with one of the simplest examples, the Lotka-Volterra
predator-prey model. Let N(t) by the prey population and P(t) be the predator
population. The model is
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This model embodies four assumptions:

1. Prey, in absence of predation, has constant growth rate. The Malthusian
law dN/dt = aN.

2. Predation reduces prey’s per capita growth rate: —bP
3. without prey, predator death is exponential: —dP

4. Prey contribute to predator growth rate



Lotka-Volterra Model

As usual, we adopt a set of rescalings:

u(t) =cN/d . v(r)=0P/a, 7=at,

Then
d
g ==
df
I: =—av(l —u).

Sketch out the phase portrait...

a=d/a .



Lotka-Volterra, continued

There are two fixed points, or equilibria: v = 0,v = 0 and v = 1,v = 1.
Call them (ug,vg). As usual, we linearize the governing ODEs in the form
= f(u,v),0 = glu,v) as u = ug + £ and v = vy + 7, finding solutions that
grow as & = AeM and n = e, where ) is obtained from the 2 x 2 system
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evaluated at (ug,vg). The determinental equation is \> —TX\+ D = 0, where T'
is the trace of J and D is its determinant.

e Stability means Re(A1, \2) < 0 and requires T'< 0 and D > 0

e Instability requires either D < 0 or 1" >0, D > 0

where A\ o = 2 (T + VT2 — 4D).
Let’s consider first the fixed point (0,0), where

1 0
J_(U (14)’

where clearly A = 1, —a. One eigenvalue is positive, and one is negative.




Lotka-Volterra, continued

Let’s next consider first the fixed point (1, 1), where

=(0 )

Now, D = a > 0and 7T'= 0 so A = 2. Both eigenvalues are imaginary, so the
solution oscillates and the fixed point is a centre.
The trajectory is in fact given by

du  u(l—v)
dv  av(u—1)"

which can be integrated to yield au + v — log(vu®) = C.

See Matlab file Lotka Volterra.m

However, systems giving rise to centres in this way are not very robust or there-
fore useful. A small change can give completely different behaviour. For exam-
ple, let’s add some logistic effects:



Lotka-Volterra, continued

Now the dynamics takes the form

i =u(l —v) — e;u?
v =—av(l —u) — eav?|

Now the fixed points are (0,0) and 1 — vg = €qug and 1 — ug = —eqvg. A little
calculation shows that now

D = augvg(l +€162) >0 and T = —ejug — aeavg <0 .

Interestingly, this implies two complex conjugate roote with negative real parts.
This means the fixed point is a stable focus.
Just for fun, what happen if we add harvesting (fishing) to u dynamics, but not
v. That is, fish for prey, not predators. Then

i =u(l —v) —eu® — f

v=—av(l —u).

Fixed points are now at u —eu? — f =0and v =0o0r ug = 1,09 =1 — € — f.
The latter is interesting: fishing reduces the predator population, not the prey
you are fished for. A short calculation shows that T'= f — e and D = avg. The
f.p. is stable if f < 0 but unstable if f > 0.



Lotka-Volterra, continued

Finally, what happens if we change the dynamics to introduce competition?

N =aN — bNP
P=_cNP+dP.

Rescaling as before,

u =u(l —v)
v =4+ av(l —u) .

For the fixed point (1, 1) now we have D = —a < 0 and 7' = 0, so the eigenvalues
are real, ==v/a. This is an unstable saddle point.

1 0
7= (0 a);

for which D > 0, T"> 0 and A = 1, a. Unstable focus. One species always wins
out over the other.

But for (ug,vg) = (0,0),



Nonlinear Oscillations. The Example of Flagella

OBJECTIVE



Noisy Synchronization

Frame-subtraction

Experimental methods:
e Micropipette manipulation
with a rotating stage
for precise alignment
e Up to 2000 frames/sec
e Long time series
(50,000 beats or more)
e Can impose external
fluid flow

Cell body —

Micropipette

Polin, Tuval, Drescher, Gollub, Goldstein, Science 325, 487 (2009)



Phase Portrait — Noisy (Stable) Limit Cycle
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Limit Cycles

Let’s consider a more complex predator-prey system (Murray)

(3
K N+ D

More generally, we might have N = NF(N, P), where F(N,P) = r(1—-N/K) —
PR(N), where the second term represents predation. The functions NR(N)
can take on various forms (see blackboard sketches...), represented by R =
A/(N + B) or AN/(N? + B?), or A(1 — ¢ *N)/N. Generally, these embody
some form of saturation, as in limited predator capability or perseverance, when
prey is abundant.

Let’s non-dimensionalise: u(7) = N(t)/K, v(17) = kP(t)/K, T = rt, « = k/hr,
B =s/r,and § = D/K. Then

Rescaling as before,

, QU ,
uw=u(l —u)— s flu,v)

()

U=+ pv (1 — —) = g(u,v) .
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Limit Cycles
Nullclines at v = v and 1 —u—av/(u+9) = 0. It is easy to show that the fixed
point (0,0) is unstable. The fixed point (ug,vy) has

( 1 — 2ug — augd/(ug +6)° —oaug/(ug + 6) )
/= 5 By ’

for which

which can be of either sign, and

ad
D = Bug [1+(u0+5)2] >0 .

Thus, the f.p. is stable iff

o

(uo +9)?

8>

— Ug -

Now let’s think about the possibility of a limit cycle...



Poincaré-Bendixson Theorem

Theorem: If there exists a domain D such that D contains no fixed points and
all trajectories sufficiently close to the boundary of D enter D, the D contains
at least one stable limit cycle.

This is pretty obvious, really: Suppose there exists one unstable fixed point
(focus, not saddle). Then let D be the annulus between a small neighborhood
of this point and an outer boundary. In our case, take D as shown.

Thus, given D suitably chosen, a stable limit cycle will exist if

oud

b < (4o 1 0) — Ug -

Can show that if a < 1/2, RHS of above is < 0, but 5 > 0, hence stable. If
a > 1/2, there is a range of values for instability, but no instability for any [ if

> Va2 +4a— (1+ a).

See Matlab file Lotka Volterra2.m



Diffusion and the Stokes-Einstein Relation

If molecules have a diffusion constant D, concentration ¢, and are
advected with speed u, then the flux is:

d;
J:—D—C—}—uc
dx

In the low-Re regime we expect a force balance of the form
Cu = force = —d¢/dx, where ¢ is a suitable potential energy.

At equilibrium, we must have J =0, so 0 = —D% — %c%, or

¢ ~ exp(—¢/D()

If equilibrium statistical mechanics holds then we must conclude that

T
D¢ =kgT or p = el

G

If we is the Stokes drag coefficient for a molecule of radius 2 A we obtain

4 x 10714
20-0.01-2x 108

~10"°cm?/s



Excitable Media/Electrophysiology

Now we wish to apply a similar line of reasoning to a neuron, which we start by
modelling as a cylinder with a membrane boundary and different concentrations
of ions inside/out. For example, [KT];, ~ 130 mM, [K "], ~ 4 mM. We now
write a concentration flux in terms of the electrical potential ¢ as

dC —qdo/dx
J=—-D—+C 4do/ :
dx C
where ¢ is the molecular charge and ( is the drag coefficient. At equilibrium,
J = 0. Integrating this relation, and using the Stokes-Einstein relation we
obtain
; kT Cout
Qout — (bin — In ( —
q Cin

This is a voltage difterence purely because of a concentration difference. Putting
in numbers one finds kp7T'/q ~ 25 mV. Given the typical concentration ratios,
one finds voltage differences around 50 mV.



Excitable Media/Electrophysiology

What is the typical scale of the electric field across the membrane? Given the
size of lipid molecules (a few nm), |E| ~ A¢p/Axz ~ 60x 1073V /6x 10" 7m ~ 107
V/m. A huge field!

Facilitated transport. First, we establish that a simple lipid bilayer is imperme-
able to ions. Look at the energetics of an ion in the two environments (water,
membrane). Model the ion as a conducting sphere of radius a to which infinites-
imal bits of charge are added until a final value is reached:

“ dr 1 Q@ 2
dW = QdQ/ DT yence W= / dW = @
0

.2 '
~ €7 €a 2€eaq

Now we compare this self-energy in oil and water:

)2 /1 1
AW = Woil — Wyater = Q ( - ) .

2a €oil Ewater

Using @ ~ 1.33 Afor a Kt ion, we obtain AW ~ 70 kgT, so the relative
probability of finding a K* ion in the membrane versus in water is ~ exp(—70),
which is very small!l Need high-dielectric pathways (ion channels) to facilitate
transport across the membrane.
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