
Part III: Soft Matter (Michaelmas, 2007) R E Goldstein (11/11/07)

Examples Sheet #2

1. Radius of Gyration and Structure Factor for a Gaussian polymer chain. The radius of
gyration Rg of a polymer is defined as

R2

g =
1

2N2

N
∑

n=1

〈(Rn − Rcom)2〉 ,

where N is the number of links and Rcom is the center of mass of the chain. For a Gaussian
chain with step length b, find Rg and the scattering function

g(k) =
1

N

N
∑

m,n

〈exp [ik · (Rn − Rm)]〉 .

Express your result in a scaling form.

2. Differential geometry of space curves. Consider a space curve r(s) in three dimensions, with
velocity

rt = U n̂ + V b̂ +W t̂ .

(a) Find the time rate of change of the metric g, and length L in terms of U , V , and W .
(b) What is the condition for local arclength conservation?
(c) Derive the time evolution of the curvature κ(s) and of the torsion τ(s).
(d) Find the equation of motion for the Hasimoto/Darboux function

ψ = κ exp

(

i

∫

s

ds′τ(s′)

)

3. Integrable curve motions – I. Suppose a plane curve has normal velocity U = κs.
(a) What is the equation of motion for the curvature under the conditions of local arclength
conservation?
(b) Express the pde in (a) in a local conservation form. In what other context does this pde
arise?
(c) Find as many conserved quantities as you can.
(d) Find a solitonic solution of the pde in (a).

4. Integrable curve motions – II. Repeat problem 3 for a space curve with velocity V = κ,
using the Hasimoto/Darboux function.

5. Electrostatic contributions to elastic energy of surfaces.
(a) Using Debye-Hückel theory, calculate the electrostatic potential outside, and electrostatic
energy of flat, cylindrical, and spherical surfaces with either fixed charge density σ0 or fixed
potential φ0.
(b) By comparing these energies from (a) in the regime that the screening length λDH � R,
where R is the cylinder or sphere radius, deduce the electrostatic contribution to the elastic
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modulus k, Gaussian curvature modulus kG, and spontaneous curvature H0 in the elastic
energy

E =
1

2
k

∫

dS (H −H0)
2 +

1

2
kG

∫

dSK ,

whereH = 1/R1+1/R2 is the mean curvature (with R1 and R2 the principal radii of curvature),
and K = 1/R1R2 is the Gaussian curvature.
(c) Estimate k, kG, and the spontaneous radius R0 = 1/H0 for typical values of σ0 and φ0.

6. Debye-Hückel theory near a rippled surface. Membranes and surfaces in physical and
biological systems are often not flat and smooth, but may exhibit undulations of various
periodicities. Suppose a two-dimensional surface deviates from flatness by a one-dimensional
modulation h(x).
(a) If the surface has a constant surface charge density σ0, find within Debye-Hückel theory
the electrostatic potential away from the surface to second order in the displacement h and its
derivatives.
(b) Using the results in (a), find the electrostatic potential to second order in h. Compare
with the results in Problem 2.

7. The Poisson-Boltzmann equation in one dimension.
(a) Find the electrostatic potential that satisfies the Poisson-Boltzmann equation for a 1 : 1
electrolyte with mean concentration c,

∇2φ−
8πce

ε
sinh (βeφ) = 0 ,

away from a surface with fixed potential φ0.
(b) Find the relationship between the surface charge density and the surface potential, and
thus calculate the electrostatic free energy of that surface.
(c) Generalize (a) and (b) to the case of two parallel surfaces, and thus find the energy of
interaction as a function of separation. Compare with the weak-field limit.

8. Correlations in a Smectic Liquid Crystal. Complete the derivation in class of the correlation
function

Gn(r) ∝ 〈exp [iq0 (u(r) − u(0)]〉

for a smectic liquid crystal, where the energy functional has the form

E [u] =
1

2

∫

d3r
{

B
(

∇‖u
)2

+K
(

∇2

⊥u
)2

}

.
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