280 LOCAL ANALYSIS

Example 4 Leading behavior of [§ cos (xt* — t) dt as x - + 0. To use the method of stationary
phase, we write this integral as [§ cos (xt?> — t) dt = Re [§ ¢~ dt. The function y(¢) = ¢ has
a stationary point at ¢ = 0. Since y”(0) = 2, (6.5.12) with p =2 gives [§ cos (xt> —t)dt ~
Re 4 /n/x €"* =1 /n/2x (x > + o).

Example 5 Leading behavior of J (n) as n — co. When n is an integer, the Bessel function J (x)
has the integral representation

1"
Ju(x) == cos (xsint—nt)de (6.5.13)
T

(see Prob. 6.54). Therefore, J (n) = Re [§ €™~ dt/n. The function Y(t) = sin t — ¢ has a sta-
tionary point at ¢ = 0. Since y"(0) = 0, y”(0) = —1, (6.5.12) with p = 3 gives

1 o (6\? (1
~o —emims[2) r(2)], S +oo,
Ja(n) 7[Re [3e (") (3) X ©

=12—2/33—1/6]“(_1_)n—l/3Y n— co.
n 3

(6.5.14)

Observe that because y”(0) = 0, J,(n) vanishes less rapidly than n~'/? as n — co.
If n is not an integer, (6.5.14) still holds (see Prob. 6.55).

In this section we have obtained only the leading behavior of generalized
Fourier integrals. Higher-order approximations can be complicated because non-
stationary points may also contribute to the large-x behavior of the integral
Specifically, the second integral on the right in (6.5.8) must be taken into account
when computing higher-order terms because the error incurred in neglecting this
integral is usually algebraically small. By contrast, recall that the approximation
in (6.4.2) for Laplace’s method is valid to all orders because the errors are expo-
nentially, rather than algebraically, small. To obtain the higher-order corrections to
(6.5.12), one can either use the method of asymptotic matching (see Sec. 7.4) or the
method of steepest descents (see Sec. 6.6).

6.6 METHOD OF STEEPEST DESCENTS

The method of steepest descents is a technique for finding the asymptotic behavior
of integrals of the form

I(x)= | h(e)e dt (6.6.1)

c

as x — + oo, where C is an integration contour in the complex-t plane and h(t) and
p(¢) are analytic functions of t. The idea of the method is to use the analyticity of
the integrand to justify deforming the contour C to a new contour C’ on which p(t)
has a constant imaginary part. Once this has been done, I(x) may be evaluated
asymptotically as x — + oo using Laplace’s method. To see why, observe that on
the contour C’ we may write p(t) = ¢(t) + ity, where ¥ is a real constant and ¢(t)
is a real function. Thus, I(x) in (6.6.1) takes the form

I(x) = e | h()e™ dr. (6.62)

g
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Although t is complex, (6.6.2) can be treated by Laplace’s method as x — + oo
because ¢(t) is real.

Our motivation for deforming C into a path C’ on which Im p(t) is a constant
is to eliminate rapid oscillations of the integrand when x is large. Of course, one
could also deform C into a path on which Re p(t) is a constant and then apply the
method of stationary phase. However, we have seen that Laplace’s method is a
much better approximation scheme than the method of stationary phase because
the full asymptotic expansion of a generalized Laplace integral is determined by
the integrand in an arbitrarily small neighborhood of the point where Re p(t)isa
maximum on the contour. By contrast, the full asymptotic expansion of a gener-
alized Fourier integral typically depends on the behavior of the integrand along
the entire contour. As a consequence, it is usually easier to obtain the full asymp-
totic expansion of a generalized Laplace integral than of a generalized Fourier
integral.

Before giving a formal exposition of the method of steepest descents, we
consider three preliminary examples which illustrate how shifting complex con-
tours can greatly simplify asymptotic analysis. In the first example we consider a
Fourier integral whose asymptotic expansion is difficult to find by the methods
used in Sec. 6.5. However, deforming the contour reduces the integral to a pair of
integrals that are easy to evaluate by Laplace’s method.

Example 1 Conversion of a Fourier integral into a Laplace integral by deforming the contour. The
behavior of the integral

1
Ix)=| Ince=de (6.6.3)
‘o

as x — + oo cannot be found directly by the methods of Sec. 6.5 because there is no stationary
point. Also, integration by parts is useless because In 0 = — co. Integration by parts is doomed to
fail because, as we will see, the leading asymptotic behavior of I(x) contains the factor In x which
is not a power of 1/x.

To approximate I(x) we deform the integration contour C, which runs from 0 to 1 along the
real-t axis, to one which consists of three line segments: C, which runs up the imaginary-t axis
from 0 to iT; C,, which runs parallel to the real-t axis from iT to 1 + iT; and C, which runs
down from 1 +iT to 1 along a straight line parallel to the imaginary-t axis (see Fig. 6.5). By
Cauchy’s theorem, I(x) = f¢, +c,+c, In t € dt. Next we let T — +co. In this limit the contribu-
tion from C, approaches 0. (Why?) In the integral along C, weset t = is, and in the integr al along
C; we set t = 1 + is, where s is real in both integrals. This gives

I(x)=1i j In (is) e~ ds — iJ' In (1 + is) e+ ds, (6.6.4)
0 0

The sign of the second integral on the right is negative because C; is traversed downward.

Observe that both integrals in (6.6.4) are Laplace integrals. The first integral can be done
exactly. We substitute u = xs and use In (is) = In s + in/2 and the identity [§ ¢ In u du = —,
where y = 0.5772... is Euler’s constant, and obtain

@©

ij In (is) e™* ds = —i(In x)/x — (iy + 7/2)/x.
0

We apply Watson’s lemma to the second integral on the right in (6.6.4) using the Taylor expansion
In (1 +is)= — Y=, (—is)"/n, and obtain

« A 2 (=i)f(n—1)!

-i jo In (14 is) e+ gs ~ i 3 0= 1! ‘);E'il )

n=1

s X — +00.
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Figure 6.5 It is possible to convert the Fourier integral I(x) in (6.6.3) into a Laplace integral
merely by deforming the original contour C into C, + C, + C; as shown above and then allowing
T — o0. C, and Cj are called steepest-descent paths because |exp [xp(t)]| decreases most rapidly along
these paths as t moves up from the real-t axis; |exp [xp(t)]| also decreases along D, but less rapidly
per unit length than along C,.

Combining the above two expansions gives the final result:

ilnx iy+mn/2 - - 1)
_ _w n/ +ie“‘z( )(n ), x = + .
n=1

Ix) ~ ——— n+ 1
X X X

Let us review the calculation in the preceding example. For the integral
(6.6.3), p(t) = it. For this function, paths of constant Im p(t) are straight lines
parallel to the imaginary-t axis. On the particular contours C; and Cs,
Im p(t) = 0 and 1, respectively. Note that Im p(t) is not the same constant on C,
and Cj, but this does not matter; we have applied Laplace’s method separately to
each of the integrals on the right side of (6.6.4). Since Im p(t = 0) # Im p(t = 1), it
is clear that there is no continuous contour joining ¢t = 0 and ¢t = 1 on which
Im p(t) is constant. This is why it is necessary to deform the original contour C
into C, and C; which are joined at co by C, along which the integrand vanishes.
In general, we expect that if Im p(¢) is not the same at the endpoints of the original
integration contour C, then we cannot deform C into a continuous contour on
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which Im p(t) is constant; the best one can hope for is to be able to deform C into
distinct constant-phase contours which are joined by a contour on which the
integrand vanishes.

Now we can explain why the procedure used in Example 1 is called the
method of steepest descents. The contours C, and C; are called contours of
constant phase because the phase of the complex number e*” is constant. At the
same time, C, and C; are also called steepest-descent paths because |e™”|
decreases most rapidly along these paths as ¢t ranges from the endpoints O and 1
toward co. Any path originating at the endpoints 0 and 1 and moving upward in
the complex-t plane is a path on which |€*”| decreases (see Fig. 6.5). However,
after traversing any given length of arc, |e**| decreases more along the vertical
paths C; and C; than along any other path leaving the endpoints 0 and 1,
respectively. We will explain this feature of steepest-descent paths later in this
section.

Example 2 Full asymptotic behavior of [§ ¢ dt as x — + co. The method of stationary phase
can be used to find the leading behavior of the integral I(x) = [} ¢ dt. Here y(t) = t2, so the
stationary point lies at t = 0 and, using (6.5.12), I(x) ~ 4,/7/x ¢* (x > + o). The method of
steepest descents gives an easy way to determine the full asymptotic behavior of I(x). [The
method of integration by parts also works (see Prob. 6.57).]

As in Example 1, we try to deform the contour C: 0 <t <1 into contours alomg which
Im p(t) is constant, where p(t) = it>. We begin by finding a contour which passes through ¢t = 0
and on which Im p(t) is constant. Writing ¢t = u + iv with u and v real, we obtain Im p(t) =
u? — v At t =0, Im p = 0. Therefore, constant-phase contours passing through ¢ = 0 must
satisfy u = v or u = —v everywhere along the contour (see Fig. 6.6). On the contour u = —v,
Re p(t) = 20%, so |€*?| = ¢2*** increases as t = (i — 1)v — co. This is called a steepest-ascent
contour; since there is no maximum of [e**”| on this contour, Laplace’s method cannot be
applied. On the other hand, the contour u = v is a steepest-descent contour because Re p(t) =
—20%, so |e¥¥| =e 2*" decreases as t=(l +iv—>oo. The contour C,: t= (1+ip
(0 < v < o) is comparable to the contour C, employed in Example 1.

Next, we must find a steepest-descent contour passing through ¢ = 1 along which I'm p(t)is
constant. At ¢t = 1, the value of Im p(t) is 1. Therefore, the constant-phase contour passing
through u = 1,0 = 0is given by u = ./v® + 1. Since Re p(t) = —2uv decreases ast = u + iv » o
along the portion of this constant-phase contour with 0 < v < o0, the steepest-descent contour
passing through ¢t = 1 is givenby C5:t = \/v? + 1 + i,0 < v < 0. Note that C; and Cy become
tangent as v — + oo (see Fig. 6.6).

The next step is to deform the original contour C: 0 <t < linto C; + C;,in which Cy is
traversed from ¢t = oo to t = 1. Along C,, Im p(t) = 0, while along C;, Im p(t) = 1. Since the
value of Im p(t) is different on C, and C,, it is clear that the original contour cannot be
continuously deformed into C, + C;. Rather, we must include a third contour C, which bridges
the gap between C, and C,. We take C, to be the straight line connecting the points (1 + i)V on
C,and \/V? + 1 + iV on Cj, (see Fig. 6.6). C can be continuously deformed into C, together with
the portions of C, and C, satisfying 0 < v < V. Now, as V' — oo, the contribution from the
contour C, vanishes. (Why?) Thus,

I(x)=| & dt - j & . (6.6.5)
‘¢, [
The integral along C, can be evaluated exactly. Setting t = (1 + i), we obtain

. ° 1 [z,
[ ewde=(1+0)[ e dv=§ﬁe"‘". (6.6.6)

‘e, )
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Figure 6.6 The Fourier integral I(x) in Example 2 becomes a pair of Laplace integrals if the
original contour C is distorted into C, + C, + C; and V is allowed to approach co. To simplify
the evaluation of the integral along C;, we can replace the lower part of the contour C; by C,.

This contribution is precisely the leading behavior of I(x) as x - + oo that we found using the
method of stationary phase.

Now we evaluate the contribution to I(x) from the integral on C,. Note that if we substitute
t=/v* +1+ip,0 <v < oo,then p(t) = it = i — 2v,/v? + 1. This verifies that C, is a curve of
constant phase; it is also a curve of steepest descent. An easy way to obtain the full asymptotic
expansion of the integral over C, is to use Watson’s lemma. To do this, the integral must be
expressed in the form [§ f(s)e ™™ ds. This motivates the change of variables from ¢ to s where s is
defined by

plt)y=it2=i—s; (6.6.7)

observe that s=2v,/v?> + 1 is real and satisfies 0 <s < oo along C,. Since t = (1 + is)"/?,
dt/ds = $i(1 + is)™ /2, so

- xs

ds.

@
f e dt = Lie'* J.

e
Cy o /1+is

To apply Watson’s lemma, we use the Taylor expansion

(L4197 = % (~isfTln+ Yni )
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We obtain

. © it
I e dt~£ie"‘ Y. (-iy Fln +2)

s X — 400. 6.6.8
TGy 2 n=0 CEpt ( )

Combining this result with that in (6.6.6) gives the full asymptotic expansion of I(x) asx — +o0:

1 [n 1.2 L Tn+3)
I(x)~5\/;e /4_Eze’”§0(—xrw, X = +o0. (6.6.9)

Finally, we mention an alternative way to obtain the result in (6.6.8) for the integral on C,.
The substitution in (6.6.7) is an exact parametrization of the curve C, in terms of the real
parameter s. However, as we know from our discussion of Laplace’s method in Sec. 6.4, it is only
the immediate neighborhood of the maximum at ¢ = 1 that contributes to the full asymptotic
expansion of the integral on C ;. Therefore, it is not necessary to follow the curve C; exactly. Itis
correct to shift the integration path C, to one which still passes through the maximum at ¢t = 1
and which is a descent contour in the sense that |e*"| decreases and rejoins C for large |t|.
Any deformation of C, of this kind does not change the value of the integral because the
intcgrand is analytic. For the present example, a convenient alternative to C, is a contour C,
which originates at ¢t = 1, goes vertically upward parallel to the imaginary-t axis, and the n rejoins
the contour C, at any point in the upper half plane (see Fig. 6.6). Only the vertical straight-line
portion of C, in the immediate vicinity of t = 1 contributes to the full asymptotic expansion of
the integral. We can parametrize the straight-line portion of Cy neart = 1 by t = 1 + iv, where v
is real and 0 < v < ¢ with ¢ small. Thus,

. . &
et dt = ‘ e dt ~ i ' pix(1*iv? g,
“Cy ‘Cy "o
e
=ie* | e e ™ dp, x> +00.
)
Using Laplace’s method
B B © Ly 2n
' ; : —ix)'v
e~ xvgixvl gy ' PREel Z ( 'r dv
o ‘0 n=0 n:
= (=ip(n)!
~ —_— X 0.
”§022n+1n!xn+1' -+

Since (2n)!/(2*"n!) = ['(n + 4)/T'(4), we have reproduced (6.6.8) exactly.

This alternative calculation, in which we have replaced the curved path C, by a path C,
which begins as a straight line, is an important computational device that is frequently helpful in
the method of steepest descents. Note that C, is neither a curve of constant phase nor a curve of
steepest descent, although it is a curve of descent of |e**’|. Other descent curves could be used
instead of C, (see Prob. 6.58).

Example 3 Sophisticated example of the method of steepest descents. What is the leading behavior
of the generalized Fourier integral
1

I(x)= J' exp (ixe™ %) ds (6.6.10)

as x — +00? This is a sophisticated example because s = 0 is an infinite-order stationary point;
i.e., all derivatives of e™ ! vanish as s - 0+. We know from our discussion of the method of
stationary phase that if the first nonvanishing derivative of  in (6.5.1) at a stationary point is /'”,
then I(x) must vanish like x~"? as x » + co. Therefore, we expect that if the integrand has an
infinite-order stationary point, I(x) vanishes less rapidly than any power of 1/x as x — +o0.
However, the Riemann-Lebesgue lemma guarantees that I(x) does indeed vanish as x — + oo.
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How fast does I(x) in (6.6.10) vanish? It is hard to apply the method of stationary phase to

I(x) directly. (Try it!) However, the method of steepest descents provides a relatively easy
approach. We begin by making the substitution ¢ = e~ !*:

L lje

e
16 = -'o t(ln £)?

1xt

dt.

The form of this integral is similar to that of the integral (6.6.3) considered in Example 1.
Therefore, as in Example 1, we shift the contour C: 0 <t < /e to two vertical lines parallel to the
imaginary-t axis:

ixt . 1 Xt

Ix)=| —dt—| ——d, 6.6.11
) '|c. t(In )2 JC, o(In )2 (66.11)
where C, is the patht = iv (0 < v < c0) and C, is the path t = 1/e + iv (0 < v < o). Now we find
the leading behavior of each of the integrals on the right in (6.6.11).

The integral on the path C, requires only a straightforward application of Laplace’s
method. We substitute t = 1/e + iv (0 < v < o) and obtain

. eixr , 0 e x
dt =i 1x/e d
L g =], e we s wp
The integral on C, is more difficult. We simplify the integral by substituting t =iv
(0 <v < ) and perform one integration by parts:

v~ie™%/x, x— +o00. (6.6.12)

. ixt @ e o pTxv
I(x)= —dt = ———dv= —x —dv. 6.6.13
i) "C. t(in t)? JO oin ()P ,|0 In (iv) (66.13)
The integral on the right side of (6.6.13) is a Laplace integral; we can restrict the range of
integration to the vicinity of v = 0 without altering its asymptotic expansion as x - + c0. Thus,

€ - xv

toe
Ii(x)~ —x Jo n (iv)dv’ X — +00.

This integral does not yield to a straightforward application of Laplace’s method because
the integrand vanishes at v = 0. Moreover, the conventional treatment of a moving maximum
[see the derivation of the Stirling series for I'(x) given in Example 10 of Sec. 6.4] does not work
because the moving maximum of the integrand is too broad (see Prob. 6.47). A good way to
proceed is to substitute r = xv and thus obtain

-r

e

————dr, X — 400,
Inr—Inx+in?2

LEX
L(x)~ - |
0
where we have used the relation In (iv) = In v + in/2. Next, we argue that the immediate vicinity
of the origin, say 0 < r < 1/x'/?, does not contribute to the asymptotic expansion of the integral
as x > +o00. To prove this we bound the contribution to I,(x) from 0 < r < 1/x"/2:

]/xl/l -r

: e 2
—,—-d" S“—Ui,

Yo Inr—Inx +in/2 nx

because |Inr —1Inx +in/2| > n/2 and |e™"| < 1. This contribution to I,(x) is negligible
because, as we shall see, the full asymptotic expansion of I,(x) is a series in inverse powers of In x.
Thus,

-r

e

Lix)~ - | X - + 0. (6.6.14)

> dr,
Yyxvz Inr = 1In x +in/2
To expand the integral in (6.6.14), we Taylor expand the integrand in powers of 1/In x:

1 1 2 (in/2+lnr

n
- -1/2

- = R X <r<ex,x— +oo.
Inr—Inx+in/2 In x 5% )

In x
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1
Thus, I(x)~—

2™ _r(in/2+lnr
e
In x n=0"1/x12

nx ) dr, X = +o00. (6.6.15)
The range of each of the integrals in (6.6.15) can be extended to 0 < r < oo with an error smaller
than any inverse power of In x. (Why?) Evaluating the first two integrals, we obtain

1 in/2 —y
IL(x)~— +— + - 6.6.
1) mx (In x)? ’ (66.16)
where we have used [ In re™" dr = —y. The coefficient of the general term in (6.6.16) may be

expressed in terms of derivatives of I'(t) at t = 1 (see Prob. 6.59).
Combining the results (6.6.12) and (6.6.16) with (6.6.11), we obtain the final result
1 in2—y

I(x) ~ — - . 6.6.
(x) lnx+(lnx)2 + X — +00 (6.6.17)

One could not have guessed this result from a cursory inspection of the original integral in
(6.6.10)! Does this asymptotic series diverge? (See Prob. 6.60.) In Table 6.1 we compare numeri-
cal values of I(x) with the asymptotic results for I(x) given in (6.6.17).

Formal Discussion of Steepest-Descent Paths in the Complex Plane

In the previous three introductory examples, we have shown that deforming con-
tours of integration in the complex-t plane can facilitate the asymptotic evaluation
of integrals. It is now appropriate to give a more general discussion of steepest-
descent (constant-phase) contours.

We begin by recalling the role of the gradient in elementary calculus. If f (u, v)
is a differentiable function of two variables, then the gradient of f is the vector
Vf = (9f/0u, df /0v). This vector points in the direction of the most rapid change of f
at the point (u, v). In terms of the gradient, the directional derivative df/ds in the
direction of the unit vector n is df/ds = n - Vf. This directional derivative is the
rate of change of f in the direction n. Thus, the largest directional derivative is in
the direction n = Vf/|Vf | and has magnitude |Vf |. On a two-dimensional con-
tour plot of f (u, v), the vector Vf is perpendicular to the contours of constant f

Table 6.1 Comparison between the exact value of the integral /(x) in (6.6.10) and
one-term and two-term asymptotic approximations to I(x) in (6.6.17) obtained using
the method of steepest descents

One-term asymptotic Two-term asymptotic

In x Exact value of I(x) approximation approximation

0 0.9814 + 0.1467i © ©

2 0.3077 + 0.5419i 0.5000 0.3557 + 0.3927i

4 0.2499 + 0.0643i 0.2500 0.2139 + 0.0982i

6 0.1428 + 0.0423i 0.1667 0.1506 + 0.0436i

8 0.1146 + 0.0227i 0.1250 0.1160 + 0.0245i

10 0.0935 + 0.0143i 0.1000 0.0942 + 0.0157i

12 0.0790 + 0.0100: 0.0833 0.0793 + 0.0109i
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(level curves). Note that the directional derivative in the direction of the tangents
to a level curve is 0.

We will now give a formal proof that constant-phase contours are also steep-
est contours. Let p(t) = ¢(t) + iy(t) be an analytic function of the complex vari-
able ¢t = u + iv. Also, for the moment, we restrict ourselves to regions of the
complex-t plane in which p'(t) # 0.

We define a constant-phase contour of ¢**” where x > 0 as a contour on
which y(¢) is constant. A steepest contour is defined as a contour whose tangent is
parallel to V || = Ve**, which is parallel to V. That is, a steepest contour is
one on which the magnitude of ¢** is changing most rapidly with ¢.

Now we will show that if p(t) is analytic, then constant-phase contours are
steepest contours. If p(t) is analytic, then it satisfies the Cauchy-Riemann equa-
tions

0¢p/0u = dys/ov, 0¢p/ov = —dy/ou.
Therefore,

(0¢/0u)(0/0u) + (0/0v)(0/dv) = O.

However, this equation can be written in vector form as V¢p-Vy =0, so V¢ is
perpendicular to Vi and the directional derivative in the direction of V¢ satisfies
dy/ds = 0. Thus, ¢ is constant on contours whose tangents are parallel to V¢,
showing that constant-phase contours are also steepest contours.

There is a slightly more sophisticated way to establish that constant-phase
contours are steepest contours. It is well known that an analytic function p(t) is a
conformal (angle-preserving) mapping from the complex-t plane (u, v) to the
complex-p plane (¢, ¥) if p'(t) # 0. Therefore, since lines of constant u are perpen-
dicular to lines of constant v, lines of constant ¢ are perpendicular to lines of
constant . But lines of constant ¢ are also perpendicular to steepest curves of ¢.
This reestablishes the identity of steepest and constant-phase contours.

In the above two arguments, it was necessary to assume that p'(t) # 0. In the
second argument, this condition was necessary because a map is not conformal at
a point where p’(t) = 0. Where was this condition used in the first argument?

Saddle Points

When the contour of integration in (6.6.1) is deformed into constant-phase con-
tours, the asymptotic behavior of the integral is determined by the behavior of the
integrand near the local maxima of ¢(t) along the contour. These local maxima of
¢(t) may occur at endpoints of constant-phase contours (see Examples 1 to 3) or
at an interior point of a constant-phase contour. If ¢(t) has an interior maximum
then the directional derivative along the constant-phase contour d¢/ds = |V¢|
vanishes. The Cauchy-Riemann equations imply that V¢ = Vi = 0so p’(t) = O at
an interior maximum of ¢ on a constant-phase contour.

A point at which p’(t) = 0 is called a saddle point. Saddle points are special
because it is only at such a point that two distinct steepest curves can intersect.
When p'(t,) # 0, there is only one steepest curve passing through ¢ and its tangent
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is parallel to V¢. In the direction of V¢, |e**| is increasing so this portion of the
curve is a steepest-ascent curve; in the direction of —V¢, |e*| is decreasing so
this portion of the curve is a steepest-descent curve. On the other hand, when
p'(to) = O there are two or more steepest-ascent curves and two or more steepest-
descent curves emerging from the point ¢,.

To study the nature of the steepest curves emerging from a saddle point, let us

study the region of the complex-¢ plane near ¢,.

Example 4 Steepest curves of e’ near the saddle point t = 0. Here p(t) = t>. Observe that
p’'(t) = 2t vanishes at t = 0, which verifies that 0 is a saddle point. We substitute t = u + iv and
identify the real and imaginary parts of p(t):

p(t)=u? — v+ 2iuw,  P(t)=u? — 0%  Y(t) = 2uv.

Since p(0) = 0, the constant-phase contours that pass through t = 0 must satisfy y(t) = O every-
where. The constant-phase contours u = 0 (the imaginary axis) and v = O (the real axis) cross at
the saddle point t = 0.

All four curves that emerge from ¢ = 0, (a) u = 0 with v positive, (b) u = 0 with v negative, (c)
v = 0 with u positive, and (d) v = 0 with u negative, are steepest curves because p’(t) # 0 except at
t = 0. Which of these four curves are steepest-ascent curves and which are steepest-descent
curves? On curves (a) and (b), ¢(t) = —v?, so ¢ is decreasing away from t = 0; these curves are
steepest-descent curves. On curves (c) and (d), (t) = u?,so0 ¢ is increasing away from t = O; these
curves are steepest-ascent curves. A plot showing these steepest-ascent and -descent curves as well
as the level curves of ¢ away from t = 0 is given in Fig. 6.7.

Example 5 Steepest curves of e "' near the saddle point t = 0. Here p(t) = i cosh t, so p'(t) =
i sinh t vanishes at t = 0. If we substitute t = u + iv and use the identity

cosh (u + iv) = cosh u cos v + i sinh u sin v,
we obtain the real and imaginary parts of p(t):
¢(t) = —sinhusinv,  Y(t) = cosh u cos v.

Since p(0) = i, the constant-phase contours passing through t = 0 must satisfy y(t) = Im p(t) = 1.
Thus, the constant-phase contours through t = 0 are given by

coshucosv=1

Other constant-phase contours (steepest-descent and -ascent curves) are given by coshucosv = ¢,
where ¢ is a constant. On Fig. 6.8 we plot the constant-phase contours for various values of c.
Observe that steepest curves never cross except at saddle points.

Example 6 Steepest curves of e**™ '~ near the saddle point at t = 0. Here p(t) = sinh t —t, so
p'(t) = cosh t — 1 vanishes at t = 0. Note that p”(t) = sinh ¢ also vanishes at 0 and that the lowest
nonvanishing derivative of p at t = 0 is p”(t). We call such a saddle point a third-order saddle
point. At t = 0 six constant-phase contours meet. To find these contours we substitute t = u + iv
and identify the real and imaginary parts of p:

p = ¢ + iy = (sinh u cos v — u) + i(cosh u sin v — v).

But p(0) = 0. Thus, constant-phase contours passing through t = 0 satisfy cosh u sin v — v =0.
Solutions to this equation are v = 0 (the u axis) and u = arc cosh (v/sin v).

1In Prob. 6.61 you are asked to verify that (a) a total of six steepest paths emerge from ¢ = 0;
(b) paths emerge at 60° angles from adjacent paths; (c) as t moves away from 0, the paths
alternate between steepest-ascent and steepest-descent paths; (d) the paths approach oo,
+ 00 + im, oo — in. All these results are shown on Fig. 6.9.
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Figure 6.7 Steepest curves of e’ near the saddle point at ¢t = 0 in the complex-t plane. The steepest
curves satisfy uv = constant. The level curves of ¢ satisfy u> — v? = constant and are orthogonal to
the steepest curves.

Example 7 Steepest curves of e*®*"*~*/? near the saddle point at t = 0. Here p(t) = cosh t —
t2/2. Note that p'(t), p”(t),and p”(t) all vanish at t = 0. The first nonvanishing derivative of p(t) at
t =0 is d*p/dt*, so we call t = 0 a fourth-order saddle point. Eight constant-phase curves meet
at t = 0. Note that

p(t) = cosh u cos v + (v — u?)/2 + i(sinh u sin v — uv).

Thus, constant-phase contours emerging from ¢t = 0 satisfy ¢ = sinh u sin v — uv = 0. Solutions
to this equation are u = 0 (the imaginary axis), v = O (the real axis), and (sinh u)/u = v/sin v.

In Prob. 6.62 you are asked to verify the results on Fig. 6.10. Namely, that (a) eight steepest
paths emerge from ¢ = 0, all equally spaced at 45° from each other; (b) as t moves away from 0,
the paths alternate between steepest-ascent and steepest-descent paths; (c) the four steepest-
ascent paths lie on the u and v axes; (d) the four steepest-descent paths approach +oo + im,
+oo —im

Steepest-Descent Approximation to Integrals with Saddle Points

We have seen that by shifting the integration contour so that it follows a path of
constant phase we can treat an integral of the form in (6.6.1) by Laplace’s method.
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Figure 6.8 Constant-phase (steepest) contours of exp (ix cosh t) in the complex-(t = u + iv) plane.
Constant-phase contours satisfy (cosh u) (cos v) = ¢, where c is a constant. Saddle points lying at
t =0 and t = tin are shown.

What happens when the constant-phase contour passes through a saddle point?
In the following examples we encounter this situation.

Example 8 Asymptotic expansion of J(x) as x - + co. A standard integral representation for
Jo(x) [see (6.5.13)] is Jo(x) = [¥%,, cos (x cos B) d6/n, which can be transformed into
l in/2
Jo(x) = Re — dt e coh! (6.6.18a)
LAY

by substituting t = if.

We can certainly use the method of stationary phase to find the leading behavior of this
integral as x — + oo (see Prob. 6.54). However, it is better to use the method of steepest descents
to find the higher-order corrections to the leading behavior. (Why?)

To apply the method of steepest descents we extend the contour to infinity. Note that the

integrals
1 —in/2
— dt e =ht (6.6.18b)

MY o —in2
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Figure 6.9 Steepest curves of exp [x(—t + sinh t)] near the third-order saddle point at t = 0. The plot
indicates that three steepest-descent curves and three steepest-ascent curves meet at t = 0.
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Figure 6.10 Steepest curves of exp [x(—4t? + cosh t)] near the fourth-order saddle point at t = 0. The
graph shows that four steepest-descent curves and four steepest-ascent curves meet at ¢t =0. In
Example 12 the structure of the saddle point is the same as the one in this graph shifted by in;
the steepest-descent curve used in Example 12 consists of the curves in the third and fourth quadrants
of this figure.
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Figure 6.11 To find the asymptotic behavior of Jy(x) as x - +co we first represent J,(x) as an
integral along the special contour in (6.6.18a, b, c). Second, we observe that any Sommerfeld contour
C from —o0 — in/2 to +co + im/2 is equally good. Third, to approximate the integral in (6.6.19) we
choose that Sommerfeld contour which is also a path of steepest descent through the saddle point at
t=0.

where the contour extends along a line parallel to and below the real axis, and

1 potim2
— dt ¢ osh ' (66180)
I 2

where the contour extends along a line parallel to and above the real axis, are convergent and
pure imaginary (see Prob. 6.63). Thus, we have constructed the rather fancy represen tation

1
Jolx)=Re — | dreixcone, (6.6.19)
c

where C is any contour which ranges from —oo — in/2 to + o0 + in/2 (see Fig. 6.11). Such a
contour is called a Sommerfeld contour.
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From here on the steepest-descent analysis is easy because there is a curve of constant phase
which ranges from — oo — in/2 to + o0 + in/2 (see Fig. 6.8)! We have seen in Example 5 that this
curve passes through a saddle point at t = 0. The equation for this curve is cosh u cos v = 1. Note
that | e “**"!| attains its maximum value on the contour at the saddle point at t = 0. Thus, we know
from our study of Laplace’s method that as x » + co the entire asymptotic expansion is deter-
mined by a small neighborhood about ¢ = 0.

To find the leading behavior of J(x) as x — 0o, we approximate the steepest-descent path in
a small neighborhood of t = 0 by the straight line t = (1 + i)s (s real) and approximate cosh ¢
near s = 0 by cosh t ~ 1 + is? (s » 0). Thus,

Jo(x) ~ Re [(1 + i)/in] [ e " ds,  x— +o0.

s=-¢
Extending the limits of integration to oo and evaluating the integral gives

Jo(x) ~ Re [(1 + i)/in)e™\/n/x = \/2/nx cos (x — m/4),  x— +oc0.

To find the full asymptotic expansion of J(x) as x — + c0, we use Watson’s lemma. It is
simplest to parametrize the integration path in terms of ¢ = Re p(t). We know that along the
steepest-descent contour p(t) =i + ¢(t), where ¢(t) is real and ranges from ¢ =0 at t =0 to
¢=—o0 at t = +(0 +in/2). Also, we have ¢(t)=icosht—i so dp =isinhtdt. Thus,

= d¢/i,/ — ¢* — 2i¢. Substituting this result into (6.6.19) and replacing ¢ by — ¢ gives

1x—in/4 ) 172
Jox) = Re & -—¢—e“°‘( “”) .
T

\/2_"0 \/E 1_7

To apply Watson’s lemma, we expand the square root:
ib\ -~ 12
p_f) -
2 "

e:x-nl/4 © [r'(n+_21)]2 i\"
Jol)~ Re =5 /2 3 S () -

Thus, the full asymptotic expansion of Jy(x) is given by

(i¢/2yT(n + $)
0 n! T'(})

MS

1

and integrate term by term:

Jo(x) = \/xz"[a(x) cos (x — n/4) + B(x) sin (x — m/4)), (6.6.20)

where a(x)~:0[—llj(k§:T!%%];)—f)—}l—): X — + 00,

[Tk + HP(= 1)
and — r . N .
kZO Ak ) @ X7

The trick of adding the contour integrals (6.6.18b,c) to (6.6.18a) to derive (6.6.19) could have
been avoided by deforming the contour from —in/2 to in/2 into three constant-phase contours:
Ciit=—in/24+u(—o0 <u<0);C,:coshucosv=1;and C;:t =in/2 +u (0 <u < ). The
contributions from C, and C, cancel exactly in this problem.

Example 9 Asymptotic expansion of T'(x) as x - +oo. In Example 10 of Sec. 6.4 we used
Laplace’s method to show that

I(x) ~ x*e~*/2n/x (6.621)
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[see (6.4.39)]. In this example we use the method of steepest descents to rederive this result from a
complex-contour integral representation of I'(x) [see Prob. 2.6(/)]:
L_ L wa (6622
I(x) 2mi'e ’ 622)

where C is a contour that begins at t = — oo — ia (a > 0), encircles the branch cut that lies along
the negative real axis, and ends up at — oo + ib (b > 0) (see Fig. 6.12). The branch cut is present
when x is nonintegral because t~* is a multivalued function. The advantage of (6.6.22) over the
integral representatior. used in Example 10 is that it converges for all complex values of x and not
just those x for which Re x > 0. Nevertheless, in this example we will only investigate the
behavior of I'(x) in the limit x - +co.

We begin our analysis by making the same substitution that was made in Example 10 of Sec.
6.4; namely, t = xs. This substitution converts the integrand from one that has a movable saddle
point to one that has a fixed saddle point. (Why?) The resulting integral representation is

1 1 :
= d x(s=1In S)_ 6623
[(x) 2mix*~? JC Se ( )
w21
Branch cut ’
I |
- 1
- .\/ 2
Contour Cin (6.6.23) Complex-s plane
_"/2 -
T
< Down 1
Cintc steepest
descent contour 1 Saddle
point
Branch cut
1 1 1 " 1 " I ]
f T T T + +—q
-4 -3 -2 -1 2
“+
Complex-s plane
< Down [

- -

Figure 6.12 To find the asymptotic behavior of I'(x) as x — + o0, we represent I'(x) as the integral
in (6.6.23) along a contour C in the complex-s plane which goes around the branch cut on the
negative real axis. Then we distort C into a steepest-descent contour which passes through the saddle
point at s = 1.
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For this integral p(s) = s — In s. Thus, p’(s) =1 — 1/s and p’ = 0 when s = 1. So there is a simple
(second-order) saddle point at s = 1.

To ascertain the structure of the saddle point we let s = u + iv and identify the real and
imaginary parts of p: p(s)=u — In \/u? + v* + i(v — arc tan v/u). At s = 1, p = 1. Therefore,
paths of constant phase (steepest curves) emerging from s = 1 must satisfy

v — arc tan v/u = 0.

There are two solutions to this equation: v = 0 and u = v cot v. These two curves are shown on
Fig. 6.12. In Prob. 6.64 you are asked to verify that (a) the steepest-descent curves are correctly
shown on Fig. 6.12; (b) as s moves away from s = 1, steepest-descent curves emerge from s = 1
initially parallel to the Im s = v axis; (c) the steepest-descent curves cross the v axis at +in/2 and
approach s = — oo + im.

To use the method of steepest descents, we simply shift the contour C so that it is just the
steepest-descent contour on Fig. 6.12 which passes through the saddle point at s = 1. Let us
review why we choose such a contour. In general, we always choose a steepest-descent contour
because on such a contour we can apply the techniques of Laplace’s method directly to complex
integrals. If the steepest-descent contour is finite and does not pass through a saddle point, then
the maximum value of || must occur at an endpoint of the contour and we need only perform
a local analysis of the integral at this endpoint. However, in the present example the contour has
no endpoint and is infinitely long. It is crucial that it pass through a saddle point because |e**|
reaches its maximum at the saddle point and decays exponentially as s — oo along both of the
steepest-descent curves. If there were no saddle point, then, although [e**| would decrease in one
direction along the contour, it would increase in the other direction and the integral would not
even converge!

Now we proceed with the asymptotic expansion of the integral in (6.6.23). We can approxi-
mate the steepest-descent contour in the neighborhood of s = 1 by the straight line s = 1 + iv.
This gives the Laplace integral

1 1 o

[(x)  2mx ! [ do =D o b0,
x ax* T,

which we evaluate by letting ¢ — co:

1 1 e
m~F\/—;\/§E X— +00.

We thereby recover the result in (6.6.21).

Example 10 Steepest-descents approximation of a real integral where Laplace’s method fails. In
this example we consider the real integral

.1
I(x)=| dte=** cos (5xt — xt*) (6.6.24)

‘o
in the limit x — + co. This integral is not a Laplace integral because the argument of the cosine
contains x. Nonetheless, one might think that one could use the ideas of Laplace’s method to
approximate the integral. To wit, one would argue that as x — + oo, the contribution to the
integral is localized about x = 0. Thus, a very naive approach is simply to replace the argument of

the cosine by 0. If this reasoning were correct, then we would conclude that

1

I(> ~‘ dt —dxe? —
() Jo ¢ 16x

T xo o (WRONG)

This result is clearly incorrect because e~ does not become exponentially small until ¢ is
larger than 1/\/;. Thus, when ¢ ~ 1/\/§ (x = +00), the argument of the cosine is not small. In
particular, the term 5xt is large and the cosine oscillates rapidly. This suggests that there is
destructive interference and that I(x) decays much more rapidly than ./n/16x as x — + co.
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Can we correct this approach by including the 5xt term but neglecting the xt* term? After
all, when ¢ lies in the range from 0 to 1/\/;, the term xt> — 0 as x — + o0. Thus, xt* does not even
shift the phase of the cosine more than a fraction of a cycle. If we were to include just the 5xt term,
we would obtain

1
I(x) ~ ' dte™** cos (5xt), x— + 0o,
‘0

@
~ [ dte™** cos (5xt), X — +o00,
‘o

€GO
% [ d[e—axﬂ +51xt

T-w

1 o~ X(2=5/4)1-25x/16
2

Bl

J- dt
Jmjx e 25X1E X = + 0. (WRONG)

Although this result is exponentially smaller than the previous wrong result, it is also wrong! It is
incorrect to neglect the xt* term (see Prob. 6.65).

But if we cannot neglect even the xt? term, then how can we make any approximation at all?
It should not be necessary to do the integral exactly to find its asymptotic behavior!

The correct approach is to use the method of steepest descents to approximate the integral
at a saddle point in the complex plane. To prepare for this analysis we rewrite the integral in the

following convenient form:
1

I(X) = % | dt e—4x11 + Sixt —ixtd
-1
1
=1de 2 J dr ¥, (6.6.25)
-1
where p(t)= —(t—i)? =t — i) (6.6.26)

Our objective now is to find steepest-descent (constant-phase) contours that emerge from
t=1and t = —1, to distort the original contour of integration t: —1 — 1 into these contours,
and then to use Laplace’s method. To find these contours we substitute ¢ = u + 1w and identify the
real and imaginary parts of p:

plt)=¢ + i
= —v® +4v? — S+ 3u?v — 4u® + 2 +i(3uv? — 8uv + Su — u?). (6.627)
Note that the phase of y =Imp at t=1 and at t= —1 is different: Im p(—1)= —4,
Im p(1) = 4. Thus, there is no single constant-phase contour which connects t = —1tot = 1.
Our method is similar to that used in Examples 1 and 2. We follow steepest-descent
contours C, and C, fromt = — 1 and from t = 1 out to co. Next, we join these two conto urs at co

by a third contour C, which is also a path of constant phase. C, must pass through a saddle point
because its endpoints lie at co; otherwise, the integral along C, will not converge (see the
discussion in Example 9).

There are two saddle points in the complex plane because p'(t) = —2(t — i) — 3i(t — 1)* =0
has two roots, t = i and t = 5i/3. The contour C, happens to pass through the saddle pont at i.
On Fig. 6.13 we plot the three constant-phase contours C,, C,, and C,. It is clear that the original
contour C can be deformed into C, + C, + C,. (In Prob. 6.66 you are to verify the results on Fig.
6.13.)

The asymptotic behavior of I(x) as x — +co is determined by just three points on the
contour C, + C, + Cj: the endpoints of C, and C, at t = —1 and at t = +1 and the saddle
point at i. However, the contributions to I(x)at t = +1 are exponentially small compared with
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Figure 6.13 To approximate the integral in (6.6.25) by the method of steepest descents we deform
the original contour connecting the points't = —1 to t = 1 along the real axis into the three distinct
steepest-descent contours above, one of which passes through a saddle point at ¢t =i. Steepest-
ascent and -descent curves near a second saddle point at t = 5i/3 and steepest-ascent curves going
from 1 and —1to —ico are also shown, but these curves play no role in the calculation.

that at ¢t = i (see Prob. 6.67). Near t = i we can approximate the contour C by the straight line
t =i+ uand p(t) by p(t) ~ —u? (u— 0). Thus,

l(x)~%e’z‘[ e ™ du,  x— +oo,
-
~te~2= /n/x, X = + 0. (6.6.28)

This, finally, is the correct asymptotic behavior of I(x)! This splendid example certainly shows the
subtlety of asymptotic analysis and the power of the method of steepest descents.

Example 11 Steepest-descents analysis with a third-order saddle point. In Example 5 of Sec. 6.5
and Prob. 6.55 we showed that

1 1
Jx(x)~—2’2/33'”61'(3)):'”3, X = +00. (6.6.29)
n

Here we rederive (6.6.29) using the method of steepest descents.
We begin with the complex-contour integral representation for J (x):

1
J(x) == dtexsichiv 6.6.30
)= f dee (6630)
where C is a Sommerfeld contour that begins at + oo — in and ends at + oo + im. Setting v = x
gives

1 .
x)=—| dtesiohiTo, 6.6.31
T =5 | e (6631)
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For this integral p(t) = sinh ¢ — ¢ has a third-order saddle point at t = 0.

We have already analyzed the steepest curves of this p(t) in Example 6 (see Fig. 6.9). Note
that we can deform the contour C so that it follows steepest-descent paths to and from the saddle
point at t = 0.

The contribution to J,(x) as x — + co comes entirely from the neighborhood of the saddle
point. In the vicinity of the saddle point we can approximate the contours approaching and
leaving t = 0 by the straight lines ¢t = re™""3 and t = re>. Substituting into (6.6.30) gives

1 ° . 1 ;
J(x) ~ e [ dre™it3g=xrl6 4 o J dre™3e =6 x too.

“r=c T =0
To evaluate these integrals, we replace ¢ by co:

PLENPETLE

J(x) ~ dre=*l®, x— + 0,

2mi =0

Sm (7"'/3)(6/ )1/3 jm e " dr, X = +00.
0

But [§ e™” dr =1 2 e7557 %3 ds = {['(4). Thus,

=L ey

which reproduces the result in (6.6.29).

Example 12 Steepest-descents analysis with a fourth-order saddle point. What is the leading
asymptotic behavior of the real integral

I(x) = j dt cos (xmt)e™ xcosht+632) (6.632)
o

as x - +00? To analyze I(x) we first rewrite the integral as

@
I(x)= %J lint = cosht~12/2)

-

= Lexm2 J'm dt exleosh (¢ im =@t =im2/2] (6633)
— o
For this integral p(t) = cosh (t — in) — (t — in)*/2 has a fourth-order saddle point at t = in (see
Example 7). The steepest-descent contours from this saddle point are drawn in Fig. 6.10 (the
saddle point in Fig. 6.10 is shifted downward by ).

To approximate I(x) we shift the original integration path t: — o0 — + oo from the real axis
into the complex plane so that it follows a steepest-descent curve passing through the saddle
point. The asymptotic behavior of I(x) is completely determined by the contribution from the
saddle point. In the neighborhood of the saddle point at in, we can approximate the steepest-
descent contour by the straight lines t =in + re'”* to the left of the saddle point and
t = in + re”™* to the right of the saddle point. In terms of r, (6.6.33) becomes

0 e
I(x) ~ L= lj oinl4 drex(l—ﬁ[24)+J e i dpex1-r2a) x— +00,
-t 0

L
= e *M/2+x cog (1:/4)I dre™ 128 X — +00.
)

But [§dre ™ =4 [§ drr~¥% " = {T(}). Thus, we obtain the final result that

I(x) ~ 4=~ D(6/x) V4T (4). (6.634)
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This result could not have been obtained by performing a Laplace-like analysis of the real
integral in (6.6.32). Suppose, for example, we argue that as x — + co the contribution to (6.6.32)
comes entirely from the neighborhood of the origin ¢ = 0. Then it would seem valid to replace
cosh t by 1 + t%/2, the first two terms in its Taylor series. If we do this, we obtain an integral
which we can evaluate exactly:

@ .

j dt cos (xnt)e-xtlﬂl) = _zl_ l dt enxm—x(l+11)
o i
@

- %‘[ dt e~ U—1m D2 x(1+xY4)

~®

=1 /n/x e~ =1 +mH),

But this does not agree with (6.6.34) and is therefore not the asymptotic behavior of I(x) as
x — +oco! What is wrong with this argument? (See Prob. 6.68.)

Steepest Descents for Complex x and the Stokes Phenomenon

Until now, x in (6.6.1) has been treated as a large real parameter. However, the
method of steepest descents can be used to treat problems where x is complex. As
we have already seen in Secs. 3.7 and 3.8, an asymptotic relation is valid as x — oo
in a wedge-shaped region of the complex-x plane. At the edge of the wedge, the
asymptotic relation ceases to be valid and must be replaced by another asymptotic
relation. This change from one asymptotic relation to another is called the Stokes
phenomenon.

The Stokes phenomenon usually surfaces in the method of steepest descents in
a relatively simple way. For example, as x rotates in the complex plane, the
structure of steepest-descent paths can change abruptly. When this happens, the
asymptotic behavior of the integral changes accordingly. The integral representa-
tion of Ai (x) behaves in this manner (see Prob. 6.75). The Stokes phenomenon
can also appear when the contribution from an endpoint of the contour suddenly
becomes subdominant relative to the contribution from a saddle point (or vice
versa). We consider this case in the next example.

Example 13 Reexamination of Example 10 for complex x. In this example we explain how the
Stokes phenomenon arises in the integral (6.6.25). It is essential that the reader master Example
10 before reading further.

The integral I(x) in (6.6.25) exhibits the Stokes phenomenon at arg x = *arctan § =
26.57° and at +n. When |arg x| < arc tan 4, the contribution to I(x) from the saddle point
at t =i dominates the endpoint contributions. As in (6.6.28), this gives

I(x) ~ e~ **/n/x, x— o0, |arg x| <arc tan }. (6.6.35)
When arc tan § < arg x < =, the endpoint contribution from t = — 1 dominates. We obtain (see
Prob. 6.69)
i—4
I(x) ~ —68—8"“* DX x—oco,arctani<argx <m (6.6.36)
X

When —7 < arg x < —arc tan 4, the endpoint contribution from ¢ = 1 dominates, giving

i+4
I(x) ~ _%87 e x5 00, —m<argx < —arc tan §. (6.6.37)
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It is interesting to see what happens to the steepest-descent contours as x is rotated into the
complex-x plane. We have plotted the steepest-descent contours for I(x) for arg x = 0°, 30°, 75°,
and 135° in Figs. 6.13 to 6.16. Observe that as arg x increases from 0° to 75°, the contours through
the endpoints at ¢t = +1 and the saddle point at ¢t =i tilt and distort slightly. Note that the
asymptotes of these contours at co rotate by —(arg x)/3 as arg x increases. This is so because

f Complex-t plane

Figure 6.14 Steepest-descent path for I(x) in (6.6.25) when arg x = 30°. (See Fig. 6.13.)
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Figure 6.15 Steepest-descent path for I(x) in (6.6.25) when arg x = 75°.
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Figure 6.16 Steepest-descent path for I(x)in (6.6.25) when arg x = 135°. Note that the steepest-descent
path no longer passes through the saddle point at t = i as it does in Figs. 6.13 to 6.15.

Im [xp(t)] must be constant at ¢t = co. The constancy of Im [xp(t)] on the steepest-descent con-
tours implies that the endpoint contours passing through t = + 1 rotate by —arg x neart = +1
and that the contour through t =i rotates by —(arg x)/2 near ¢t = i. There is no abrupt or
discontinuous change in the configuration of the steepest-descent contours as arg x increases past
arc tan 1. In this example the Stokes phenomenon is not associated with any discontinuity in the
structure of the steepest-descent path. It occurs because the contribution from the saddle point
becomes subdominant with respect to the contribution from the endpoint as arg x increases past
arc tan %.

When arg x reaches n — arc tan 2 = 116.57°, there is a discontinuous change in the
steepest-descent path for I(x) (see Prob. 6.69). As illustrated in Fig. 6.16, when arg x = 135°, the
steepest-descent contour no longer passes through the saddle point at ¢ = i. When arg x >
116.57°, the steepest-descent contours from t = +1 meet at 00, so it is no longer necessary to join
them by a constant-phase contour passing through the saddle point at i. The abrupt disappear-
ance of the saddle-point contour from the steepest-descent path when arg x increases beyond
116.57° does not affect the asymptotic behavior of I(x) because the saddle-point contribution
from ¢ = i is subdominant when arc tan § < |arg x| < .

6.7 ASYMPTOTIC EVALUATION OF SUMS

In this section we discuss methods for finding the asymptotic behavior of sums
which depend on a large parameter x. We consider four methods in all: truncating
the sum after a finite number of terms, approximating the sum by a Riemann
integral, Laplace’s method for sums, and the Euler-Maclaurin sum formula. The



