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lon Channels

How voltage-gated channels work
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Number densities of ion channels vary enormously, from ~ 1 — 10* =2, A
typical number might be about 10 — 100 xm~2, or 10 — 10'° cm—2.



The Voltage Clamp (K.S. Cole)
differential amplifier
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The Voltage Clamp is an electronic device which uses an applied current to
maintain a chosen voltage across an excitable membrane while the conductance
of the membrane goes throughh transient changes. This is done via feedback
loop. A metallic electrode is inserted longitudinally down the centre of the axon.
This short-circuits the inner axoplasmic core so that the interior is longitudinally
isopotential and curren flow across the membrane is radial. This is called “space
clamping”.

See R. Nossal and H. Lecar, Molecular & Cell Biophysics (Addison-Wesley, 1991)



The Essential Results from Voltage Clamp Expts
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A change of the membrane potential from its resting value of ~ —60 mV to a
“depolarized” value of 0 mV leads to an inward transient current followed by an
outward current that reaches a steady state (a). When the outer bathing fluid’s
Na™ is replaced by an impermeable ion, only the outward current remains (b),
taken to be K*. Sodium is fast, potassium is slow, and both appear with delays.



Equivalent Circuit

QNaé QK% QL% I

In this model,

oV
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where

Iionic — Lext + 9K (V - VK) + dNa (V _ VN(L) + - Jleak (V - ‘/lpak) )

where Vg = =72 mV, Vy, = +55 mV, Vieer = —50 mV.

Here, the g(V')s are voltage-dependent conductances of the ion channels (recall,
conductance=1 /resistance). Hodgkin and Huxley made semi-phenomenological
models of these in terms of putative multiple internal states with V-dependent
relaxation kinetics.



More on Hodgkin-Huxley Model
The HH model describes the sodium and potassium conductances as
gK — GK”f/l(t) ’ gNa — GNamB(t)h(t) )

where G = 36 mmho/ cm?, Gy, = 120 mmho / cm? and gjeqr = 0.3 mmho / cm?.
The gating kinetics are described by the functions n,m,h that satisfy the dy-
namics

dn = (ne(V)—n)

dt (V)

dm (V) —m)
dt Tm (V)

dh  (hoo(V) — h)
dt (V) ’

where the various functions are plotted below.



Hodgkin-Huxley Model Il
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Hodgkin-Huxley Model Il

The key point is that the sodium dynamics are much faster than the potassium
dynamics. With an inward current of Na™ that depolarizes the membrane, the
Na™ conductance increases. This leads to an even larger inward current that
depolarizes the membrane further. This is said to “regenerative”. The process
continues until the membrane potential approaches V., at which point the
driving potential V' — Vi, tends to zero. Now the K+ pathway begins to open,
forcing the membrane potential back to rest.
The feature of producing increasing inward current in response to depolarizati-
ion is said to entail “negative resistance”. This can be seen by exploiting the
separation of time scales and setting h and n to their resting values hoo (Viest)
and 750 (Vyest). Then, the peak sodium current is

Ina(V) = Gnahoo (Viest)mS (V) (V — Viva)
where m., (V') has the sigmoidal shape we saw earlier. Since V —Vy, is negative
when V' < Vi, and m (V) is positive, In, has a region in which increasingly
positive V' causes a steeply increasingly negative current. If mo (V) is steep
enough, negative conductance occurs.



Hodgkin-Huxley Model IV




FitzHugh-Nagumo (FHN) Model

The FHN model is a simplification of the Hodgkin-Huxley equations. There
are two variables: u, which is related to the membrane potential, and v, which
stands for everything else (ions) that tend to bring the system back to its resting
state. First, we ignore spatial variations and consider the ODEs for the two
variables. wu, the activator is the fast variable, and v, the inhibitor, is slow.
With z(t¢) an applied voltage, the model equations are:

3
u=c fUJru—%Jrz(t) = f(u,v; 2)
fl‘/’:—(u—a_'—bv) :g(uvv)a

c

where 0 < b < 1, b < ¢?, and we take ¢ > 1, and

2b
l——<a<l.
3 a

For z = 0, the nullclines are

US . a—Uu

u:()%vzg—u and v=0—v= ;

Exercise: verify that the quoted inequalities mean that there exists one fixed
point (u,?) and it is to the right of the minimum of the @ = 0 nullcline.



FitzHugh-Nagumo (FHN) Model Il

Let’s look at the stability of the nontrivial fixed point:

(Nl )

Thus, T = c¢(1-u*)—b/cand D = —b(1—u*)+1. We conclude that D > 0,7 < 0
if w > 1 (but not only if) and 7" > 0 if w < 1 —b/c?. In the former case, we have
stability.

Now, suppose a negative voltage is applied as a step, z = —Vj. Then the v = 0
nullcline will be shifted upwards. [ = ¢{v + u — u*/3 + z} has the nullcline
v = —u+u’/3 — z. The fixed point will still be stable if w > 1 — b/c*. Thus, if
Vo 1s very small, nothing changes.

But suppose Vj is big enough that the minimum of the cubic is Aigher than the
z = 0 fixed point (i.e. © < Vy — 2/3), then, if ¢ is large, the trajectory will miss
the minimum and go on till it hits the opposite branche, where @ = 0, but v
will be > 0.

There will be a big negative spike in u. Only one spike if the new equilibrium
is stable, or if z is switched off by then, with slow recovery.

But, if z stays on and the equilibrium is unstable (V[ large enough) you must
get convergence to a limit cycle, by the P-B theorem. Repeated firing of the
neuron while the stimulus is still applied - but not constant jamming because
of the slow recovery (‘“refractory period”) along the cubic.



FitzHugh-Nagumo (FHN) Model Il

Let’s estimate the period of the limit cycle - the time to return after one excur-
sion. You can see from

3
u
U =c [’U +u — % + z(t)} = f(u,v;2)
w—a-+h
o _(u, a + bv) — g(u.v)
c

that when f(u,v;z) # 0, @ will be large (note ¢ in front of the RHS), so the
jump from the minimum at v = 1 across to the left hand branch for u < 0
will be quick. But once on that nullcline the rate of change of v will be slow
- because ¢ > 1. Therefore the period will be approximately twice the time it
takes to go from Py to Ps.

On the f = 0 nullcline we have

cv=—u+a—bv
where v = u”? /3 — u (letting z = 0). This gives v = (u* — 1)u, or

bus
c(u® — 1) = —% —(1=bu+a.



FitzHugh-Nagumo (FHN) Model Il

Hence the time from P; to Ps is

P —1 2
’ (uv” —1)
dt = d
/1;1 C/_2 u—bu3/3—(1—b)u—|—a

= ¢x an O(1) number if a and b are O(1)

See Matlab file FHN.m



Action Potentials |

Let Vip(x,t) and Vo (x,t) be the interior and exterior voltages associated with
a cylindrical neuron, and V,,(z,t) = Vout — Vin. As the exterior medium is
(typically) a good conductor, we can take Vg, to be constant. Thus,

Vo(x,t)

NV OV —
or  Ox %L . %} c
e - i

V.(x,t)
1

IL(x,t)

> |-

i AXx
Ax

Now let ¢ be the current/area along the axon whose radius is a, and r be the
electrical resistance (ohm-cm) of the axoplasmic core. In a small section of
width Az we have Ohm’s law “V = I R”, where R = rAx/ma*:

1
AV, = ——QTA:IJ — —irAx .
Ta
Hence, 0V;i,/0x = —ir. Now, the total (longitudinal) current flowing down the
axon is I;, = wa’i = —(wa?/r)0Vi, /Ox, but by continuity the inward membrane

current [,,, satisfies 2wal,,Axr = Aly, or

1 0l a 0°Vi,

Im — = T a ;
2ma Ox 2r Ox?



Action Potentials Il

Now, suppose we have a passive cable, where the current density across the
membrane would be V,,, /r,,, with r,, the product of the membrane resistivity
. . . ) . . ..
and thickness (thus having units of ohm-cm®). Since 1, is defined as positive
for an inward current we have
2 2
I/?'?? a 8 -‘/TT?- 8 ‘/TT? 1

= ot | g = 5V
T 27 Ox? Ox? A2

where A\ = (r,,a/2r)'/? is a characteristic length. For a point-forcing.

Vm,(:r) — V‘m(o)e_mv)\ .

For the giant squid axon, a ~ 0.02 cm, 7, ~ 2 x 10? Q-cm?, r ~ 50 Q-cm,
so A ~ 5 mm. Thus, a signal spreading passively would be degraded by cable
losses before it could go an appreciable distance. Need some kind of regenerative
mechanism.

Let us return to the relationship 1, = (a/2r)9*V,,/0x* and note that we
can write [, = COV,, /0t + ILionic, where [ionic represents all the other cross-
membrane current contributions from ion channels. Then,

a Vi _ OV
o2 Ox2 Ot

+ [ionic(‘/;n-: t) 3

which is a nonlinear diffusion equation (!), also known as a cable equation. C'
is a capacitance per unit area, so a/(2rC') is a diffusion constant (!).
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