Phenomenology of Reaction-Diffusion Systems

Since o = o(k?) (by left-right symmetry), we would require

o(k) ~ o+ BE* —~vk* + ...

_ JA ,
U = QU — LUy — YUsg + ...

but such higher-order derivative theories for a single degree of freedom are rare.
Instead, two coupled reaction-diffusion equations can produce this behavior.
The FitzHugh-Nagumo model. The FHN model was first developed as a simplifi-
cation neuronal dynamics. Two chemical species are involved: w, the activator,
and v, the inhibitor. Under suitable rescalings it typically takes the form

uy = DV?u + f(u) — pv

evy = Vv + au — fu .

Notice that the inhibitor diffusion constant has been rescaled to unity. We may
be interested in a whole range of values for €, not necessarily small. The various
terms on the RHS of the equations are:

f(u) Autocatalysis & bistability

pU Inhibition

ou Stimulation

1533 Self-limitation



FHN Model - continued

The presence of the relative diffusion a
constant D can produce lateral inhibition v
for D < 1 (different length scales). -
Depending on the terms f,D,e, the FHN model can produce homogeneous
states, strips, or other periodic patterns, spiral waves, etc.

It is sometimes useful to write the FHN model in a more symmetric form

uy = DV2u + f(u) — p(v — u)

evy = Vv +u—v

Does this model have any definite variational structure? Many of the terms
conform to a gradient flow:

or,
Up = — — U
! ou P
oE,
EVy = — +u
ov

The remaining terms are actually Hamiltonian!

Uy = —pU EVy = U




The Fast-Inhibitor Limit

Consider the simplest regime (like in Michaelis-Mentin kinetics), the fast in-
hibitor limit. Here we set e = 0 and obtain a local in time but nonlocal in space
relationship between v and u:

(VZ—1)v=—u

Given a Green’s function for the operator (V2 — 1), we can solve this:

— [ axGlx - xulx) ‘

For example, in one dimension,

1 '
Gz —12') = §e|$m |

and in two dimensions,

So, in the fast inhibitor limit we have

= DV? + f(u) + pu — p/dx'G(x — xu(x)

which is a closed, nonlocal equation of motion. In fact, u is variational,

B [ax{3DIVuP 4 P~ gpu o+ 5o [ax [axutGic- <)

The nonlocal term reminds us of electrostatics.



The Turing Instability - |

Consider a 2-species model, with concentrations u(x,t) and v(x,t) in a bounded
domain D. We assume Neumann boundary conditions of no flux in or out, so
n-Vu =10 Vv =0

oD oD
The pair of reaction-diffusion equations is

uy = D, V3u + f(u,v)
v = D,V + g(u,v) |

where f and g are some smooth functions of their arguments, representing, for
example, autocatalysis, feedback inhibition, etc.
We suppose that f and g are such that there exists a stable, uniform steady

state (so f(ug,vo) = g(ug,vg) = 0), i.e. the Jacobian
(1)
Ju Yo

Tr=fu+g9,<0 and Det= f,g, — fogu >0

has

at (UQ,’U()).



The Turing Instability - Il

These requirements arise from linearizing the equations of motion via u = ug +
ou, v = vg + 0v, to obtain the dynamics

at (S'UL — f U .f v 61{;

Oy Gu o Oy
As this is a linear equation it has solutions of the form e’, and o will be
determined by the determinental condition

| ]( "U’ — 0 }( ’1) ‘
Ju gy — O

This is just o2 — Tro + Det, with solutions oy = (1/2) {Tr +/Tr? - 4Det}.

For stability, we require the real part of both roots of o to be negative. So,
if Tr < 0 the root in which we choose the negative sign in front of the square
root is clearly negative. There are two cases that will allow the second root
to be negative. If 0 < Det < Tr?/4 the square root is real but less then |Tr|
and the root is negative, while for larger values of Det the square root yields an
imaginary contribution, and still the real part of o is negative.



The Turing Instability — Il

Now we examine what happens when we perturb this homogeneous steady state
with spatial-temporal variations, u = ug +p(x,t), v = vg+ q¢(x, 1), to obtain the
dynamics

Pt = fup + foq + Duv2p
@ = gup + 900+ D, V?q ,

It is always possible to expand a function of x in the domain D as an infinite
series of eigenfunctions of the (Helmholtz) equation

V2wp+Aiwp =0 (in D)
n-Vw,=0 (on dD)

For example, in d = 1 with D = |0, L], we have wy = cos(krz/L) and A\, =
kn /L. More generally, if we write

p = Z ﬁkeaktwk (X)
k

q = Z leoktwk (X)
k

and substitute (and drop the suffix “k”) for convenience,



The Turing Instability - IV

Then the new equation governing the growth rate will be similar to the homo-
geneous case, but with the diffusive contributions on the diagonal.

(fu_Du/\2_U) fv
Ju (gy — DyA* — o)

This will have a nontrivial solution if and only if
0 + [(Du + D)X = fu = gu] 0 + (DuX® = fu)(DuX* = gu) = fogu =0
Now we note that the sum of the roots satisfies
01+ 09 =—(Dy+D)N + fu+9g, <0,

where this negativity arises from the fact that the assumption of a stable homo-
geneous state already required f,, + g, < 0, and the new diffusive contributions
are clearly negative. The product of the two roots satisfies

0102 — DuDv)\4 — (vau =+ Dugv))\Z + Det ,

where Det is that of the homogeneous system.



The Turing Instability - V

To repeat:

0109 = Dy DyA\* — (Dy fu + Dygo) A + Det |

Now, since the sum is < 0, one root can have a positive real part only if the
product is < 0 (actually, then both roots are real). Thus, a necessary condition
for instability is the possibility of a negative product, and since the A* term is
clearly positive and Det is positive, we require the overall coefficient of A\? be
negative, or

D, fu + Du.(]v >0 .

Without loss of generality, we can take D, > D, > 0. But if f, + g, < 0, we
need f, and g, to have opposite signs, with f, > 0 and g, < 0. The condition
above is not a sufficient condition for instability, since it must be possible to
find a permitted A that makes o109 < 0. That is, the equation (with z = \?)

h(z) = DyDyx* — (Dyfu + Dugy)z + Det = 0

must have positive roots. This requires

(Dy fu + Dygy)? > 4Det - D, D, .



The Turing Instability - VI

Our sufficient condition is so provided one of the permitted As lies between A_
and AL,

9 1

A2 =
+ " 9D,D,

{vau + Dugy £ /(Do fu + Dugo)? — 4DuDvDet}

So our sufficient condition is

Dy fu + Dugy > 2V Det/D, D,
Now define d = D, /D,, > 1. Then
df, — 2vVDetVd+ g, > 0 .

This will clearly be true if d is sufficiently large. Looking at the crossing point
(LHS=0) we find

v Det + v/Det — fu,gu
Ju

So finally we can write the inequality (recall f,g, < 0)

d =

Vd > fi (\/Det—I—\/Det—fugv) > 0.




The Turing Instability - VII

Finally, we can examine the typical length scale of the instability. At onset,
A = A, where h(A2) = 0 is a double root. Then

v Det
v DD,

vau + Dugfu - 2\/Det\/DuDv a,nd Ag —

And then the unstable wavelength is

2T
Ec—)\—

C
Let’s look at an example (Murray, 1st edition, §14.2). Autocatalytic chemical
reactions

u = Dy V2u + ky — kou + ksu?v
vy = D,V + ky — ksu®v .

This can be simplified by suitable rescalings. We can always find P, Q, R, S such
that

0 0
a—)Pa, u—Qu, v—Rv, V —=>5V.




The Turing Instability - VIII

The result is the system

up = Vu + a — u + uv

vy = dVZ30 + b —u?v .

where as usual d = D,,/D,, > 1. With f(u,v) = a—u-+u?v and g(u,v) = b—u?v
the homogeneous fixed point is

b
(a+0)%

up=a-+b, wvy=

The Jacobian of the linear stability problem is then

(—1 4+ 2ugvg)  ud
—2ug Vg —ud )

Thus, Tr = —1 — u3 + 2ugvy and Det = uZ > 0. Substituting, we find

b—a— (a+0b)°

Tr =
t a-+0b




The Turing Instability - IX

Thus, the spatially uniform system is linearly stable is b — a < (a + b)?. The
necessary conditions are

fu>0— —142ugvyg >0—>06>a
dfu + g, >0 —=d(b—a) > (b+a)’ .

The sufficient condition is

dfy + g, > 2vVDetVd  or \/a>(b+a)2 (1+ Qb)
(b—a) b+a

Construct a stability diagram in a-b space
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