Examples Sheet #2

1. Radius of Gyration and Structure Factor for a Gaussian polymer chain. The radius of gyration R_g of a polymer is defined as

$$R_g^2 = \frac{1}{2N^2} \sum_{n=1}^{N} \langle (\mathbf{R}_n - \mathbf{R}_{\text{com}})^2 \rangle ,$$

where N is the number of links and \mathbf{R}_{com} is the center of mass of the chain. For a Gaussian chain with step length b, find R_g and the scattering function

$$g(\mathbf{k}) = \frac{1}{N} \sum_{m,n}^{N} \langle \exp\left[i\mathbf{k} \cdot (\mathbf{R}_n - \mathbf{R}_m)\right] \rangle$$
.

Express your result in a scaling form.

2. Differential geometry of space curves. Consider a space curve $\mathbf{r}(s)$ in three dimensions, with velocity

$$\mathbf{r}_t = U\hat{\mathbf{n}} + V\hat{\mathbf{b}} + W\hat{\mathbf{t}} \ .$$

- (a) Find the time rate of change of the metric g, and length L in terms of U, V, and W.
- (b) What is the condition for local arclength conservation?
- (c) Derive the time evolution of the curvature $\kappa(s)$ and of the torsion $\tau(s)$.
- (d) Find the equation of motion for the Hasimoto/Darboux function

$$\psi = \kappa \exp\left(i \int_{s} ds' \tau(s')\right)$$

- 3. Integrable curve motions I. Suppose a plane curve has normal velocity $U = \kappa_s$.
- (a) What is the equation of motion for the curvature under the conditions of local arclength conservation?
- (b) Express the pde in (a) in a local conservation form. In what other context does this pde arise?
- (c) Find as many conserved quantities as you can.
- (d) Find a solitonic solution of the pde in (a).
- **4.** Integrable curve motions II. Repeat problem 3 for a space curve with velocity $V = \kappa$, using the Hasimoto/Darboux function.
- 5. Electrostatic contributions to elastic energy of surfaces.
- (a) Using Debye-Hückel theory, calculate the electrostatic potential outside, and electrostatic energy of flat, cylindrical, and spherical surfaces with either fixed charge density σ_0 or fixed potential ϕ_0 .
- (b) By comparing these energies from (a) in the regime that the screening length $\lambda_{DH} \ll R$, where R is the cylinder or sphere radius, deduce the electrostatic contribution to the elastic

modulus k, Gaussian curvature modulus k_G , and spontaneous curvature H_0 in the elastic energy

 $\mathcal{E} = \frac{1}{2}k \int dS \left(H - H_0\right)^2 + \frac{1}{2}k_G \int dSK ,$

where $H = 1/R_1 + 1/R_2$ is the mean curvature (with R_1 and R_2 the principal radii of curvature), and $K = 1/R_1R_2$ is the Gaussian curvature.

- (c) Estimate k, k_G , and the spontaneous radius $R_0 = 1/H_0$ for typical values of σ_0 and ϕ_0 .
- **6.** Debye-Hückel theory near a rippled surface. Membranes and surfaces in physical and biological systems are often not flat and smooth, but may exhibit undulations of various periodicities. Suppose a two-dimensional surface deviates from flatness by a one-dimensional modulation h(x).
- (a) If the surface has a constant surface charge density σ_0 , find within Debye-Hückel theory the electrostatic potential away from the surface to second order in the displacement h and its derivatives.
- (b) Using the results in (a), find the electrostatic potential to second order in h. Compare with the results in Problem 2.
- 7. The Poisson-Boltzmann equation in one dimension.
- (a) Find the electrostatic potential that satisfies the Poisson-Boltzmann equation for a 1:1 electrolyte with mean concentration c,

$$\nabla^2 \phi - \frac{8\pi ce}{\epsilon} \sinh\left(\beta e\phi\right) = 0 ,$$

away from a surface with fixed potential ϕ_0 .

- (b) Find the relationship between the surface charge density and the surface potential, and thus calculate the electrostatic free energy of that surface.
- (c) Generalize (a) and (b) to the case of two parallel surfaces, and thus find the energy of interaction as a function of separation. Compare with the weak-field limit.
- **8.** Correlations in a Smectic Liquid Crystal. Complete the derivation in class of the correlation function

$$G_n(\mathbf{r}) \propto \langle \exp\left[iq_0\left(u(\mathbf{r}) - u(\mathbf{0})\right]\right\rangle$$

for a smectic liquid crystal, where the energy functional has the form

$$\mathcal{E}[u] = \frac{1}{2} \int d^3r \left\{ B \left(\nabla_{\parallel} u \right)^2 + K \left(\nabla_{\perp}^2 u \right)^2 \right\} .$$