
Part III: Biological Physics and Complex Fluids (Michaelmas, 2016)
E Lauga (October 30, 2016)

Example Sheet #2
Work due 7 November 2016, 8.30am; Example class 7 November 2016, 2pm

1. Generalised Newtonian fluid*.
Solve for the velocity profile of a power law fluid (constitutive relationship, η = Kγ̇n−1, γ̇ ≥ 0)
driven by a pressure gradient along a cylindrical circular tube of radius R. Denote the length
of the pipe L and the pressure drop ∆p. Express the mean flow velocity, Ū , as a function of the
magnitude of the wall shear-stress, σw. Express your solution for the flow in a dimensionless
form as u(r)/Ū . Sketch the flow profile for different values of n.

2. Generalised Newtonian fluid.
Show that any generalised Newtonian fluid under steady three-dimensional extension (exten-
sion rate, ε̇ > 0) has an extensional viscosity equal to three times the shear viscosity for a
steady shear flow of the same fluid at shear rate γ̇ = αε̇, for a value of α which you will
determine.

3. Generalised Newtonian fluid.
Two immiscible power-law fluid layers are sandwiched between two plates. The bottom plate
is stationary while the top plate is moving at steady speed V . The bottom fluid layer has
thickness h1 and viscosity η1 = K1γ̇

n1−1 while the top fluid layer, of thickness h2, has viscosity
η2 = K2γ̇

n2−1 (γ̇ ≥ 0). Solve for the steady flow profile between the plates using carefully-
stated boundary conditions (you might introduce Ṽ to denote the velocity at the boundary
between both layers). Solve the case (n1 = 1/2, n2 = 1) exactly.

4. Linear viscoelastic fluid.
A Maxwell fluid with multiple relaxation times has a relaxation modulus given by

G(t) =
∑
i

ηi
λi
e−t/λi . (1)

Calculate G′(ω) and G′′(ω) for this fluid.
For a fluid with many relaxation time scales, the sum in Eq. (1) can be written as a continuum
spectrum as

G(t) =

∫ ∞
0

H(λ)e−t/λ
dλ

λ
, (2)

where the function H is given. Calculate G′(ω) and G′′(ω) for this fluid as integrals of H.
In the special case where H(λ) = H0λ

2
0/(λ

2
0 + λ2), where λ0 is a fixed parameter, evaluate

analytically G′′(ω).

5. Linear viscoelastic fluid*.
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Consider the linear viscoelastic fluid modelled by the spring-dashpot system illustrated in the
figure above. Derive the differential relationship between the overall stress, σ, and overall
shear-rate, γ̇, for such a fluid. Write it in the form

(1 +D)σ = η (1 + L) γ̇, (3)
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where D and L are two differential operators which you will identify and η is a viscosity to be
determined.

6. Objectivity.
Consider a general linear viscoelastic fluid where the deviatoric stress, σ, is linearly related to
the shear-rate tensor, γ̇, as

σ =

∫ t

−∞
G(t− t′)γ̇(t′)dt′.

This fluid undergoes steady shear at rate γ̇ on a planar rotating table. The table is described
by vectors ex and ey and rotates at constant rate Ω along the ez vector such that at t = 0 the
rotating frame coincides with the laboratory frame (e1, e2, e3). Compute the viscosity of the
fluid in the rotating frame and in the laboratory frame and evaluate them at t = 0. Show that
they are not identical in general if Ω 6= 0.

7. Nonlinear constitutive relationships*.
Consider an Upper Convected Maxwell fluid under steady, three-dimensional extension (ex-
tension rate, ε̇ > 0). Compute all components of the stress tensor and determine the value
of the extensional viscosity, ηext. Show that there is a critical extension rate, ε̇, at which the
extensional viscosity blows up.

8. Nonlinear constitutive relationships.
Multiple constitutive models of polymeric fluids exist which involve objective derivatives. One
of them is the Johnson-Segalman-Oldroyd fluid. For this fluid, the relationship between the
deviatoric stress and the shear rate tensor is given by the first-order differential form

σ + λ1
�
σ= η[γ̇ + λ2

�
γ̇], (4)

where the so-called Gordon-Schwalter convected derivative for a tensor σ is defined as

�
σ≡Oσ +

a

2
(γ̇ · σ + σ · γ̇), (5)

where a is a small, nonzero dimensionless parameter. Calculate the steady shear viscosity for
this fluid. What are the conditions on the values of λ1 and λ2 for the fluid to be shear-thinning?

9. A paper from the literature.
Read pages 66-73 of the book chapter: “Dynamics of complex biofluids” by C. Hohenegger
and M. J. Shelley [http://math.cims.nyu.edu/faculty/shelley/papers/HS2011.pdf]

The purpose of this chapter is to demonstrate how to “derive” a constitutive relationship,
instead of postulating it empirically. The final result is 3.27, which you might recognise as the
UCM model studied in class.

What is the physical meaning of Ψ in 3.1 and 3.24? What is assumed about the dumbbell
in order to be able to write 3.13? Explain the meaning of each term in the 3.14. Why is there
an extra stress term in 3.15? What are the meanings of Ẋc and Ṙ in 3.24?
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