Excluded-Volume Interactions

We saw previously that the probability distribution of the end-to-end
vector R has the Gaussian form

P(R) ~ C—BRQ/QIVEQ .

We are free to interpret the argument of the exponential as the Boltzmann factor
of an effective free energy F(R),
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which has the form of a (Hookean) entropic spring, with a minimum at R = 0.
It costs entropy to extend the chain.

Let us now consider how excluded-volume interactions change this free energy.
We imagine that there is a pairwise interaction of the form
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where we have called the amplitude of the interaction vkgT for convenience,
and abstracted it into a delta function potential.



Excluded-Volume Interactions - continued

Using the mean-field arguments of van der Waals, we estimate the contribution
of these interactions to the free energy as
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where the local segment concentration is N/R? (in three dimensions). The total
free energy in this Flory theory is thus
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We see a competition between entropy, which
favours the smallest R, and excluded-volume effects
that tend to swell the chain. Differentiating to

find the optimum, R*, we obtain

X R* ~ N3/5

Note: 3/5 > 1/2, so excluded-volume interactions
have swollen the chain from its ideal random-walk size.



Excluded-Volume Interactions - continued

Generalizing this to d-dimensions, the only change is that the local concentration
is N/R?, so the balance of terms is
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Thus, Flory theory predicts the exponent values
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This relation is remarkably accurate:

d=1 R~N correct
d=2 R~ N34 exact (solved)
d=3 R~ N3/ numerical solution (0.589)
d=4 R~ N2 correct
d>4 R~ N3@+2)  wrong (should be N/2)



Geometry and Elasticity

First, some differential geometry. Consider a curve r(«) in a plane that is
parameterized by « € (0,1). The differential of arclength is

ds = |dr| = /gdae g=r, 14

with r, = 0r/0a and g is the metric. The unit tangent to the curve is
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The tangent and normal vectors rotate as we move along the curve according
to the Frenet-Serret equations
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where k is the curvature.



More on Differential Geometry of Curves

If the tangent vector makes an angle # with respect to a fixed axis
(e.g., the x-axis), then it is easy to show that
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In the “Monge representation”, where we have a function A(x) with
no overhangs as a function of an external parameter z,
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r(z) = zéx + h(x)éy

t =[x + ha&,] /\/1+ h2

so f#=tan 'h,

and the curvature is
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The Persistence Length

Let us look at the example of an elastic filament, weakly deformed, to understand
a bit more about curvature and variational principles. The simplest elastic
energy is (Landau & Lifshitz, etc.)

L
E:éf dsk?
2 /o

where A is an elastic modulus and s is arclength. Note that the units of A are
energy-length, so we can always express A as kgT'L,, where L, is the persistence
length. This has physical meaning in that if the curvature k ~ 1/R ~ 1/L then
E~A-L-1/L? ~ A/L, and if we ask that such bending cost kgT, then the
length scale is on which this occurs is L ~ A/kgT. Thus the persistence length
is the length over which thermal energy can induce a filament-length bend.

DNA L, ~ 50 nm (~ 150 base pairs)
actin L, ~10—15 pum
microtubules L, ~ 5 mm

Note the definition of the Young’s modulus:
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and a force/area is an energy/volume. Since [A] = energy - length, we conclude

A ~ E - radius®




A Simple Application to the Elastic Filament

Returning to the elastic energy if the slope is small everywhere, we can approx-

imate this as

A L
Ew/ dxh?
2 Jo

To find equilibria of this energy functional we need to look at the
variation 0 & when h is changed by 0h. Repeatedly integrating by parts,

we find
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Functional Differentiation- continued
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This implies that the functional derivative of F is
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If the “surface” terms vanish for arbitrary o0h and dh, then we require

|Ah,,.| = energy = torque
[Ahs,.| = energy /length = force
These are the natural boundary conditions of no torque and no force at the (free)

ends. If this is the case, the d,, is a self-adjoint operator and its eigenfunctions
are real. These are eigenfunctions satistying

AW, = kK*W

just as sin gz and cos gz are eigenfunctions satisfying f., = —¢*f.



The Biharmonic Eigenfunctions

A simple superposition of sin kx and cos kx will not work, as this can not allow
successive derivatives to vanish. Instead,

W(x) = Asinkx + B cos kx + D sinh kx + E cosh kx

An exercise for the student is to show that the boundary conditions imply

coskLcoshkl =1

This yields an infinite discrete set of wavenumbers k£ analogous to the trigono-
metric numbers nw/L.
If we express h(x) as a sum of biharmonic eigenfunctions

h(z) = Z anW(”)(x) then hy, = Z ap Ny W) ()

where A,, is the nth eigenvalue.



The Biharmonic Eigenfunctions

This impliest that the bending energy can be separated into modes:
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by the orthogonality of the W's (and their assumed normalization).
And we can compute the variance:
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and, since the a,, are independent, Gaussianly distributed variables,
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Fluctuations, Dynamics, and the Stretch-Coill
Transition of Actin Filaments in Extensional Flows
outlet, AP

Kantsler and Goldstein, PRL 108, 038103 (2012)



Fluctuations and Dynamics Under Extension

When 2=0, these are the biharmonic eigenfunctions:

W (x) = Acoskx + Bsin kx + D cosh kx + E sinh kx
coskL coshkL =1
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Arclength-Resolved Fluctuations
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Clear indication of the first bending mode
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The Stretch-Colil Transition of Actin (2=2.2)










The Stretch-Coil Transition of Actin
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