
Part III: Biological Physics (Michaelmas, 2014) R E Goldstein (05/10/14)

Example Sheet #1

1. Internal energy of a liquid. (Rowlinson & Widom) Suppose there is a pairwise interaction
potential u(r) acting between molecules in a liquid of uniform density ρ, and that potential
has a finite range d, so u(r) = 0 for r > d. Consider a particle P in the vicinity of the fluid-air
interface, at some depth r below. Clearly, if r > d there is no net force on the particle, due to
its spherically-symmetric environment. Find the net force F (r) on the particle for r < d, and
thereby deduce the work needed to remove the particle from the fluid. Hence conclude that
the internal energy per particle can be written as
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2. Van der Waals interactions between objects. Assume that the fundamental pairwise inter-
action between individual atoms is V (r) = −C/r6. Calculate the following:
(a) The interaction between two infinite slabs of thicknesses δ1 and δ2, a distance d apart.
(b) (Hamaker) The interaction between two spheres of radius R, whose distance of closest
approach is d, and the limiting behaviour when d� R.

3. Electrostatic contributions to elastic energy of surfaces. Using Debye-Hückel theory, calcu-
late the following:
(a) The electrostatic potential inside and outside of an infinite cylinder of radius R and thick-
ness d and a sphere of radius R and thickness d when the surfaces have a fixed charge density
σin inside and σout outside. Calculate the associated electrostatic energies.
(b) (Winterhalter & Helfrich) By comparing the energies from (a), along with that of a plane
with charge densities σin on one side and σout on the other, in the regime such that the
screening length λDH � R, deduce the electrostatic contribution to the elastic modulus k,
Gaussian curvature modulus kG, and spontaneous curvature H0 in the Helfrich elastic energy
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where H = 1/R1+1/R2 is the mean curvature (with R1 and R2 the principal radii of curvature),
and K = 1/R1R2 is the Gaussian curvature.
(c) Estimate k, kG, and the spontaneous radius R0 = 1/H0 for typical values of σ0.

4. Interaction of charged surfaces with nonuniform charge density. Two parallel charged,
planar, laterally-infinite membranes are located at z = ±d/2. The upper one has charge density
σ+ = α cos(kx), while the lower has σ− = α cos(kx + θ), where θ is a constant phase shift.
Within Debye-Hückel theory, find the electrostatic energy as a function of θ by computing the
electrostatic potential φ in the region between the sheets. Find the value of θ that minimizes
the energy, averaged over one wavelength of the charge modulation, and explain the physical
content of this result.

5. The Poisson-Boltzmann equation in one dimension and DLVO theory. Here we explore the
basic features of the nonlinear theory and the competition between electrostatics and van der
Waals interactions.
(a) Find the electrostatic potential that satisfies the Poisson-Boltzmann equation for a 1 : 1
electrolyte with mean concentration c,
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away from a surface with charge density σ0.
(b) Find the relationship between the surface charge density and the surface potential, and
thus calculate the electrostatic free energy of that surface. Verify that the proper weak-field
limit is recovered for small σ0.
(c) Combine the weak-field results discussed in lecture for the interaction of two surfaces with
charge density σ0 with those of Problem 2 to obtain the complete energy per unit area of
interaction of two membranes. Plot the potential for a range of relative strengths of the van
der Waals and electrostatic energies and deduce the existence of a barrier to flocculation for a
range of parameter values.

6. Sedimentation. Consider a uniform suspension of small particles of radius a, density ρp
in a fluid of density ρf , at concentration c0 in a chamber of height h. If gravity is now
introduced the particles will settle, producing an equilibrium concentration profile c(z) in which
a gravitational flux balances that of diffusion. Find the normalized equilibrium concentration
profile and explain why it is plausible. Suppose now that the suspended particles are in fact
droplets of fat in water (e.g. milk) with a = 0.5 µm. Assume a density for butterfat of 0.91
g/cm3. Calculate the ratio c(h)/c(0) for a container of height h = 25 cm. Rationalize your
answer.
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