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INTRODUCTION 

This review addresses the origins, uses, and evaluation of constitutive 
equations for the stress tensor of polymeric liquids. The continuum aspects 
of the subject up to about 1986 were summarized by Bird et al (1987a), 
and the molecular aspects by Bird et al (1987b); these two textbooks will 
be referred to as DPL-l and DPL-2. Bird & Ottinger (1992) review 
advances in molecular theory from 1986 to 1991. Here we put into per
spective those aspects of the subject that are of primary concern in fluid 
dynamics, with extra emphasis on noteworthy advances of the past decade. 
A comparison of this review with one prepared by Bird (1976) nearly two 
decades ago will show that much progress has been made in this field and 
that there has been a considerable shift in emphasis, largely because of 
increased computational capability and the influence of developments in 
kinetic theory. 

To solve fluid dynamics problems we use the equations of continuity, 
motion, and energy: 
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170 BIRD & WIEST 

a 

a/ = -(V, pv) 
a 

atPV = -[V, pvv]-Vp-[V' t]+ pg 
a � � 
atPU = -(V, pUv)-(V' q)-(t: Vv)-p(V' v), 

(1) 

(2) 

(3) 

in which p is the density, 
t 

is time, v is the velocity, p is the pressure, t is 
the stress tensor (assumed to be symmetric), g is the gravitational accel
eration, 0 is the internal energy per unit mass, and q is the heat flux. For 
isothermal problems we do not need the energy equation; for multi
component systems we also need equations of continuity for each of the 
chemical species. We use the same conventions for vector/tensor notation 
as in DPL: Results from vector-tensor multiplication that are scalars are 
enclosed in ( ), results that are vectors are enclosed in [ ], and results that 
are second order tensors are enclosed in { }. 

The fundamental problem facing the polymer fluid dynamicist is that in 
the equation of motion and the energy equation an expression is needed 
for the stress tensor in terms of various kinematic tensors. That is, a 
"constitutive equation" for the stres�; is required. 

The problem is similar to that arising in turbulence, where an expression 
is needed for the Reynolds stress tensor. In both fields empirical 
expressions have been suggested, and in both fields mathematical expan
sions have been proposed; also in both areas, certain benchmark experi
ments are used to test the stress tensor expressions. However, in the 
polymer field we have an extra advantage in that we can gain considerable 
important information by using molecular theories. From molecular models 
and kinetic theory (i.e. nonequilibrium statistical mechanics and Brownian 
dynamics) we can get not only suggestions about the form of the stress 
tensor, but also additional informa1:ion about the stretching and orien
tation of the molecules making up the fluid. 

The importance of the molecular viewpoint cannot be overlooked, and 
the fluid dynamicist who fails to take cognizance of the advances in kinetic 
theory limits his ability to solve problems. Why do we need the molecular 
approach? First, the rheological properties of polymer solutions and un
diluted polymers are dependent on the molecular architecture of the con
stituent molecules: molecular weight, chain stiffness, chain branching, 
electrical charge distribution. Second., solute-solvent interactions can play 
a role in the motions of the polymers and affect the macroscopic behavior. 
Third, most polymeric liquids are composed of polymer molecules of 
different lengths; that is, they have a distribution of molecular weights, 
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POLYMER CONSTITUTIVE EQUATIONS 171 

and this "polydispersity" strongly affects the rheological properties and 
therefore the flow behavior. Fourth, in the neighborhood of fluid-solid 
interfaces, the polymer molecules are restricted in their motions, with the 
result that wall effects arise, including solute segregation effects and slip 
effects. And finally, through the molecular theories, one can obtain useful 
relationships between the rheological properties and other physico
chemical properties, such as diffusional, optical, electrical, and thermo
dynamic properties. The Bird & Ottinger (1992) review cites some of the 
key references for these topics. 

The assumption that the stress tensor in Equation (2) is symmetric 
implies that there is no interchange between macroscopic and molecular 
angular momenta. No experiments have been performed on polymeric 
liquids to measure asymmetry of the stress tensor. Almost all kinetic 
theories for polymeric liquids give a symmetrical stress tensor; in those 
few instances where an asymmetric contribution appears, it is found to be 
negligibly small. Anyone wishing to pursue this point further is advised to 
examine the review by Dahler (1965), where key references are cited. 

Several books have appeared in the past decade that deal with consti
tutive equations, rheology, and solution of polymer fluid dynamics prob
lems. Tanner's (1985) textbook shows how to use constitutive equations 
to solve problems of engineering interest. Larson (1988) published a mono
graph dealing solely with constitutive equations. The small monograph of 
Barnes et al (1989) provides a sensible and well-balanced overview of non
Newtonian fluid mechanics, with minimal use of mathematics and careful 
attention to experimental facts. A nice companion volume to this is the 
collection of photographs of rheological phenomena by Boger & Walters 
(1993). Joseph's (1990) book addresses the mathematical techniques of 
solving flow problems with various types of constitutive equations. The 
proceedings of the Xlth International Congress on Rheology (Moldenaers 
& Keunings 1992) give a good presentation of the problems of current 
interest. The book by Dealy & Wissbrun (1990) discusses the use of 
rheology in industry. A new treatise by Beris & Edwards (1994) is con
cerned with the relation between rheology and thermodynamics. The sub
ject of Brownian dynamics simulations of polymers is described in the new 
book by Ottinger (1995). 

The publications of H. Giesekus dealing with constitutive equations 
have often been overlooked because many were written in German. In a 
Festschrift prepared in his honor, a bibliography ofGiesekus's publications 
was given by Winter (1989). Similar bibliographies for J. G. Oldroyd and 
J. G. Kirkwood have been given by Bird (1988). Continuum and molecular 
constitutive equations have been reviewed by Jongschaap (1990) with 
particular reference to the thermodynamics of irreversible processes. Tanner 
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172 BIRD & WIEST 

(1988) has given an overview of constitutive equations of the integral 
type. 

TESTING CONSTITUTIVE EQUATIONS BY 

COMPARISON WITH EXPERIMENT 

All constitutive equations ultimately have to be tested against experimental 
data. There are two kinds of experiments that are currently being used: 
rheometric experiments (carefully designed experiments from which 
"material functions" can be extracted), and benchmark experiments (non
trivial flows suitable fpr testing both numerical methods and constitutive 
equations). 

Rheometric Experiments 

Many experiments of this type are used, as explained in DPL-l (Chapters 
3 and 10) and in other books dealing with rheology. Examples of books 
dealing specifically with the science of rheometry are those by WaIters 
(1975) and Dealy (1982). Meissner (1985) provided a review ofrheometric 
experiments for polymer melts. Here we list just three rheometric experi
ments as examples. 

STEADY SHEAR FLOW In steady shear flow between two parallel planes, 
Vx = yy, one can measure a shear stre�;s Tyx and two normal stress differences 
Txx-'yy and 'yy-'zz; three material functions are then defined by 

Tyx = -11Y (4) 

(5) 

(6) 
The (non-Newtonian) viscosity 11 is positive for all fluids, and it is usually 
found to be a monotonically decreasing function of the shear rate y. The 
first normal-stress coefficient, 'P 1, has been found to be positive for nearly 
all polymeric liquids, and it decreases very rapidly with increasing shear 
rate; fragmentary data on liquid crystals suggest that they may have 
negative 'P 1. The second normal-stress coefficient, 'P 2, has been found to 
be negative and much smaller in magnitude than 'P 1. Measurements of 'P 2 
are quite sparse; the current state of the measurement techniques for 'P 2 
has been described by Ohl & Gleissle (1992). Measurement of'P2 for liquid 
crystalline systems has been discussed by Magda et al (1991). 

SMALL-AMPLITUDE OSCILLATORY SHEARING MOTION In this type of experi
ment a fluid is placed between two closely spaced parallel plates, and one 
of the plates is made to oscillate unidirectionally in its own plane with a 
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POLYMER CONSTITUTIVE EQUATIONS 173 

very small amplitude at frequency w; the velocity gradient is then time
dependent and given by y(t) = yo cos wt, where y0 is the amplitude of the 
velocity gradient. The shear stress 'yx required to produce the motion is 
measured. One can define two material functions r( and r(, both functions 
of the frequency, by 

(7) 

The functions r( and r( are called the components of the complex viscosity, 
1]* = 1'1' - ir(. 

STEADY-STATE ELONGATIONAL FLOW In this rheometric experiment a fluid 
sample is stretched with a constant elongational rate II = dvz/dz, and the 
force required to perform the stretching is measured. From this, one can 
obtain a normal-stress difference. The elongational viscosity, fj, a function 
of the elongational rate, is then defined by 

(8) 

For some fluids it may not be possible to attain a steady-state flow of this 
type. Meissner & Hostettler (1994) discuss a new measuring technique for 
unsteady elongational flows. 

Many other rheometric measurements may be made, including 
responses to step functions in strain, step functions of rate of strain, and 
large amplitude, sinusoidal oscillations. Recoil and creep measurements 
are also made. In addition, it is possible to superpose some of these 
motions and measure still more material functions. 

Nontrivial Flows 

The community of researchers dealing with the development of numerical 
methods for viscoelastic flows agreed on a few "benchmark experiments" 
for concerted attack. These are (see Hassager 1988 for a summary): 

1. Flows with a 4: 1 sudden contraction. 
One computes the pressure drop and the vortex size and shape in the 

flow from a large tube into a small one, or from a large slit to a small 
one, in each case with a sudden contraction of 4: 1 in the cross-sectional 
area. For an example of this kind of calculation see Debbaut et al 
(1988). 

2. Motion of a sphere in a cylinder. 
One computes the drag on the sphere as a function of the Deborah 

number as the sphere moves along the axis of the cylinder. The ratio of 
the radius of the sphere to that of the cylinder is 0.5. A recent study of 
this system (using single and multimode Oldroyd models) is by Becker 
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174 BIRD & WIEST 

et al (1994). See also Zheng et al (1991) for a study using the Phan
Thien-Tanner model. 

3. Flow in a tube of sinusoidally varying cross-section. 
One computes the pressure drop required to cause the fluid to flow 

through the "wiggly-wall tube" as a function of the Deborah number. 
The ratio of the amplitude of the sinusoid to the average radius of the 
tube is 0.1 or 0.4; the ratio of the wavelength to the average tube radius 
is 2. For an example of this flow problem, see Pilitsis & Beris (1989). 

4. Tangential flow between two eccentric rotating cylinders. 
One computes the load and phase angle for specified dimensions and 

ratios of angular velocities (see e,g. King et aI1988). 

These and other flows have been the object of considerable study, and 
the reader is referred to various workshop proceedings in the Journal of 
Non-Newtonian Fluid Mechanics. Considerable progress has been made in 
the past decade in the development of numerical techniques for solving 
the flow problems for nonlinear viscoelastic constitutive equations (see 
Keunings 1990). The bulk of experiments used to compare with numerical 
flow studies have involved polymer solutions; more work needs to be done 
with polymer melts. 

METHODS FOR DEVELOPING CONSTITUTIVE 

EQUATIONS 

Clearly there is an infinite number of possible relations that one could 
propose linking the stress tensor with kinematic tensors, and there is a 
bewildering number of kinematic tensors (strain tensors, rate-of-strain 
tensors, etc) that can be used. Initially, then, one has to narrow the 
field of possible relations by arbitrarily imposing some "admissibility 
conditions"; one such set of conditions was proposed by Oldroyd (1950) 
and refined in a later paper published posthumously (Oldroyd 1964) (see 
also DPL-I, Section 9.1). Briefly, for incompressible fluids Oldroyd pro
posed to restrict consideration to models that are (a) form invariant under 
a change of coordinate systems, (b) value invariant under a change of 
translational or rotational rigid body motion of a fluid element as it moves 
through space, and (c) vake invariant under a change of rheological 
history of neighboring fluid elements. Oldroyd's admissibility conditions 
have provided the guidelines for constructing constitutive equations since 
1950, and most of the molecular theories have given constitutive equations 
that are in agreement with Oldroyd's conditions; an example of one kinetic 
theory that does not agree with Oldroyd's criteria is provided by Schieber 
& Ottinger (1988). For further perspectives on admissibility criteria see 
Lodge (1974), in particular Chapter II. 
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POLYMER CONSTITUTIVE EQUA nONS 175 

Some constitutive equations are purely empirical. An equation satisfying 
Oldroyd's admissibility criteria is proposed and then tested against experi
mental data. It is then improved by including additional terms until reason
able agreement with experiment is obtained. There was much activity of 
this sort between 1950 and 1980, and it still continues. Many of these 
empirical equations are summarized in Chapters 4-8 of DPL-l and in 
Larson's (1988) book. 

A second approach for developing constitutive equations is to use math
ematical expansions. One can, for example, expand the stress tensor in 
something like a Taylor series in order to display small departures from 
Newtonian behavior. This leads to the "retarded motion expansion," 
which finds use in describing very slow flows such as those encountered in 
flow around particles and droplets. However, it is of no value for com
puting flows in pipes and industrial equipment, because the series con

verges too slowly. Siddiqui & Schwartz (1993) recently used a third-order 
fluid model for studying peristaltic motion in a planar channel. Another 
possibility is to perform a Frechet expansion, which describes the devi
ations from linear viscoelastic behavior. This "memory integral expan
sion" gives for the first term a single time integral over the strain history, 
for the second term a double integral, and for higher terms integrals of 
increasing mUltiplicity. This expansion has not been popular, although 
Siginer (1991) has recently used it for analyzing the pulsatile flow in a 
tube. (See Chapters 6 and 9 of DPL-l for additional information.) 

A third approach is to develop equations of a rather general nature· that 
apply only within certain well-defined classes of flows. For example, for 
flows with small displacement gradients the general linear viscoelastic fluid 
is quite important (Chapter 5, DPL-l ); linear viscoelastic experiments are 
widely used for polymer characterization. For steady-state unidirectional 
shear flows, the Criminale-Ericksen-Filbey (CEF) equation is applicable 
(Chapter 9, DPL-l ). For further information, see Tanner (1985) and 
Goddard (1979). The CEF equation includes as a special case the "gen
eralized Newtonian fluid" model, which has been widely used-and is still 
being used-for industrial calculations because of its simplicity (Chapter 
4, DPL-l ). 

A fourth approach is to use molecular theory. Here one represents the 
polymer molecules by some kind of mechanical model, usually "beads" 
and "springs" (or "rods") joined together in such a way as to reflect the 
architecture of the molecules. In this way one can mimic the orientation 
and stretching of the polymers and also provide for the large number of 
configurations that the molecule can assume. See DPL-2 and Doi & 
Edwards (1986) for in-depth discussions. Except for some very simple 
models, mathematical approximations have to be made to obtain consti-
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176 BIRD & WIEST 

tutive equations from molecular theories. Much progress has been made 
in developing our ability to go from a molecular model to the constitutive 
equation to the solution of flow problems, as described by Wedgewood & 
Bird (1988). 

A fifth approach is to make use of various extensions of the thermo
dynamics of irreversible processes. Ba,sically this involves establishing a new 
framework, with new sets of postulates, such that the known experimental, 
continuum mechanics, and statistical mechanical results are incorporated. 
By doing this one hopes to establ.ish some rather general constitutive 
equations capable of describing a wide range of materials. For summaries 
of current activities in this area, see Beris & Edwards (1990a,b; 1994), 
Jongschaap et al (1994), and Grmela (1991). 

USES OF CONSTITUTIVE EQUATIONS 

The choice of constitutive equation depends to a considerable extent on 
the use to which it is to be put. For making order-of-magnitude estimates 
in industrial problems in which the flow is a steady-state shear flow (or 
approximately so), the "generalized Newtonian model"-just Newton's 
law of viscosity with a shear-rate-dependent viscosity-is simple, useful, 
and effective in many instances (DPL-I, Chapter 4); if normal-stress effects 
are important, then the Criminale-Filbey-Ericksen equation is a good 
choice (DPL-I, pp. 503-4). For the characterization of polymeric liquids, 
linear viscoelastic experiments, such as sinusoidal shear flow, are widely 
used, and the "general linear viscodastic model" is exactly what one needs 
(DPL-I, Chapter 5). For describing the very slow flows around particles 
in suspensions, the "retarded-motion expansion" may be helpful (DPL-I, 
Chapter 6). For flows that are time dependent, for converging-diverging 
flows, and for general three-dimensional flows, nonlinear viscoelastic models 
are needed. In the next section we consider these kinds of models. 

The main driving force for developing constitutive equations is the 
need for solving polymer-processing problems in the plastics industry, 
for describing the functioning of polymer-containing lubricants, and for 
developing an understanding of the behavior of various body fluids in 
human physiology. There are also other uses for constitutive equations, 
such as the study of the interrelations of material functions measured in 
rheometric experiments (e.g. Chan Man Fong & De Kee 1992), analysis 
of rheometric devices (e.g. McClelland & Finlayson 1988a), study of insta
bilities (Larson 1992; Leonov 1987, Saasen & Hassager 1991), and the 
analysis of molecular motions in flow problems. For this last purpose one 
clearly needs a constitutive equation that is based on a molecular theory. 
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POLYMER CONSTITUTIVE EQUATIONS 177 

SOME NONLINEAR VISCOELASTIC CONSTITUTIVE 

EQUATIONS 

In the past five decades many constitutive equations have been proposed 
for polymeric fluids, and many have been discarded. Here we summarize 
a few that have survived and are currently receiving attention; we consider 
only nonlinear viscoelastic models that have been proposed for arbitrary, 
time-dependent flows. Slightly different lists of key constitutive equations 
have been given by Zdilar & Tanner (1992) and by Larson (1992). 

The Oldroyd 8-Constant Model 

Despite the fact that it is over 35 years old, this model proposed by 
Oldroyd (1958) is still being used. It is an empirical expression that is 
linear in the stress tensor, but contains all allowable terms quadratic 
in velocity gradients and all allowable products of stresses and velocity 
gradients. Since it can give qualitatively correct results in a wide variety 
of flow situations, it has been popular for developing the numerical 
techniques for non-Newtonian fluid dynamics. (For further details, see 
DPL-I, Chapter 7.) The constitutive equation is 

T+ AIT(l) +±A3{Y· T+T· y} +±As (tr-r)y +±A6(T:y)t5 

= -'10[y+AzY(l)+A4{y·y}+±A7(y:y)t5], (9) 

in which y = V'v + (V'v)t is the rate of deformation tensor, and t5 is the unit 
tensor. The subscript (1) indicates the first contravariant convected time 
derivative, defined for a second-order tensor at as follows: 

(10) 

where the dagger indicates the transpose, and D/D( is the substantial 
derivative. The eight constants are the zero-shear-rate viscosity ('10) and 
the time constants (Al> . .. , ,17)' Equ2tion (9) includes as special cases: 
(a) the Newtonian model (,11 to ,17 all zero), 
(b) the upper convected Maxwell model (,12 to ,17 all zero), 
(c) the Oldroyd-B model (,13 to ,17 all zero), 
(d) the second-order fluid model (,11 = ,13 = As = ,16 = ,17 = 0), 
(e) the Gordon-Schowalter or Johnson-Segalman model [Az = ('1s/'1o)Al' 

A3 = �Al' ,14 = �Az, As = A6 = A7 = 0]. 

The Oldroyd-B model has been popular lately for numerical calculations 
because of "Boger fluids." Boger (1977) synthesized some fluids that were 
presumed to have a constant viscosity and a constant first normal-stress 
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178 BIRD & WIEST 

coefficient (which are also properties of the Oldroyd-B model). Very careful 
rheological measurements by Quinzani et al (1990) have revealed that the 
Boger fluids are in fact more complicated than the Oldroyd-B model. The 
Oldroyd-B model should now be deemphasized, and attention should be 
focused on constitutive equations that can describe the polymers that are 
of interest to industry-namely, those that have viscosities that decrease 
dramatically with increasing shear rate. 

The 10hnson-Segalman model has been used in studies of "spurt 
phenomena" by Kolkka et al (1988), who believe that some of the insta
bilities observed in tube flow are a n:sult of the fact that the shear stress is 
not monotonically increasing with the shear rate. Malkus et al (1990, 1991, 
1993) and Kolkka et al (1991) have also used this model. 

The Giesekus Model 

Giesekus (1982), using molecular ideas, developed a three-constant 
(1]0,/'1, a) model that is nonlinear in the stresses (see DPL-l ,  p. 353). This 
model has gained prominence because it describes the power-law regions 
for viscosity and normal-stress coefficients; it also gives a reasonable 
description of the elongational viscosity and the complex viscosity. The 
constitutive equation for this model is 

(11) 

Bird & Wiest (1985) have given an alternative interpretation of the Gie
sekus model, and Wiest & Bird (1986) have studied the model further; 
they obtained the constitutive equation as the result of a mean-field theory 
that uses Hookean dumbbells as a model for the constituent polymers. 

Wiest (1989a) has developed an I�xtension of the model by using non
Hookean springs; his model has been used by Iyengar & Co (1993) for 
studying film casting. Another extension of the model is to use a super
position of equations of the form of Equation (5), the so-called "multi
mode Giesekus model." This allows for a large number of time constants 
and viscosity constants, thus providing much more flexibility for fitting 
data. 

The Phan-Thien-Tanner Model 

The four-constant model of Ph an-Thien & Tanner (1977) and Phan-Thien 
(1978) was derived from a network theory for polymer melts and is also 
nonlinear in the stresses: 

(12) 
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(see DPL-2, Chapter 20). Here, Y is a function of the trace of the stress 
tensor: 

Y = exp [-s(Je/'1o) tn] � J-s(Je/'1o) tn. (13) 
The second relation in Equation (13) is valid for small tff and makes 
the constitutive equation somewhat easier to use. Equation (11) gives a 
monotonically increasing elongational viscosity, whereas Equation (12) 
gives a maximum in the e1ongational viscosity vs elongation rate curve 
when the exponential relation in Equation (13) is used. This model has 
also been used in a multimode form by superposition of equations of the 
form of Equation (12) in order to do a better job of fitting data. 

The FENE (Finitely-Extensible-Nonlinear-Elastic) Dumbbell 
Model 
This constitutive equation results from a kinetic theory derivation using a 
nonlinear elastic dumbbell model to represent the polymer molecules in a 
dilute solution, where the solvent is a Newtonian fluid with viscosity '1" 
and where the number of dumbbells per unit volume is n. This leads, after 
making the Peterlin approximation (in the expression for the stress tensor, 
the average of a ratio is replaced by the ratio of the averages), to 

(14) 

in which the polymer contribution, 't'p, is given by the differential equation ( b )DlnZ (b) 
Zt'p + AHt'p(l) - AH t'p - b + 

2 
nkTfJ ----y)f = - b + 

2 
nkTAH"I, (15) 

where AH is a time constant and Z is a function of the trace of the polymer 
contribution to the stress tensor: 

(16) 

The parameter b is a measure of the potential energy in the spring relative 
to the thermal energy. When b is infinite, the Hookean dumbbell result is 
obtained; in this limit, the polymer contribution to the stress tensor is 
described by the upper convected Maxwell model. The FENE dumbbell 
model is useful because it allows for the possibility of describing the 
polymer stretching and orientation in various flow systems (Wedgewood 
& Bird 1988). (Further discussion of this model can be found in DPL-2, 
Chapter 13.) 

There are many extensions of the FENE dumbbell constitutive equation. 
Armstrong & Ishikawa (1980) developed a simplified equation for the 
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"nearly Hookean" dumbbell solution. Bird & DeAguiar (1983) and Wiest 
(1989a) developed modifications appropriate for describing polymer melts. 
Ng & Leal (1993) included dumbbell-dumbbell interactions (according to 
Hess 1984) in order to describe concentration dependence in semi-dilute 
polymer solutions. Chilcott & Rallison (1988) altered the FENE dumbbell 
equation in an empirical way to eliminate the shear-rate dependence of 
the viscosity, in order to describe Boger fluids; the resulting model is 
devoid of any molecular significance. 

A constitutive equation was also obtained for a multibead flexible chain 
model, with nonlinear connecting springs, using the Peterlin approxi
mation (Ottinger 1987, Wedgewood & Ottinger 1988, Wiest & Tanner 
1989). Using this model, Wiest et al (1989) studied the mechanism of 
uncoiling of macromolecules in extensional flows. A much simpler consti
tutive equation was obtained by Wedgewood et al (1991) using a modi
fication of the Peterlin approximation; this results in a "multimode" ver
sion of Equation (15), but with some coupling between the modes included. 
The modified Peterlin approximation has been evaluated and criticized by 
van den Brule ( l993a). Kobe & Wiest (1993) examined the validity of the 
Peterlin approximation for chains in steady elongational flows. 

Recently there has been a revived interest in including "internal vis
cosity" in bead-spring models; this involves including, in addition to the 
spring force, an additional resistive force proportional to the rate of the 
spring extension (i.e. a dashpot). The publications of Manke & Williams 
(1991, 1993), Wedgewood (1993), and Schieber (1993) provide an excellent 
introduction to the literature on this subject. Another modification of 
bead-spring models involves including the "excluded volume" effect, as 
discussed in a recent paper by Ahn et al (1993). 

The Kaye-BKZ Model 

The Kaye-BKZ model is a nonlinear generalization of the general linear 
viscoelastic model, and contains two unspecified functions: 

_ It _ ' [0 W 0 f� [O]J ' 
't" - + M(t t) 01 l'[oJ+ 01 I' dt. 

-00 I 2 
(17) 

Here, M(t - n is a "memory function" (a property of the material), and 
W(ll, 12) is a "potential function" that depends on the two scalar invariants 
of the Finger strain tensor B. The two relative finite strain tensors are 
defined by: l'[oJ = !5-B and 1'[0] = B-I-!5. It is necessary to require that 
the potential function obeys the relation (0 Wjo/l) + (oWjoI2) = 1 at/I = 3, 
12 = 3 to guarantee that the model simplifies correctly in the linear limit. 
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An evaluation of this model has been given by Tanner (1988), and a 
variational principle for it has been developed by Hassager (1981). 

The Kaye-BKZ model includes the Rouse-Zimm model for dilute solu
tions, the Lodge elastic liquid derived from a network theory, the Tanner
Simmons network rupture model, and the Doi-Edwards model for poly
mer melts derived from a "tube theory" for a melt made up of freely 
jointed bead-rod chains. A slightly more general model is the factorized 
Rivlin-Sawyers model, in which the coefficients of the relative finite strain 
tensors are arbitrary functions of the two invariants, but not necessarily 
derivatives of a potential function W. A model proposed by Wagner of this 
type has attracted much attention [see DPL-2, Section 8.3 for additional 
references and an example using special choices for M and W; see also 
Wagner (1990) and Wagner & Demarmels (1990)]. 

Kaye (1992) recently proposed a modification of the Kaye-BKZ model 
in which the potential function is given in terms of the principal stretches. 
Specifically, he considers that W is the sum of the nth powers of the 
principal stresses. All the nonlinear rheological properties can then be 
computed from the relaxation spectrum of linear viscoelasticity and the 
power n. 

The Curtiss-Bird Model 

The Curtiss-Bird constitutive equation was derived for a melt made up of 
a monodisperse set of freely jointed, interacting bead-rod chains, using a 
phase-space kinetic theory. The resulting equation is: 

Here, N is the number of beads in the bead-rod chain, n is the number 
density of chains, 11 and v are memory functions containing a time constant 
A, A (2) is a second-order tensor function of the nonlinear strain tensor y[O], 
and A (4) is a fourth-order tensor function of y[O]. The parameter 8 is called 
the link-tension coefficient; when 8 is set equal to zero, the Doi-Edwards 
constitutive equation is obtained. The Curtiss-Bird theory has been 
extended to polydisperse melts by Schieber et al (1986) and Schieber 
( l987a,b). The Doi-Edwards theory has been extended to a bead-spring 
model by Mead et al (1992). 

The Curtiss-Bird equation gives realistic shapes for the viscometric 
functions and the elongational viscosity. It has been used in its polydisperse 
generalization to describe the Weissenberg rod-climbing experiment by 
Lodge et al (1988) and recoil of polymer melts after cessation of shear and 
elongational flows by Borgbjerg & de Pablo (1994). In both of these 
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182 BIRD & WIEST 

problems the term containing the link-tension coefficient is needed to 
describe the experimental data. Geurts (1988, 1989) extended the Curtiss
Bird theory to a "reptating rope model"; his results lead to a constitutive 
equation containing an extra term related to correlations between 
segments. 

SOME OTHER CONSTITUTIVE EQUATIONS 

In recent years a few new constitutive relations have been proposed. We 
content ourselves here with a brief mention of equations that have come 
to our attention, recognizing that some have not yet been sufficiently 
tested. 

Schunk & Scriven (1990) developed a simple empirical model that 
describes shear thinning and extension thickening in order to model coat
ing and related flows in the polymer industry. This model is not, however, 
capable of describing the viscoelastic phenomena that arise in time-depen
dent flows. A minor generalization of the Schunk-Scriven model was put 
forth by Astarita (1991). 

For the general linear viscoelastic fluid model, Scanlan & Janzen (1992) 
have proposed a stretched-exponential-power-law empiricism for the 
relaxation modulus; this function contains four parameters. 

Several papers have incorporated the idea of polymer diffusion across 
streamlines into dilute-solution molecular theories. El-Kareh & Leal (1989) 
first developed this idea, and later Bhave et al (1991) produced a more 
extensive phase-space kinetic theory that showed, in addition, how to 
account for the development of spatial inhomogeneities in the concen
tration. Ottinger (1991, 1992) has discussed this problem from a continuum 
mechanical and stochastic point of view, using Lodge's body-tensor for
malism. For a comparison of several theories of spatial inhomogeneities, 
see Mavrantzas & Beris (1994) and Agarwal et al (1994). For more on wall 
effects, see de Pablo et al (1992). 

A new network model for polymer melts was proposed by Hermann & 
Petruccione (1992), based on Lodge's notion of a network containing 
different types of strands and Yamamoto's idea of configuration-depen
dent creation and loss rates. A Gaussian temporary slip-link network 
theory has been formulated by Wagner & Schaeffer (1992) that in special 
limits reduces to earlier constitutive equations of Lodge, Wagner, Doi
Edwards, and Marrucci. Doremus & Piau (1991) have developed a two
network theory capable of describing a yield-stress in a viscoelastic fluid. 
A completely different approach to viscoelastic-plastic fluid modeling was 
offered by Isayev & Fan (1990) based on a modification of the Leonov 
model (1987). 
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The classic Rouse-Zimm model has been modified by Wu & SchUmmer 
(1990), who incorporated the Johnson-Segalman idea that "macroscopic 
and microscopic strain fields do not conform to each other" and that 
"non-affineness is described by a slippage factor." 

Using a phase-space kinetic theory, Bhave et al (1993) obtained a consti
tutive equation for liquid-crystalline polymer solutions; see also Ram
alingam & Armstrong (1993) for an application of the constitutive equa
tion. 

CONSTITUTIVE EQUATIONS FOR 

NONISOTHERMAL SYSTEMS 

Although most of the work that has been done on the solution of polymer 
flow problems has been for isothermal systems, it must be recognized that 
flows of interest in polymer processing operations are decidedly non
isothermal, i.e. the temperature of the fluid is a function of position 
and time. Most polymer processing operations are designed to cause 
temperature changes in the material to produce phase changes. In addition, 
the very high viscosities of polymeric liquids result in the conversion of 
large amounts of mechanical energy into heat through the third term on 
the right-hand side of Equation (3), and this heat causes the temperature 
of the material to change. Because the stress in the material can depend 
upon both the temperature and the temperature history, it is necessary to 
develop constitutive equations that include the temperature as an inde
pendent variable. 

The traditional engineering approach to solving nonisothermal polymer 
flow problems mirrors the approach used in the solution of nonisothermal 
Newtonian flow problems. That is, one simply allows the density and non
Newtonian viscosity of the fluid to be functions of temperature. Further
more, because the density of a fluid is a relatively weak function of tem
perature when compared with the viscosity, the temperature dependence 
of the density is frequently neglected, except in problems where natural 
convection is judged to be important. This strategy has been used exten
sively in the study of problems where the fluid is modeled as a generalized 
Newtonian fluid (Metzner 1965, Pearson 1984, McClelland & Finlayson 
1988b, Ding et alI993). The major problem with this traditional approach 
is that it does not include the effect of temperature variations on the 
viscoelasticity of the fluid. 

The temperature dependence of the linear viscoelastic properties of 
polymeric liquids has been described by the principle of time-temperature 
superposition (Ferry 1980). In essence, this principle states that all of the 
time scales characterizing the memory of the fluid have the same depen-
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dence on temperature. Therefore, they can all be characterized by a single 
function of temperature known as the shift function, aT' Many empirical 
and semi-empirical expressions have been proposed for this function; the 
one most widely used is the Williams-Landel-Ferry function (Williams et 
al 1955). 

Although time-temperature superposition works well for a wide variety 
of polymers, it is not designed to describe nonisothermal flow. The prin
ciple describes the relation between rheological properties at different 
constant temperatures; it does not describe rheological consequences of 
temperature changes that occur with time or in space. A continuum mech
anical postulate proposed by Morland & Lee (1960) and expanded upon by 
Crochet & Naghdi (1969) attempts to address this problem. The postulate 
proposes the existence of a pseudo-time that accounts for the rheological 
consequences of temperature variations. This pseudo-time, �, is defined 
by 

d� 
= dt 

aT[T(t)] 

or, as a difference, by 

(19) 

(20) 

The rationale behind the pseudo-time idea is that the molecular motions 
responsible for mechanical relaxations of the material occur more rapidly 
at higher temperatures and more slowly at lower temperatures; this tem
perature dependence is described by the shift function, aT. From the point 
of view of the material, time appear8 to move faster (or slower) relative to 
laboratory time as the temperature increases (or decreases). Therefore, the 
prescription of the pseudo-time approach is to replace the time variable in 
an isothermal constitutive equation by the pseudo-time, which includes 
this "stretching" and "shrinking" of time caused by temperature vari
ations. The relation given in Equation (19) is used for transforming differ
ential constitutive equations, and the relation given in Equation (20) is 
used for transforming integral constitutive equations. The validity of the 
pseUdo-time postulate is still open to experimental confirmation, but it 
has been used recently to describe nonisothermal flows (Luo & Tanner 
1987). 

Molecular theories have also been used to obtain constitutive equations 
for nonisothermal flows. Marrucci (1972) (see also Bird 1979) modified 
the kinetic theory for dilute solutions of Hookean dumbbells to include 
the temperature history, and Wiest (1989b) extended this to bead-spring 
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(Rouse) chains. Wiest & Phan-Thien (1989) have extended the Curtiss-Bird 
theory to describe nonisothermal flows, and Wiest (1994) has examined the 
nonisothermal form of the Giesekus equation and its variants. Each of 
these molecular theories gives a constitutive equation that differs from 
that predicted by application of the pseudo-time approach, but the sig
nificance of the differences has not been fully explored. 

Other difficulties that arise in the solution of nonisothermal flow prob
lems are not directly associated with the constitutive equation for the 
material but are associated with the energy equation (3). It has been 
traditional to assume that the internal energy of the fluid is independent 
of its kinematic state, so that 0 can be expressed in terms of a heat capacity 
and the temperature. However, this may not be an appropriate assumption 
for polymeric materials (Astarita et al 1974), and the question requires 
further investigation. Because of the large viscosities of polymeric liquids, 
the third term on the right-hand side of Equation (3), which describes the 
conversion of mechanical energy into thermal energy, is often important. 
This issue has been addressed in a viscometric flow by Ko & Lodge (1989, 
1991). It has been traditional to assume that heat transfer in polymeric 
materials is adequately described by Fourier's law, but there is also evi
dence that this may not be appropriate. van den Brule (1989, 1990, 1993b) 
has studied this question and has proposed alternatives to Fourier's law for 
polymers wherein the thermal conductivity tensor is related to kinematic 
quantities. It is apparent that a great deal of work remains to be done in 
the field of nonisothermal rheology. 

AVOIDANCE OF USE OF CONSTITUTIVE 

EQUATIONS 

Description of Rheometric Experiments 

Brownian dynamics has been used for getting the material functions for 
various kinds of molecular models; in such calculations the flow pattern 
is specified and the molecular motions are computed. For example, Liu 
(1989) obtained the viscometric functions for Kramers chains in shear 
flows and studied the coil-stretch transition. This work was extended by 
Slot (1992), who included hydrodynamic interaction and excluded volume. 
The bead-spring chain model with nonlinear springs has been studied with 
Brownian dynamics simulations by van den Brule (1993). 

Molecular dynamics, a still more detailed description for rheometric 
flows, is just beginning to appear in the literature. Kroger et al (1993) 
have used nonequilibrium molecular dynamics to compute the steady
state shear flows of polymer melts modeled as long bead-spring chains (up 
to 100 beads) connected by finitely-extensible-nonlinear-elastic (FENE) 
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186 BIRD & WIEST 

springs; the forces between beads on different chains are described by a 
modified Lennard-Jones potential. 

Description of Nontrivial Flows 

Because of the increased power of computers, emphasis is now shifting to 
the use of molecular models to solve nontrivial flow problems without 
developing explicit constitutive equations. Instead, one solves the kinetic 
theory equations at each point in the system, either by nonequilibrium 
statistical mechanics or by nonequilibrium Brownian dynamics, and in 
this way computes the local stresses. These are then combined with the 
equations of motion and continuity to calculate the velocity field, stream
lines, and pressure distribution. 

The first example of this was the calculation by Fan (1989a,b), who used 
multi bead dumbbell models; he solved the kinetic theory equations at each 
point in the flow field and then obtained the streamlines and dumbbell 
orientations everywhere in the flow field. Ramalingam & Armstrong (1993) 
used a similar method to study the spinning of liquid crystals. A somewhat 
related method was described by Szeri & Leal (1992). Laso & Ottinger 
(l993a,b) (see also Ottinger & Laso 1994) used nonequilibrium Brownian 
dynamics to obtain the local stresses for elastic dumbbells, and then solved 
the unsteady Couette-flow problem: this model predicted the "velocity
overshoot phenomenon" that had been observed experimentally by Bur
dette (1989). 

FUTURE DIRECTIONS 

Constitutive Equations 
We expect that there will be increased reliance on molecular theory to 
suggest the form for constitutive equations. By using a greater diversity of 
molecular models, it should be possible to start developing intuition about 
how molecular architecture influences the constitutive equation and the 
rheological responses. It should not be expected that one constitutive 
equation can be found that will describe all polymeric liquids, but rather 
that there will be a variety of constitutive equations reflecting the internal 
structure of the fluids. 

In the future it is expected that more complex constitutive equations 
will be used for fluid dynamics calculations, because of improved numerical 
methods and more powerful computers. Therefore, it will be possible to 
use constitutive equations that contain a full spectrum of time constants. 
To date most of the emphasis in numerical solution of flow problems 
has been on differential constitutive equations, but more activity can be 
expected soon in the area of integral constitutive equations. 
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POLYMER CONSTITUTIVE EQUATIONS 187 

Much more needs to be done on the development of constitutive equations 
for nonisothermal flows. There is an urgent need for experimental data on 
nonisothermal flows, including the mapping of temperature profiles in 
space and time for well-defined flows and the measurement of the depen
dence of the stress in the material on these temperature profiles. Data are 
also needed on the thermal conductivity of polymeric liquids-particularly 
on the anisotropy of thermal conductivity in flowing liquids. In addition, 
further studies on the coupling between heat flux and velocity gradient 
are necessary. More nonisothermal flow problems in which solidification 
(crystallization or glass formation) takes place need to be solved, because 
these kinds of problems are of considerable industrial importance. This will 
require the formulation of constitutive equations that are valid through 
the solidification process and, therefore, greater understanding of the 
solidification process itself. 

Kinetic Theory 

The assumptions made in kinetic theory require further investigation. For 
example, the "equilibration in momentum space" assumption has almost 
universally been made, but little is known about the appropriateness of 
the assumption. More knowledge of the pair distribution function could 
possibly be very revealing about the mechanisms behind rheological 
behavior; in particular, this could be helpful in advancing kinetic theories 
for polymer melts. Much more can be done about getting optical, electrical, 
diffusional, and thermal properties for the same molecular models used in 
rheological work. Finally, there is the hope that totally new techniques 
may be found for kinetic theory studies; for example, virial and hypervirial 
theorems could prove a useful starting point. 

Molecular Simulations 

Only a small beginning has been made in using molecular and Brownian 
dynamics simulations for nonequilibrium systems involving polymeric 
liquids. These simulation techniques can allow us to improve kinetic theories, 
or possibly supplant them. These techniques also permit the study of much 
more complex systems and much more realistic molecular models. Most 
of all, they are enormously helpful in visualizing the molecular motions 
occurring in flows, including wall effects and interfacial phenomena. Cur
rent research on solution of flow problems by use of simulation techniques 
suggests that this part of polymer fluid dynamics will expand rapidly in 
the coming decade (Ottinger 1995). 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
5.

27
:1

69
-1

93
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
am

br
id

ge
 U

ni
ve

rs
ity

 o
n 

10
/0

2/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



188 BIRD & WIEST 

Experimental Data 

Despite the perception in funding agencies that making basic rheological 
measurements is "routine" and therl�fore unworthy of financial support, 
these measurements are essential for the testing of constitutive equations 
and kinetic theories. What is need�d is a fluid dynamical "rheonome 
project" in which extensive data-taking can be done on very carefully 
characterized fluids in a very wide range of rheometric experiments. These 
measurements should be made on a wide variety of polymeric liquids, 
including solutions and melts and mono disperse and poly disperse systems. 
Some outstanding experimentalists have been and are still active in this 
area (J. D. Ferry, J. Meissner, A. S. Lodge, K. Osaki, J. L. Schrag, H. 
Janeschitz-Kriegl, W. W. Graessley, and others), but they have each tended 
to specialize in one or two types of experiments and have generally not all 
worked on the same polymeric liquids. Those who want to test constitutive 
equations and kinetic theories have therefore not had complete sets of 
data for many rheometric experiments for one single fluid. 

In connection with the testing of llumerical methods (as well as consti
tutive equations), data are needed on velocity and stress fields in nontrivial 
flows of increasing complexity. For maximum effectiveness the experi
ments should be performed on fluids for which the rheometric data are 
available. 

One can adopt two views of the field: One can be very pessimistic and 
concentrate on the inadequacy of present knowledge to solve industrial 
problems and on the inherent difficulties in this highly nonlinear subject; 
or one can be optimistic and acknowledge the considerable advances that 
have been made in the past few decades and extrapolate these advances 
to continuing successes in the future. The field remains a challenging, 
fascinating, and important subject with a wide range of potential appli
cations; it requires cOllsiderable background in continuum physics, sta
tistical mechanics, polymer chemistry, fluid dynamics, and experimental 
techniques. 
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