
Part III: Biological Physics and Complex Fluids (Michaelmas, 2016)
R E Goldstein (02/10/16)

Example Sheet #3

1. A forced particle. A microsphere of radius a and drag coefficient ζ is constrained to move
along the x-axis, and is acted on by an optical trap which is moving in the positive x-direction
at velocity vT . When the trap is located at a point x0 it exerts a force F (x − x0), so the
overdamped dynamics of the particle is

ζẋ = F (x− vT t) .

Suppose that the trap has compact support, so that F (x) = 0 for x < −XL and for x > XR. If
the trap starts to the left of the particle, find the particle’s net displacement ∆x after the trap
has passed it by, and the time ∆t spent by the particle interacting with the trap. What is the
condition that assures that the particle does not remain trapped as t→∞? Assuming this is
the case, show that whatever the form of F (y) the net displacement is always in the direction
of the trap motion, and suggest a heuristic explanation for this result. Find the asymptotic
behaviour of ∆x for large trap velocities.

The trap is now moved around a circle of radius R� a. Derive the particle’s net rotational
frequency fp as a function of the trap angular frequency fT = vT/(2πR), the displacement ∆x
in each kick, the interaction time ∆t and the potential width 2X0 = XR −XL. Confirm that
in the regime of suitably large trap velocity, which you should define precisely, one obtains the
intuitive result fp ' (∆x/2πR)fT . Specializing to the case of a triangular trapping potential,
with F (y) = F for −X0 < x < 0 and F (y) = −F for 0 < x < X0, obtain an explicit expression
for fp/fc as a function of the two quantities α = X0/(πR) and β = fT/fc, where 2πRfc = F/ζ.

2. Fluctuations. A long cylindrical vesicle of radius R0, aligned along the z-axis, is subject to a
tension σ � κ/R2

0, where κ is the bending modulus. Thus, its energy is well-approximated by
σS, where S is the total surface area of the vesicle. Assuming that fluctuations in the radius
preserve axisymmetry, so the fluctuating radius R(z) does not depend on the cylindrical polar
angle, find the spectrum of thermal fluctuations as a function of the longitudinal wavevector
q, at fixed enclosed volume of fluid. You may take R(z) = ρ0 + uq sin qz, where ρ0 is to be
determined by volume conservation. Explain the significance of your result for qR0 < 1.

A circular inclusion of radius R0 in a lipid membrane consists of a distinct phase from the
surrounding lipids, so there is a line tension γ between the two. Find the spectrum of thermal
fluctuations in the radius, at fixed enclosed area, as above. Explain the significance of the
result for the mode with qR0 = 1.

3. Nonlinear Diffusion. For the nonlinear diffusion equation Ct = D(CpCx)x, where p and D
are strictly positive constants, show that the self similar solution defined in x ≥ 0 of the form

C(x, t) =
M2/(2+p)

(Dt)1/(2+p)
F (ξ), ξ =

x

(MpDt)1/(2+p)

which satisfies
∫∞
0
C(x, t) dx = M , Cx(0, t) = 0 and C(x → ∞, t) → 0 for some constant

M > 0, is given by

F (ξ) =

[
A− pξ2

2(2 + p)

]1/p
, 0 < ξ <

[
2(2 + p)A

p

]1/2
and F = 0 otherwise. For the case p = 1, prove that A = (3/8)1/3.
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4. The Fitzhugh-Nagumo model. The Fitzhugh-Nogumo model for nerve impulse propagation
is given by

ut = uxx + u(1− u)(u− a) + v

vt = bu− cv; (b, c > 0, 0 < a < 1).

(i) Show that the homogeneous system has a stable fixed point for which neither u nor v is
zero. (ii) Seek a travelling wave solution of the equations of the form

u = φ(ξ), v = ψ(ξ), ξ = x− γt.

Deduce the ODEs to be satisfied by φ, ψ. (iii) Verify that if b = c = ψ(0) = 0 then there is a
solution of the form

φ =
1

1 + e−αξ
,

for two possible values of α which should be found. What is the wave speed γ in each case?
In what direction does the wave propagate?

5. Chemotaxis. Consider the chemostatic system

nt = Dnxx + bn(1− n

n0

)− (χ(a)nax)x

at = DAaxx + hn− ka,
where χ(a) = χ0K/(K + a)2. Find a scaling such that this reduces to

u̇ = u′′ + u(1− u)− β
[

uv′

(α + v)2

]′
v̇ = δv′′ + γ(u− v),

where · and ′ refer to differentiation with the scaled t and x respectively, and α, β, γ, δ are
positive constants. Show that the uniform, steady solution u = v = 1 is unstable if

βγ

(1 + α)2
> (
√
γ +
√
δ)2,

and find the wavenumber at which the system first becomes unstable as χ0 is increased from
zero, in the case α = γ = δ = 1.

6. Turing instability. Investigate the possibility of Turing instability for the reaction-diffusion
system.

∂u

∂t
= ∇2u+

u2

v
− bu,

∂v

∂t
= d∇2v + u2 − v.

In particular, find the region of the parameter space (b, d) in which Turing instability can
occur, and give a value for the critical wavenumber at the onset of instability.

7. Phytoplankton-zooplankton. A space-dependent phytoplankton - zooplankton model can be
reduced to the following equations

ut = ∇2u+ u+ u2 − γuv

vt = d∇2v + βuv − v2.
Find the regions in the β − γ plane (a) in which there is a stable, homogeneous state (u0, v0)
in which neither u0 nor v0 is zero and (b) in which that state may be unstable to a Turing
instability. In case (b), for what values of d will the instability occur, and what is the critical
wavenumber for the onset of the instability?
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