Interaction of Two Surfaces — Fixed Charge

For fixed charges oy on each surface,
the solution of the DH equation is
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And the interaction energy per unit area is

A The potential at the surface is
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Screened Interactions - continued
A typical lipid has a cross sectional area of about 50 — 100 A2. If each head
group holds a single charge, and the Debye-Hiuckel length Apy is about 1 nm,
then the typical energy is:
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So, these effects are comparable surface tension etc., and thus quite relevant.

An Aside on Quadratic Energy Functionals

Per unit length in the direction perpendicular to the plane the energy is
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where v is the surface tension.




Screened Interactions - continued

We are interested in the limiting case of small slopes to the surface, so we expand
the square root for |h(x)| < 1, and obtain the energy difference from the flat
state:
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Note that we use the shorthand notation h, = 0h(x)/0z.

Again we will find a characteristic length scale by balancing the two terms.
Here it is the capillary length [,
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which, for water/air, is about 3 mm (1/100/1/1000).




Geometrical Aspects
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Cells have length scales of many microns, artificial vesicles as well, while the
Debye-screening length is in the range of nm, which means that we can exploit
the separation of length scales
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For highly charged molecules like DNA this is not the case as there bends can
happen on the scale of a few nm, which sets a limit to this analysis.



Geometrical Aspects

We will start by considering a curved, charged membrane. At each point
on the surface there are two principal radii of curvature, Ry and Rs. Using
these we construct two quadratic quantities, the mean curvature, defined as

H = (1/2)(1/Ry + 1/R3) and the Gaussian curvature K = 1/(R1R3). The
general energy functional for a membrane takes the form
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which was introduced by Helfrich and others for a non-stretching but bending
membrane. There are two elastic constants that describe the stiffness of the
membrane, and Hg is known as the spontancous curvature.

Each of these elastic constants has units of energy, and are typically some
multiple of kpT'. Hy arises from asymmetries between the two sides of the
membrane.



Various Approaches

1. Compare the energy of different simple geometries where the various cur-
vatures are constant. For a plane we have R1 = Ry = co. For a cylinder
we have one vanishing curvature, and for the sphere Ry = Rs. Compar-
ing the results with the terms in the Helfrich energy in an expansion in
powers of Apy /R we can find the elastic constants and the spontaneous
curvature.

2. Construct a perturbation theory around a flat surface. This provides a
good context to understand “boundary perturbation theory”.

3. Multiple scattering method (very hard, not covered in this course)



Geometric Expansion

To simplify notation we use x = 1/\. Consider cylindrical geometry.
We wish to solve the modified Helmholtz equation
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Rearranging, we obtain
(r°0pr + 10, — (kr)?) ¢ =0

The solutions to this are Ko(xr) (outer problem), and Iy(kr)
inner problem, where these are modified Bessel functions.



Geometric Expansion - continued

Thus, the inner problem has a solution of the form (fixed charge)

dro Iy(kr)
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and the free energy will involve a ratio of the form
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Here, we use the asymptotic expansion of Bessel functions:

e? 1_;1;—1_|_(/1’_1)(/1’_9)+...
Jons Sz 21(82)2

I,(z) =

where p = 402,
Thus, Io(kR)/I;(kR) has an expansion in inverse powers of xkR.



Review of Classical Statistical Physics
The probability p(FE) of finding a system in a state of energy F is

where 0 = 1/kgT, and the partition function Z is
4 = Z e PP,
The expectation value of a physical q?:uantity A of the system is
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We will typically deal with systems for which the energy is simply the sum of
kinetic and potential contributions. For a single particle this might look like
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where ¢ is some generalized coordinate.



Statistical Physics - continued

The partition function for a sytem of N particles is simply
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where we use the notation p” and ¢" to stand for the whole set of variables.
The prefactor is appropriate for indistinguishable particles, and there is a phase
space normalization factor of h (Planck’s constant) for every pair of p and g.
Since there is no issue of the non-commutation of positions and momenta we
can perform the momentum integrals exactly, yielding
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where the thermal de Broglie wavelength A is
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Note, that h appears only as a prefactor, and thus will play no role in almost
all observables.



Equipartition Theorem

When the configurational energy is quadratic in the generalized coordinate
E = (1/2)kq?, then the theorem of equipartition holds. Observe that
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This means that we can view In Z as a generating function.

Now change variables in Z, pulling the constants out in front,
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Thus, the energy per mode or degree of freedom is
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Polymers and Entropic Forces

The simplest model of a polymer is one in which there are N identical links
of length b, each of which can be oriented up or down. Consider the case in
which it is stretched by a mass m pulled down by gravity: The energy is then
E = —mgz, where the extension z is
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where s,, = £1 denotes the orientation of the nth link.
The partition function is thus
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which, by the independence of the s,,, can be simplified to
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Polymers and Entropic Forces - continued

From this we can calculate the mean extension as a function of the force F' = mg.

(z) = (b; Spn) = %1;};2 = Nbtanh(SFb) =|L tanh(5Fb)],
where L is the fully-extended polymer length. Z/AL
For a weak force, the average length (z) 14+ — =
can be Taylor expanded
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This is nothing but a Hookean spring relationship (force proportional to exten-
sion), with a spring constant

 kgT

k= Nb2

An “entropic spring”




More Realistic Freely-Jointed Chain

Now we examine a more realistic model in which every

/
link is freely jointed. Applying a force F' to looks like this: / 0
The extension x and energy E are: /%_’ F
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The average extension follows by differentiation:
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The spring constant for this new chain is then k& = 3kgT/Nb* reflecting 3
degrees of freedom per link.



Fluctuating Continuum Objects

Now we generalize the model to a continuous object,
using a simple 1D string that is under tension from
e.g. two hanging masses. Relative to the flat state

h = 0, the energy is
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We can not directly apply equipartition since there are no identifiable indepen-
dent degrees of freedom. But, if we note the boundary conditions at x = 0 and
L we can use a Fourier series,

h(x) = ZA" sin (?)

By the orthogonality of the modes, a little algebra shows that
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This decomposition holds for any particular realization of the Fourier coefhi-
cients. Next we turn to the thermal averages...



Fluctuating Continuum Objects - continued

If the string is in thermal equilibrium (e.g. connected to a heat bath),
then the average of each coefficient will be:
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The average variance of the string can then be calculated:
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Note the interesting dependence on the system size. The variance is linear in
L. This should remind you of a random walk...
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