
Part III: Biological Physics and Complex Fluids (Michaelmas, 2016)
E Lauga (December 3, 2016)

Example Sheet #4
Work due noon Thursday 19 January 2017;
Example class Monday 23 January 2017, MR12, 2pm.

1. Electro-osmosis.
Consider two identical, parallel conducting plates at y = ±h. An electric field Eextex is applied
in the fluid along the x direction and drives the electro-osmotic flow of an ionic solution of
screening length κ−1.
(a) If both plates are held at potential φ0, calculate the flow between the plates. What does the
flow look like in the limit κh � 1? Find an approximate solution in the limit of overlapping
Debye layers, κh� 1 and interpret physically your result.
(b) How do the results change if the plates are held at opposite potentials so that φ(±h) = ±φ0?

2. Electrophoresis.
(a) Consider two incompressible solutions of Stokes equations with velocities u and û, stress
fields σ and σ̂ and body forces f and f̂ . These solutions are assumed to be taking place in the
same fluid volume V bounded by the same surface S with normal n into the fluid. Prove the
reciprocal theorem for Stokes flows i.e.∫∫

S

û · σ · n dS −
∫∫

S

u · σ̂ · n dS =

∫∫∫
V

f̂ · udV −
∫∫∫

V

f · ûdV. (1)

(b) Apply the theorem using two specific solutions: For the u,σ, f problem consider a rigid
no-slip particle of potential φ0 held in place by an external force and subject to a flow at
infinity U0. For the û, σ̂, f̂ problem consider the same stationary rigid no-slip particle with
same potential where, in that case, an external force F0 is applied to keep it stationary when
subject to an external electric field E0 (denote the field E and the net charge density ρE in
the fluid domain). By carefully paying attention to the contribution of the surface integrals at
infinity, show that

−U0 · F0 =

∫∫∫
V

ρEE · udV. (2)

(c) [Difficult] Show that in the thin Debye layer limit (i.e. κR� 1 where R is any dimension of
the particle), when using the locally-planar solution for the charge density along with a Taylor
expansion for the velocity near S, Eq. (2) becomes

U0 · F0 =
εφ0

µ

∫∫
S

E · σ · ndS. (3)

Using vector calculus, show that this leads to

U0 · F0 = −εφ0

µ
E0 · F0, (4)

and deduce the value of the electrophoretic mobility of the particle.

3. Diffusio-osmosis*.
The reciprocal theorem, Eq. (1), can be used to characterise diffusio-osmotic flow induced
inside micro-channels. Consider a straight two-dimensional channel with walls at y = ±h.
The wall at y = h is a no-slip surface. Due to self-generated chemical gradients along the
surface at y = −h, a slip velocity us = us(x)ex is induced there and we want to compute the

1



resulting two-dimensional flow rate, Q. The slip velocity is assumed to be periodic along x
with period L.
(a) Apply the result of Eq. (1) taking, for the hat problem, the simplest no-slip solution you
know for flow in a two-dimensional channel. Deduce Q as a surface integral on us.
(b) The wall at y = −h generates chemical gradients through the prescribed rate of production
of a chemical species of concentration c as

−D∂c

∂y

∣∣∣∣
x,y=−h

= A(x), (5)

where A is a prescribed periodic function of period L and D is the diffusivity of the species.
The concentration on the upper wall is set to zero, c(x, h) = 0. The chemical species is
assumed to be a solution to the diffusion equation in the channel, ∇2c = 0. The diffusio-
osmotic mobility, M(x), on the wall at y = −h is a prescribed periodic function of period L.
Using a decomposition in complex Fourier series for A and M calculate the flow rate induce in
the channel. Deduce that if M and A are proportional to each other, the flow rate is always
zero.

4. Kinematics of locomotion.
Suppose that an organism swims with velocity, U, and rotation rate, Ω, both of which are
constant when computed in the swimmer’s frame of reference. Show that the trajectories of
the swimmer in the lab frame are in general helices, for which you will explicitly compute the
pitch and radius. Show that depending on the relationship between U and Ω, other types of
trajectories are also possible.

5. Locomotion in isotropic media.
Consider a swimmer whose shape is slender and fully described by the motion of its centerline.
Assume it is located in a hypothetical fluid in which the hydrodynamic force per unit length
resisting the swimmer’s motion, f , is proportional to the local value of its centerline velocity
relative to the fluid, u,

f = −αu, (6)

where α is a constant with dimensions of viscosity. This is a configuration known as “isotropic
drag”. The swimmer centerline is assumed to be inextensible and of total length L, and
is assumed to be of uniform mass per unit length. Show that in that situation, force-free
swimming implies that no instantaneous motion of the swimmer’s center of mass is possible.

6. Locomotion by surface motion.
The integral theorem in Eq. (1) may be exploited in the context of swimming microorganisms.
Consider a spherical organism of radius a, swimming at speed U by instantaneously imposing
a velocity distribution u′ along its spherical boundary (measured in the swimming frame). By
applying the reciprocal theorem to the free-swimming problem (flow u) and to the problem of
solid-body translation at speed V (flow û, which is the standard Stokes drag problem, and for
which σ̂ · n is in fact constant everywhere along the sphere), show that

U = − 1

4πa2

∫
S

u′dS. (7)

7. Artificial chemical swimmer.
Flows induced by diffusio-osmosis may be exploited to design artificial swimmers. Consider a
spherical body of radius a which is chemically active and is able to generate its own chemical
gradient. Assume that outside the diffuse layer, a chemical species of concentration c diffuses
and has a fixed concentration c∞ far from the sphere. Near the spherical surface right outside
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the diffuse layer, the chemical species is produced at a fixed rate in a spatially-dependent (but
axisymmetic) manner written in spherical coordinate as

−Dn · ∇c|r=a = A(θ), A(θ) =
∞∑
n=0

AnPn(cos θ), (8)

where the coefficients An are prescribed, D is the diffusivity and where Pn refers to the Legendre
polynomial of order n. Assume that the local diffusio-osmotic mobility, M , is constant along
the spherical surface and ignore advective transport by the flow so that that c satisfies the
diffusion equation.
(a) Solve for the concentration field.
(b) Deduce the local distribution of tangential diffusio-osmotic velocities induced by the chem-
ical gradients.
(c) Using the result of #7, calculate the value of the swimming velocity of the active particle
as a function of the coefficients An (you will need to look up some properties of Legendre
polynomials).

8. Optimal locomotion*.
In lectures we derived the swimming velocity, U , of an infinite planar flagellum deforming as
a traveling wave. Compute the rate of working, Ẇ , of the flagellum against the fluid per unit
wavelength. Using notation from lectures, show that it can be written as

Ẇ

c⊥ΛV 2
=

ρ

α2
− ρ2

1 + β(ρ− 1)
,

where α = λ/Λ, and where β, ρ and V were defined in lectures.
Using this value for Ẇ , we can define a swimming efficiency, E , as the ratio between the

useful work of translation to the total work, i.e.

E =
c‖ΛU

2

Ẇ
·

Compute the value of E . The result, which is dimensionless, depends only on the values of
ρ, α, and β. Justify why we have α2 ≤ β. Use this inequality to find an upper-bound for E ,
denoted Ẽ , as a function of β and ρ only. Show that there exists a value of β which leads to a
maximum value for Ẽ as Ẽmax = (1−√ρ)2. Compute the typical value for Ẽmax using a good
estimate for ρ. What are the shapes for which this maximum efficiency is obtained? Justify
your answer by examining the inequalities you had to use to derive the maximum efficiency.

9. A paper from the literature.
Read the paper: G. I. Taylor, 1951, “Analysis of the Swimming of Microscopic Organisms”,
Proc. R. Soc. A, 209, pp. 447-461 available on the course website. What is the motivation
behind Eq. (1)? Why is the flow a solution to Eq. (3)? Verify that Eq. (5) is solution to
the equation. Use a symmetry argument to explain why at first order in bσ the swimming
velocity is necessarily zero. The final formula of Eq. (33) predicts swimming in which direction
compared to the direction of propagation of the wave? What is the physics captured by Fig. 4?
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