The ideal gas law,
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is only an approximation. At low densities we have the “virial expansion”,
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Van der Waals Interactions
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The Hamiltonian for the system is:

H = Ho + H1 = Spring Energy + Coulombic Energy R

2 2
P P

1 1 1 1 2e%x 1Ty

Hi=¢e*| =+ — — ~————" x|, 2| K R
! R R—331-|—ZEQ R—Qfl R-|-ZIJ2] R3 | 1| ’ 2|
To simplify the situation, a coordinate change is made:
T1 L T I Ty — T

L1 —

N V2

2 2 2 2
P71 1 5 2e 9 D5 L/ o5 2e 9
H%+§(Trawoﬁ>:c++—+§ ?’n,wOjLﬁ T—

2m
The two terms in parenthesis are essentially adjusted frequencies:
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Van der Waals Interactions - continued
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The energy is then:
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We see that e?/mwj is a characteristic volume. To see the meaning of this,
consider an induced electric dipole:

d = aE

The units of d are Q - L, the units of E are Q/L?, so the units of a are L? (a
volume).



Van der Waals Interactions - continued

Now consider the Hamiltonian in the presence of an external electric field:

H = 7‘[0 -+ €E0£C1 + GE()CCQ
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This is nothing but a shifted pair of harmonic oscillators, and from the shift we
deduce the polarizability The dipole moment is then:
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which is the same as seen previously. The energy of attraction in either case is
then:
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How Does This Fit into the Thermodynamics?

Key idea [van der Waals, Weeks-Chandler-Anderson (WCA)]:
partition the intermolecular potential into purely repulsive + purely attractive,
use “known” results for former, perturbation theory for latter.

Using a mean-field (averaging) argument,
— avoid double-counting

_— 1 : :
pontrlbutlon to the Userr = —Np/dg’f‘uattr(T) taking th_e density
internal energy 2 to be uniform

1 N?
Define a = ~5 /der'uattr(’r) then Uuir = —alNp = _av
a[]a,ttr 2
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So, a better equation of state is p = pkgT — ap?

To incorporate excluded volume, subtract Nb from the available volume,
where b = 8 X particle volume,

(p+ ap®)(V — Nb) = NkpT



Putting it All Together

Finally, we have
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and we conclude that
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Applications of Dispersion Forces
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Suppose the interaction between two molecules is

V11(7“) = —g

76

Then, the attraction between a neutral atom and a sheet is calculated:

Vis(h) = /OO dzf% dqs/oo ?“drpvll(\/m)

— / dz/%dqb/ rdrp zz—l—r2)

= 6h3 (atom-slab)




Applications of Dispersion Forces - continued

Between two slabs of area A such that Apdz atoms are in thickness dz:

Vss AH 1

o) = A 1 _ _4H %
Vgs(r) /h pVis(z)dz = Y o 72

This defines the Hamaker constant Ay

A = 72 p1paCial~ mhw(ap)?

Typically, the Hamaker constant is ~5x102° J~ 5x10-13 erg,
About an order of magnitude larger than thermal energy

Ap ~ mhwy(ap)® ~10-eV - (0.1)* ~ 0.1eV



DLVO Theory

Interaction Potential Two charges in vacuum separated by a distance r
have an electrostatic energy

U(r) .
Electrostatics 2
E=ep(r)=—
o(r) =<
If we measure r in the molecule scale of A
the ratio of electrostatic to thermal energy is
van der Waal E (4.8 % 10_10):2 580

\

However, the dielectric constant ¢ ~ 80, so even apart from screening the
energy is reduced to e?/er. Turning this around, we define the Bjerrum length
Ap as the point of balance:

kpT — 4 x 107141078 — 7[A]




Screened Interactions

There are two basic ingredients in the calculation of screened
electrostatic interactions (in the so-called Poisson-Boltzmann theory).
1. The Poisson equation relating the electrostatic potential ¢

to the charge density p:

Vip— P g _yy
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2. The Boltzmann distribution, relating the ionic concentrations
cs of the species s of valence z, to the electrostatic potential

C, = Coe—zseqﬁ/kBT

Combining these into a single self-consistent equation (with g = 1/kgT),
we obtain the Poisson-Boltzmann equation:
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Screened Interactions - continued

If we consider the specific case of a z : z electrolyte (1:1, NaCl, 2:2, CuSQOy
etc.), we can write this in a more compact form:

8mzecy

Vi =

sinh(3zeg)

In the weak field limit, when Se¢ < 1, we can linearize the PB equation (using
sinh(x) ~ oz +---):

8mz2e’cy
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This suggests a characteristic length scale, the Debye-Huckel length Apg:

ekpT ] 1/2 10 nm
Co [mM]

This finally shows that the Debye-Huckel limit is governed by the modified
Helmholtz equation

)\DH:[
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(V2= Api) 0 =0




Screened Interactions - continued

The most elementary situation to consider is the one-dimensional
problem of a surface held at fixed potential ¢y, bounded by a semi-infinite
electrolyte. The relevant solution of

02 | .
(W - )\DQH) ¢=0 is | ¢=goe "/rrr

There is an induced charge density o on the surface which can be
computed in the usual way (Gaussian pillbox):

. 4o €
—n- vqﬁ‘surf — ? =100
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Once we have the potential everywhere and the charge on the surface we should
be able to find the (free) energy of the system. Observe that V¢ — )\Bi,qﬁ =0
is the Euler-Lagrange equation for the functional:

~ € . 1 1 f
g Br | Z(Ve)2 £ Z\=2 52
477/ ' [2( qD) T 2 DH?




Screened Interactions - continued

This was obtained with the general Euler-Lagrange formula

E__ o () +6(m)
§¢  Ox Ody )0

where (---) is the integrand of the functional.

Now, here’s the crucial point. If we take the original free energy and integrate
by parts the term involving (V¢)?, we obtain a surface term and a new bulk
contributiion,

€ ’ € tL 1 [
F=— [ dSon-Vo— — [ d®r¢dp (VZh — N2 /dS ),
3 -/S on - Vo 3 / ro ( ¢ DHQS) 2 /s o,

where o is the surface charge. The bulk term vanishes by the DH equation (!).

For situations with fixed surface potential rather than fixed charge, the surface
free energy must be Legendre transformed:
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Interaction of Two Surfaces — Fixed Potentials

For fixed potential ¢y on each surface,
the solution of the DH equation is

bo bo _ cosh(z /)
/ b= o cosh(d/2)\)
| / The induced charge density is
.:C I } < Qbo
d/z 0 d/2 o(d/2) = =\ tanh(d/2)\)
And finally the free energy per unit area is

F 1 egb%
— = —— op = ——— tanh(d/2A
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And the interesting quantity is the difference between this and the energy at
infinite separation:

F(d) — F(o0) €p3 d
= 1 — tant
2A SWADH art 2)\DH




Interaction of Two Surfaces — Fixed Charge

For fixed charges oy on each surface,
the solution of the DH equation is
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And the interaction energy per unit area is

A The potential at the surface is
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