Some More on Curve Motion

Returning to our two-dimensional problems of curve motion, we observe that
the general equation of motion can be written as

r; = Un+ Wt

where U = U(r,k,...) and W = W(r,k,...) are the normal and tangential
velocities. This is an ntrinsic equation of motion. If we calculate the time
derivative of the tangent vector we obtain
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Now, writing

t = cos0é, + sinbe,

n — sin e, — cosbé,

we see that 0t/0t = —6,1, so

Ht = —UH —+ kW




Curve Motion - continued

Previously, we saw that if a curve moves according to the intrinsic equation of
motion

r;, = Un+ Wt

then the tangent angle evolves as

0, = U, + kW .

With a bit more work it is straightforward to show that the curvature itself
obeys the PDE

ke = — (05 + £7) U + kW

These two results indicate that there are intrinsic geometrical nonlinearities due
to the fact that the vector r and the arclength s are not independent. Note also
that in many ways the tangential velocity is something we can choose (like a
gauge), as it corresponds to a particular time-dependent parameterization.
Consider motion by mean curvature in the simplest case of 2-D motion,

U=—-—yk and W =0.




Curve Motion - continued

This corresponds to an energy functional £ = L, for which the tangent angle
and curvature evolve as

0y = —Us + W =0y, Ky =7 (fiss + H',B) .

Since we derived this by a variational principle from the energy functional &, it
stands to reason that £ is driven downhill. To check this we compute

o€ 11 .
— = ’}//donru Tt = ’}f/dst - 0Ty

ot 2./9
Since ry = —vykA, Oyry = —YR0 — YK, S0
o0&
— = — Q/dSH,Q<0
ot

Thus, the length is driven downhill (the “curve-shortening equation”). It is easy
to show that the area A enclosed by a curve evolves as

Ay = / dsU  so, here | A; = ’y/ds:%: = =27y .

So the area vanishes in a finite time!



Buckling Microtubules in Vesicles
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Euler Buckling

Here we consider the classic problem of

FEuler buckling, in which an elastic filament

subject to thrusting forces at its ends deforms
L at a critical force.

The energy functional associated with this configuration is just

b4
g0 = / ds [295 + F'cos 9}
0

where the second term represents the work done by the force in moving the end,

L da

X(L)—X(O):/O EdS:/OLCOSQ(S)

where the components of the curve in the z,y directions are just

(/) = (somtto))



Euler Buckling - continued

The equilibrium condition is

66 _ _do 9
50 ds 00, 06

—| Abss 4+ F'sinf =0,

otherwise known as the pendulum equation. [Think of £L =7 — V, with T =
(1/2)mg* and V = mg(1—-cosq).] Let us consider clamped boundary conditions,
6(0) = (L) = 0. We expect a shape with a single bump in the middle, which

is a sin function for 6,
21s
O(s) ~asin [ — | .
(s) ~ asin ( 7 )

This will only solve the linearized Euler-Lagrange equation 05, ~ —(F/A)6
provided
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Euler Buckling - continued

Consider microtubules. L, ~ 0.1 ¢cm, and take L ~ 20 pm = 2 x 1072 c¢m (as
in expt). Then L, /L ~ 50 and

4 x 10~
F, ~ 40 - ( X01 ) . (50)? ~ 0.5 pN

Near the bifurcation, we expect that nonlinearities will stabilize the buckled
shape at some finite amplitude. If we continue with the single-mode approxi-
mation and variational approach we seek an energy functional of higher-than-
quadratic order to achieve this. Expand the force near F. and the geometric
term in the energy,

94
F=F,(1+f) cose_l——92+ﬂ+...

The energy functional is then

8[9]:/0L [§9§+Fc(1+f) (1——9+§+...)]

F.L [—fa* «a
~E +F.(1+ f)L+ 5 [ 5 +32+...]




Post-Buckling Behaviour
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Thus, we have a Landau theory for the bifurcation, in which the relevant part
of the energy functional has the form

F.L [—fa® a*
5[9]2’ 5 5 —|—§—|—...

When f < 0 (below the bifurcation), there is a single minimum at a = 0, while
above (f > 0) there are two minimum at

a=+v/8f

the characteristic of a pitchfork bifurcation.




Post-Buckling Behaviour - continued

After buckling, the deformed rod behaves like a Hookean spring, whose proper-
ties we can find by comparing the compression length to the applied force. The
difference in length (from before) is just

La?

L L
X(L)—X(O)—/ dSCOSQN/ d8(1—192—|—...)NL———1—...

So, the displacement due to a force beyond F, is La?/4. With the knowledge

that a = /8f,

L F-F F
Az~ Z8f = 2L c — F—F =-%A
v ( F, ) ¢~ o

Thus, beyond the critical force the rod behaves as a spring with effective spring
constant F./2L. Solutions farther from the bifurcation are possible through a
numerical approach. For clamped ends (left) and hinged ends (right) we obtain
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Chemical Kinetics and Pattern Formation

The key article on pattern formation that started the field was by Alan Turing.
He showed that the combination of nonlinear chemical kinetics and diffusion can
produce patterns, e.g. stationary patterns in time. These were finally observed
experimentally decades after the prediction. We need first to understand the
basic laws of mass action for chemical reactions.

Michaelis-Menten kinetics. The essential idea behind this simple model of
enzyme-substrate dynamics is the reaction scheme

/{?1 kZ
ES—FE+ P
k_1

E+S

where F is the enzyme, S is the substrate, P is the product, and ES is the
enzyme-substrate complex. ki, k_1, ko are the rate constants (empirically mea-
sured quantities). For notation, let s = [S],e = [F],c¢ = [ES],p = [P]. The
concentration is defined as the average concentration (for a CSTR). The law of
mass action is then that the reaction rate is proportional to the concentration
or products of concentrations for bilinear reactions.



Michaelis-Menten Kinetics - continued

kl kQ
ES—>FE+ P
k1

E+S

The chemical rate equations are

% = —kies + k_1c+ koc
% = —kies+ k_qc
% = kies — koc — k_qc
% — koc
The initial conditions are
s(0) = sg c(0) =0 e(0) = eg p(0) =0

Note that p is completely decoupled from the other reactions, so that

p(t) = ks /0 o(t')dt’



Michaelis-Menten Kinetics - continued

It also follows that the quantity e + ¢ must also be conserved (conservation
of the enzyme/catalyst), so that

de , de_
dt  dt

which is indeed satisfied. Thus, e+ ¢ = ¢y at all times. The system thus reduces
from four coupled differential equations to just two

d

-&f ::——k1608-+-(k18-+-k_1)0 S(O):: S0
dc

E = kleos — (k'13 -+ k—l + k2)c C(O) =0

It is useful to identify appropriate scalings. The concentration of the en-
zyme/catalyst is generally much smaller concentration of the substrate, so that
a small parameter is € = eg/sg. Let the rescaled time be 7 = kiegt, and

ko
u(7) = s(t)/so A= o
o(7) = e(t) feq L Sl

klso



Michaelis-Menten Kinetics - continued

The equation system thus reduces further to an equation for the substrate and
the complex:

du
5——u—l—(u—{—k—)\)v u(0) =1
d
ed—::u—(u—l—k)v v(0) =0

Although € is small, neglecting it would remove the highest time derivative in
one equation, and is thus a singular perturbation.

See Matlab program Michaelis _Menten.m



Michaelis-Menten Kinetics - continued

Naive method of solution Suppose that ¢ < 1. Then we can assume the sec-
ond equation (for the complex) will rapidly reach a quasi-equilibrium in which

dv/dt ~ 0, and so

Uu

u+k

O=u—(u+k)v or wv=

In unscaled units this is
S

k y M k_ k‘ : — €én — C f— S—
1es ~ (k_1 + ko)c e=-¢ey—C c 60.9—|—Km

where K,, = (ko + k_1)/k,. However, this only works if there is a large sep-
aration in time scales between the two reactions. The “fast” variable is then
coupled to the slow one, which obeys a nonlinear relation. The rate of reaction
would then be

dp s s

— = :kC:ke—:vaaX—'
dt 26 MK, s+ K,

The unknown constants K, and V.« arc determined from a plot of 1/V =
(14+ K.n/S)/Vinaz vs 1/s



Michaelis-Menten Kinetics - continued
This is the so-called Lineweaver-Burk plot.

1/V
A

o
1/Vinax
. }k/ >1/s

The fundamental result of slaving the fast variable to the slow one is to create
this very nonlinear dependence of the reaction rate on the substrate concentra-
tion:

A
dp
— = koc CoO+r---—-——
dt ~ °
S
C = €
OS—|—Km )S




Cooperativity in Reaction Rates

This is an example of a “non-cooperative” reaction. Cooperativity arises from
e.g. initial binding effects altering the probability /kinetics of subsequent bind-
ing, as with oxygen and hemoglobin. The binding of oxygen to hemoglobin
involves a tetramer of four proteins that each bind oxygen. The binding of each
site is linked to the number of bound oxygens, so that the second oxygen is easier
to bind than the first, and so on. This allows for cooperativity and very large
change in absorbed oxygen over a relatively small shift in oxygen concentration
(perfectly tuned for lungs).

Fractional
binding of O

POs

This is essentially a switch. ‘
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