Part I1I: Soft Matter (Michaelmas, 2007) R E Goldstein (23/11/07)
Examples Sheet #3

1. Euler buckling. Analyze the buckling of an elastic rod of modulus A under thrusting forces
f at each end. Assume (a) clamped and (b) hinged boundary conditions. Give an analytical
treatment near the primary bifurcation, and a complete numerical treatment beyond. Just
beyond the bifurcation the bent rod behaves like a spring. Find the spring constant.

2. Boundary conditions on elastic filaments. By a careful application of functional differ-
entiation, find the “natural” boundary conditions on the curvature of a planar elastica, and
on the curvature and torsion of an elastic filament in three dimensions. For a weakly curved
filament in the plane, using the Monge representation of the shape, which choices of boundary
conditions yield a self-adjoint operator 0,7

3. Waves on an elastic filament. Consider an elastic filament with bending modulus A in
a viscous fluid. For small displacements y(x,t) from a straight configuration the simplest
equation of motion is (y; = —AYsres, Where ( is a drag coefficient. Imagine that the left end
of the filament is constrained to move as y(x = 0,t) = a cos(wt). With appropriate boundary
conditions at the free right end, find the shape y(z,t) for a semi-infinite filament. Explain the
meaning of a characteristic length you find. Try to find the solution for very short filaments.
(This is a difficult problem!)

4. Twisting instability. As in problem 1, but for a rod which also has a twist elastic constant
C and imposed twist density (2.

5. Langevin equation with inertia. In class we considered the overdamped Langevin equation.
Now we’ll work with the full randomly-forced Newton’s law dynamics. Let u be the velocity
of a particle of mass m and friction constant (. The Langevin equation is

mccll—lz =—Cu+f,
where f(¢) is the random force.
(a) If ug is the velocity at time ¢ = 0, find the average velocity (u) at later times.
(b) Find (u?), using equipartition to fix the amplitude of the noise term, assuming as usual
that it is delta function correlated in time.
(c) It is possible (give it a try) to show that the moments of U = u—u, are those of a Gaussian
distribution. You’ll need to make some assumptions about the higher-order correlations of f.
Show that the distribution of velocity becomes a Maxwell-Boltzmann distribution at long
times.
(d) Find the statistical properties (mean and variance) of the displacement r — ry. Comment
on the time-dependence of the short-time and long-time limits of the variance.



