Cooperativity in Reaction Rates

Consider another reaction network
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where v1 = ¢1/eg,v9 = ca/eq. Then,
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with a general result of a rate
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which is known as the Hill equation, with n being the Hill coefficient. The larger
is n, the more sigmoidal and cooperative the reaction.



Slaving, Nonlinearities, and Fronts

A particularly simple example of nonlinearities arising from slaving fast variables
to slow ones is seen in the scheme
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In the steady state, yp ~ dqg?, so p ~ (§/7)¢?, and
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Looks like a potential. Bistability!




Fig 20.2. Appriximale ekronological spread of the Black Death i Biirope: o il -|
{Resdrawn from Langer 1964)



Front Propagation
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There are many many examples in biological
physics in which problems of pattern formation
are defined by the boundaries between regions
of different behaviour of some generalized field,
a chemical concentration, population level, etc.

To understand the general problem of front propagation we add diffusive effects
to the nonlinearities considered so far. The simplest class of one-dimensional

models takes the form

0F
Uy = Muge + f(u) ,|  where | f(u)= S
F(u) p
< ‘Unstable >
U
Stable \.{table



Front Propagation - continued

flu
The fundamental question is: (A )
How fast does the front move? A simple

pedagogical model for f(u) involves the /\
cubic nonlinearity
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Here, r is a control parameter that will tune the properties of the front, and
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so that F(0) =0 and F(1) = (r—1/2)/6 and the energy difference between the

two minima 1s

AF = F(1) - F(0) 4 7 (’r' - %)

For r < 1/2 the state u = 1 is the more stable, and for » > 1/2 the state u =0
is more stable.



Linear Stability Analysis

Near u = 0,

‘ Ut = MUpyr — TU + ... ‘

and let u = e*®e?. If ¢ < 0, u is stable, while if ¢ > 0 u is unstable.
Substituting for u, we deduce that
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Near u =1, let w =14 u. Then \
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which is also always stable. Thus, both global minima are stable for all .



Linear Stability Analysis — continued

Near u = r, we let v = r + u and find

Uy = MUgy +7(1 — 1)U

o =r(l—r)—mk?

and thus there is a band of unstable modes below a critical £. The obvious
question is what happens between v = 0 and v = 1 when r ~ 1/2,




The Stationary Front (r=1/2)
Stationary front (r=1/2)
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Multiplying through by u, and integrating we find

1
§mui — Fu)+C =0

where the constant C' can be seen to vanish from the boundary
conditions (v — 1 as © — —o0, u — 0 as * — o0). This yields
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yielding a transition with a width controlled by m.
u
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A Moving Front

To determine the behavior of the case r # 1/2, a systematic perturbation theory
is necessary. Here, instead, our goal is to derive heuristically the front motion
of a 1D PDE with a generic nonlinearity. Consider

U = Mg, — F'(u)

Imagine, after some transient period, a steady uniformly moving solution exists.
We then seek a traveling solution of the form

u(xz,t) = U(x — vt)

F(u)
for some unknown v. The simplest case is for an F(u): A
From the traveling-wave ansatz, we have \
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which is similar to Newton’s second law (mg + bg = force) with m being the
“mass” of a fictitious particle, U its “position”, and z the “time”, and with an
effective potential —F(U).



A Moving Front - continued
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Now, looking at —F’ instead of F', the situation can be viewed as a ball moving
down a hill. The key point is that there exists a unique front speed v (a unique
damping coefficient in the mechanical analogy), to achieve u — 0 as t — .

If instead the front consists of a stable-to-unstable situation, the analogy will
be In this case, any damping coeflicient v greater than a critical value v, will
ensure u — 0 as t — oc. _F(u)




A Moving Front - continued

We now seek a first integral to the differential equation
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which is precisely the energy difference —AF between the two locally stable
minima. We can then formally solve for the front velocity:
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The denominator is like a drag coefficient, and is dominated by the front region.




Phenomenology of Reaction-Diffusion Systems

We consider equations of the form

up = Lu+N(u), Lu=au+ Duy,

For solutions of the form u oc e**+9t g(k) = o — Dk?. In k-space, the graph
is simple (left) and corresponds to excitations of long wavelength. A more
interesting possibility is when both long and short wavelength are damped (sce
the second plot). In this case, there is a well defined k* corresponding to the
fastest growing mode, leading to a pattern on that scale.

This leads to a fundamental question: How can diffusion (governed by a
second derivative) produce a k-dependence other than k*%.
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Phenomenology of Reaction-Diffusion Systems

Since o = o(k?) (by left-right symmetry), we would require

o(k) ~ o+ BE* —~vk* + ...

_ JA ,
U = QU — LUy — YUsg + ...

but such higher-order derivative theories for a single degree of freedom are rare.
Instead, two coupled reaction-diffusion equations can produce this behavior.
The FitzHugh-Nagumo model. The FHN model was first developed as a simplifi-
cation neuronal dynamics. Two chemical species are involved: w, the activator,
and v, the inhibitor. Under suitable rescalings it typically takes the form

uy = DV?u + f(u) — pv

evy = Vv + au — fu .

Notice that the inhibitor diffusion constant has been rescaled to unity. We may
be interested in a whole range of values for €, not necessarily small. The various
terms on the RHS of the equations are:

f(u) Autocatalysis & bistability

pU Inhibition

ou Stimulation

1533 Self-limitation
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