
Part III: Biological Physics and Complex Fluids (Michaelmas, 2016)
R E Goldstein (02/10/16)

Example Sheet #1

1. Internal energy of a liquid. (Rowlinson & Widom) Suppose there is a pairwise interaction
potential u(r) acting between molecules in a liquid of uniform density ρ, and that potential
has a finite range d, so u(r) = 0 for r > d. Consider a particle P in the vicinity of the fluid-air
interface, at some depth r below. Clearly, if r > d there is no net force on the particle, due to
its spherically-symmetric environment. Find the net force F (r) on the particle for r < d, and
thereby deduce the work needed to remove the particle from the fluid. Hence conclude that
the internal energy per particle can be written as
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2. Van der Waals interactions between objects. Assume that the fundamental pairwise inter-
action between individual atoms is V (r) = −C/r6. Calculate the following:
(a)The interaction between two infinite slabs of thicknesses δ1 and δ2, a distance d apart.
(b) The limiting behaviour of the interaction between two spheres of radius R, whose distance
d of closest approach satisfies d� R. You may wish to consult Hamaker’s paper.

3. Electrostatic contributions to elastic energy of surfaces. Using Debye-Hückel theory, calcu-
late the following:
(a) The electrostatic potential inside and outside of an infinite cylinder of radius R and a
sphere of radius R when the surfaces have a fixed charge density σ0. Calculate the associated
electrostatic energies.
(b) By comparing the energies from (a), along with that of a plane with charge density σ0, in
the regime such that the screening length λDH � R, where R is the cylinder or sphere radius,
deduce the electrostatic contribution to the elastic modulus k, Gaussian curvature modulus
kG, and spontaneous curvature H0 in the Helfrich elastic energy
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where H = (1/R1 + 1/R2)/2 is the mean curvature (with R1 and R2 the principal radii of
curvature), and K = 1/R1R2 is the Gaussian curvature.
(c) Estimate k, kG, and the spontaneous radius R0 = 1/H0 for typical values of σ0.

4. Interaction of charged surfaces with nonuniform charge density. Two parallel charged,
planar, laterally-infinite membranes are located at z = ±d/2. The upper one has charge density
σ+ = α cos(kx), while the lower has σ− = α cos(kx + θ), where θ is a constant phase shift.
Within Debye-Hückel theory, find the electrostatic energy as a function of θ by computing the
electrostatic potential φ in the region between the sheets. Find the value of θ that minimizes
the energy, averaged over one wavelength of the charge modulation, and explain the physical
content of this result.

5. The Poisson-Boltzmann equation in one dimension. Here we explore the basic features of
the nonlinear theory.
(a) Find the electrostatic potential that satisfies the Poisson-Boltzmann equation for a 1 : 1
electrolyte with mean concentration c,

d2φ

dz2
− 8πce

ε
sinh (βeφ) = 0 ,
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away from a surface with charge density σ0.
(b) Find the relationship between the surface charge density and the surface potential, and
thus calculate the electrostatic free energy of that surface.
(c) Generalize (a) and (b) to the case of two parallel surfaces, and thus find the energy of
interaction as a function of separation. Compare with the weak-field limit.
(d) Combine these results with those of Problem 2 to obtain the complete DLVO potential of
interaction of two membranes. Plot the potential for a range of relative strengths of the van
der Waals and electrostatic energies and deduce the existence of a barrier to flocculation for a
range of parameter values.

6. Brownian motion with inertia. Here we generalize the Langevin equation discussed in
lecture to a particle with inertia.
(a) Consider the Langevin equation for a single particle of mass m, drag coefficient γ and
random forcing A′(t),

m
du

dt
= −γu + A′(t) . (1)

Assume the random force has zero mean and a variance < A′(t) ·A′(t′) > that is a function
φ(|t − t′|) decaying very rapidly with t − t′, satisfying

∫∞
−∞dyφ(y) = m2τ . If u(0) = u0 and

r(0) = r0 are the initial velocity and position, solve (1) to obtain U ≡ u(t)−u0e
−ζt formally in

terms of A, where ζ = γ/m and A = A′/m. From this deduce the variance 〈U2〉 and thereby
determine τ from equipartition.

In order to evaluate higher moments of U, assume that the random process A(t) is Gaussian,
so 〈A(t1)A(t2) · · ·A(t2n+1)〉 = 0, and

〈A(t1)A(t2) · · ·A(t2n)〉 =
∑

all pairs

〈A(ti)A(tj)〉〈A(tk)A(tl)〉 · · ·

Considering carefully the number of pairs in the above sum, show that the moments satisfy

〈U2n+1〉 = 0 〈U2n〉 = (2n− 1)!!〈U2〉n

and hence that the probability distribution of U is Gaussian,

W (u, t;u0) =

[
m

2πkBT (1− e−2ζt)

]3/2
exp

[
− m|u− u0e

−ζt|2

2kBT (1− e−2ζt)

]
.

Integrate the equation for u to obtain the position vector r. Find the mean and variance
of r. Examine the short and long-time behaviour and explain the distinction between the two.

7. The wormlike chain. As we saw in lecture, the wormlike chain is perhaps the simplest
model of a polymer that accounts for its bending elasticity.
(a) A wormlike polymer of contour length L is subject to an external force f acting at its two
ends, directed along the z axis. The effective energy is

E =
1

2
A

∫ L

0

dsκ2 − fz ,

where A is the bending modulus and z is the end-to-end extension. Consider the high-force
limit, where the chain’s configuration deviates only slightly from a straight line. Then the
tangent vector t̂ fluctuates only slightly around ẑ, the unit vector in the z direction. If we take
tx and ty as independent fluctuating components, the constraint |̂t| = 1 shows that tz deviates
from unity quadratically in the vector t⊥ ≡ (tx, ty). Show that to quadratic order

E ' 1
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∫
ds
[
A(∂st⊥)2 + ft2⊥

]
− fL .
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Use equipartition to find the thermal average 〈t2⊥〉, being careful to account for the two
independent components of t⊥. From this, show that in this high-force limit the force-extension
relation takes the form

z

L
= 1− kBT√

4fA
. (1)

Compare this asymptotic result with that for the freely-jointed chain composed of N links,
each of length b.

Calculate the correlation function C(y) = 〈(1/L)
∫ L
0
dst⊥(s) · t⊥(s + r)〉 of the tangent

vector and thereby find the correlation length ξ, the length scale for decay of C(y).

8. A paper from the literature. Read the paper: D.K. Fygenson, J.F. Marko, and A. Libchaber,
“Mechanics of Microtubule-Based Membrane Extension,” Phys. Rev. Lett. 79, 4497-4500
(1997), available on the course website. Explain the origin of the free energy quoted in Eq.
1, the calculation of the buckling force in Eq. 2, the proposed ratcheting mechanism for
microtubule growth, and the essential features of the calculation of the vesicle shapes.
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