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The classical problem of heat and mass transfer from single spheres at low values of the Reynolds
number, where the velocity field is given by Stokes’ formula, is considered. It is shown, by the use of
a singular perturbation technique, how an expansion may be derived for the Nusselt number Nu in
terms of the Péclet number Pe which yields an accurate expression for the rate of transfer of energy
or matter in the range 0 < Pe = 1. It is also established, by studying both the Pe — 0 and Pe — =
asymptotes, that the functional relation between Nu and Pe as obtained with the Stokes velocity
profile is less sensitive to an increase in the Reynolds number than the familiar Stokes law for the

drag coefficient.

I. INTRODUCTION

UMEROUS theoretical investigations have been
reported in recent years centering around the
classical problem of heat and mass transfer from a
solid sphere into a low-Reynolds-number velocity
field. And yet, a careful study of the rather extensive
literature on the subject will quickly reveal that
there still exist a good many disagreements among
the various results which have been published so
far, and that the precise dependence of the rate of
transfer of energy or mass on the principal param-
eters of the physical system is in this particular case,
at least, not completely understood. The purpose
of this paper will be therefore to settle some of the
existing controversies on this topic which, in view
of its practical significance in the important field
of small-particle dynamics and low-Reynolds-number
flows, is currently attracting an increasing amount
of attention.

The main part of our discussion will deal with
the solution of the well-known convection equation
under conditions where the velocity field around the
sphere may be described by Stokes’ classical formula.
It may then easily be shown, and will shortly become
apparent from an inspection of the basic equations
themselves, that if such a state of motion is postu-
lated, the average Nusselt number Nu, defined in
the usual manner for either mass or heat transfer,’
will become a function of the Péclet number alone,
where the Péclet number Pe is defined as being
equal to the product Re Pr or Re Sc, depending
on whether heat or mass exchange is being con-
sidered. Thus, even though the befter part of our
analysis will be restricted to systems for which the
Reynolds number Re < O(1), it will also include
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cases with Pe 3> 1 since for many liquids either
Pr or Se can indeed be very large.

The theoretical determination of the exact func-
tional relation between Nu and Pe is naturally the
main point of interest in problems of this general
type. According to Kronig and Bruijsten® it is
possible, for low values of the Péclet number, to
expand Nu in the form

Nu = 2 + 3 Pe + (581/1920) Pe* + ..., (1)

where the first term represents the contribution
from pure conduction or diffusion in the absence
of any convective effects. Breiman® on the other
hand concluded that, again for small Pe,

Nu = 2 4 1 Pe — 1 Pe’ In Pe — 0.0334 Pe?
+ e, @

which is in disagreement with Eqg. (1). This is
indeed surprising, since the two investigations were
concerned with exactly the same mathematical
model and differed only in the method of solution.
In other words, whereas Eq. (1) was obtained from
a more or less conventional perturbation expansion
of the convection equation, Breiman's procedure
consisted of using a Green’s function technique
to transform the problem into an integral equation,®
which was then solved by iteration. A classical
perturbation solution was also attempted by Frisch®
with, however, an incorrect velocity distribution,
so that the expression arrived at by him,

Nu = 2 + O(P¢?),

must therefore be discarded.

(1925{{). Kronig and J. Bruijsten, Appl. Sci. Research A2, 439
. * L. Breiman, Norman Bridge Laboratory, California In-
stitute of Technology, Rept. No. 2F-2 (1952).
4 B. Friedman, Principles and Techniques of Applied Mathe-
matics (John Wiley & Sons, Inc., New York, 1956).
8 H. L. Frisch, J. Chem. Phys. 22, 123 (1954).
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In all the studies mentioned above, only those
systems were considered for which the convective
effects were relatively minor in comparison with
pure conduction or diffusion. At the other extreme,
however, are the cases with Pe 3> 1 for which the
effects of molecular conduction or diffusion may be
neglected everywhere, except for a thin boundary-
layer-type region near the fluid-solid interface, where
the main part of the temperature or concentration
drop will take place. Thus, it is possible to resort
to an asymptotic solution almost identical to the
well-known Lighthill® formula for heat transfer in
laminar boundary-layer flows, which reduces’'® to

Nu — 0.991 Pe! as @)

It is clear then that, although the exact functional
dependence of Nu on Pe has already been established
for the two limiting cases Pe = 0 and Pe — o, the
behavior of the function for intermediate Pe values
is at present largely unknown, since the two mathe-
matically approximate solutions’'* which have
recently been proposed for the complete range of
Péclet numbers cannot be accepted a priori with
total confidence.

The present article has therefore a twofold pur-
pose. First, to re-examine the expansion of Nu in
terms of the Péclet number for small Pe, and by
adding more terms to this series than has up to
now been found possible, to shed some light on the
form of the complete solution for the classical
problem of heat and mass transfer. And secondly,
to extend the analysis into the region of somewhat
larger Reynolds numbers in order to ascertain to
what extent the phenomenon under consideration
may be affected by deviations in the velocity profile
from the Stokesian creeping-flow formula.

II. BASIC EQUATIONS AND THE METHOD
OF SOLUTION

Pe — .

The basic equation for the transport of energy
or mass is of course well known.'"'* In dimension-
less form, and for an axisymmetric spherical system,

vin = v, 2y Uty (5)

¢ M. J. Lighthill, Proc. Roy. Soc. (London) A202, 369

(1975(%7).' G. Levich, Physicochemical Hydrodynamics (Moscow,

19589%.. K. Friedlander, J. Am. Inst. Chem. Engrs. 7, 347
(1961).

¢ 8. K. Friedlander, J. Am. Inst. Chem. Engrs. 3, 43 (1957).

10 T, Yuge, Repts. Inst. High Speed Mech. of T6hoku
Univ. 6, 143 (1956).

u S Goldstein, Modern Developments in Fluid Mechanics
(Oxford University Press, Oxford, 1938).

12 Y, Schlichting, Boundary Layer Theory (McGraw-Hill
Book Company, Inc., New York, 1960), 4th ed.
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with boundary conditions

h=1 at r=1; h=0 for r— o,

where A is a normalized temperature or concentra~
tion, U, and U, are, respectively, the velocity com-
ponents in the r and 6 directions divided by the
free-stream velocity U., and r is the distance from
the center of the sphere divided by the radius a.
Also, V* is the familiar operator

1__3_<23_) 19 5 9
o\ or +r26;z (1—#)6;; !

u = cos f, and

Vi=

e = 3 Pe,
where

Pe = 2aU.pc,/k for heat transfer,
whereas

Pe

i

2aU../D for mass exchange.

(¢, is the specific heat per unit mass, p the mass
density, k the thermal conductivity, and D the
molecular diffusion coefficient.) And finally, in the
so-called Stokesian flow region

3 1
0—§+§%

(i L),

which are known to provide an adequate approxi-
mation to the exact velocity field if Re < O(1).

One might feel inclined now to attempt a classical
perturbation solution of Eq. (5) by expanding h
in the form

U, =
(6)

Us 4r

©

Z €hy,

n=0

h= )

and determining the functions &, from the recursion
formula

ahn—l + ﬂ ahn—l .

Vh, = U,
ar r o8

(8)
This was the approach originally taken by Kronig
and Bruijsten® who, however, quickly realized that
although 4, = 1/r, the remaining functions h,
could not be made to vanish at infinity, and that

for n > 2, they even diverged. The reason for the

s We shall neglect here thé effect of a mass-transfer in-
duced finite interfacial velocity which may, under certain
well—deﬁnﬁd coild[ilmf’ rather significantly affect the rate of
mass exchange . Acrivos, J. Am. Inst. Chem.
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failure of the classical expansion can easily be ex-
plained by the fact that, no matter how small e
is, there is always a region far away from the surface
of the sphere where both the conduction and the
convection terms become of the same order of
magnitude, which then prevents Eq. (7) from be-
coming a uniformly valid approximation to the
function k. As a matter of fact, this behavior is
strikingly similar to what is observed in the more
familiar problem of the velocity distribution around
a sphere for low values of the Reynolds number,
where it has been noticed, originally by Whitehead,'*
that a straightforward perturbation correction to
Stokes’ solution will diverge at infinity. It appears
reasonable therefore to attempt a solution by the
method of singular perturbation expansions which,
as was shown by Lagerstrom and Cole,' by Kap-
lun,'® and by Proudman and Pearson'’ is ideally
suited for attacking fluid-mechanical problems simi-
lar to the one presently being considered.

Following then a well-established procedure,'” we
construct an ‘‘inner” and an ‘“outer” expansion,
h and H respectively, in such a way that: (a) The
“inner’’ expansion h satisfies the boundary condition
at the solid surface. (b) The ‘“‘outer” expansion H
vanishes at infinity. (¢) The two expansions match
identically at some arbitrary distance from the
surface, and both remain bounded as ¢ — 0.

Now, upon examination of Eq. (5), it becomes
apparent that for small values of ¢ the convection
terms can be neglected as a first approximation and
that an expansion similar to Eq. (7) can be con-
structed to represent the ‘‘inner’ solution near the
solid surface. On the other band, if in Eq. (5) we
let p = er and h = H, then

o (-2 4 2,08
Vol = (1 2p + 20° K dp
a— ) ( _ 8 _ 6_3) oH
+ ; 1 i 37 o 9

where we observe that, as e — 0, the convection and
the conduction terms become of the same order of
magnitude and that the resulting equation does not
contain the parameter e. We can conclude therefore
that Eq. (9) is the proper starting point for gen-
erating the “outer’ expansion, in the region far from
the sphere.

14 A, N. Whitehead, Quart. J. Math. 23, 143 (1889).

15 P, A, Lagerstrom, and J. D. Cole, J. Rat. Mech. Anal. 4,
817 (1955).

16 3, Kaplun, J. Math. Mech. 6, 585 (1957).

17 I, Proudman, and J. R. A. Pearson, J. Fluid Mech. 2,
237 (1957).
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III. CONSTRUCTION OF THE SOLUTION

We assume next that the *“‘inner”’ and the *‘outer”
expansion may be represented, respectively, by

W, 0) = X 4Ok, with 19 =1, (102
and

Hp, 0) = X F(OH(p, ), (10b)

where the functions f,(e) and F,(e), not necessarily
simple powers of ¢, are for the moment restricted
only by the requirements

- fuer _ - Fay _
IEI_I'? fﬂ N O and ltl-I’f)l F’l - O-

The boundary conditions are
ho(l,u) =1 and h,(1,w) =0 for n > 1;
H.,(,u =0.

A. First Expansion Term

The functions h, and H, must, respectively, satisfy
Eqgs. (5) and (9) with ¢ = 0. Thus
Vihe = 0 (11)

and

Qﬂ_i_____.l_“zéf_[_“
K ap p O

which, by the substitution

V:HO =

H

H, = G, exp (3pu),

can be transformed into
szo = %Go- (12)

The general solution of Egs. (11) and (12) which
remains bounded for all § and which satisfies the
imposed boundary conditions is*®

b= =By + 24 3 Be - ARG, 13)

r\! <& p
Gy = {~ Z CiKisy ) P,
P/ k=0
where K,.; is a modified Bessel function defined as

Kl§) = G)ev Salan

m=0

and

(14)

18 A, G. Webster, Partial Differential Equations of Mathe-
7lrgz5t(1;c)al Physics (Hafner Publishing Company, New York,
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P.(r) is the appropriate Legendre polynomial, and
the constants B, and C, are to be determined from
the matching requirement that

h(T - ®, l") H(P — 0, V') (15)
If now, p = er, then
h()(T — © ’ ”') '
B —~ B
= (1 = B) + = = =P + 00,
k=1
and

H(p— 0, 1) = ”F;(e) [1 +ow—1D+ ]

5 ¢, ZRI P

klpt 7
from which it readily follows that, if ¢ — 0 so
that the additional terms of Eqgs. (10a) and (10b)
can be neglected:

(16)

k=0

Fole) = ¢,

B.=0 for k>1,
B, =1, Co = 1/m,
C.=0 for k>1.

We can conclude therefore that the first terms of
the inner and the outer expansions are given, respec-
tively, by

ho =
with

(17)

R -

and H, = lexp [E (u — 1)] ,
0 2

Fole) = e

B. Second Expansion Term

In order to obtain the equation for h, we first
approximate the convection term by means of A,
and also assume that f; = e, although by this we
shall not preclude the possibility that the constants
in the solution may themselves depend on e. Thus
we deduce from Eqs. (5) and (10a) that

;-3 1\m
(1 2r+27*3)r2’

which has, as a particular solution,

_(1_3_ 1
hy = <2 4y 8r3>“'

Then, in view of Eq. (13), the general solution which
also satisfies the boundary condition A,(1, u) = 0, is

sl [(on ) o2

Vih =

A. ACRIVOS AND T. D. TAYLOR

(13 8%)]# + 3BT = ARG, (9

It remains now to evaluate the coefficients B, from
the matching requirement

ho(""" w:ﬂ) + ehl(r_—) oo,#) = GHO(P—"O} IJ-))

where H is given by Eq. (17). It can easily be shown
that this matching is exact up to and including all
O(e) terms if

BO=%J Bl__‘%)
B, =0 for k2> 2,

which, incidentally, also justifies the original asser-
tion that f;(¢) = e. Therefore,

1 1 1 3 3 1

The evaluation of H, is, on the other hand, some-
what more complicated. We first postulate that

F.(¢) = €, then substitute Eq. (10b) into Eq. (9)
and, by equating equal powers of ¢, deduce that
e 6#

_3wdH, 31— 4 0H,
5,00 4 o on’ (20)

which may be rearranged into

_G e

4 4p°

[-2+(+

by the substitution

v,
6
e,

H, = G, exp (3pu).

- Pz(ﬂ):l (21

Naturally, the homogeneous solution to Eq. (21)
is again given by Eq. (14), whereas the particular
solution may be obtained in a straightforward al-
though somewhat tedious manner.”® The net result,
which also satisfies the boundary condition at
infinity, is that

% )
H, = e*"“[(’i) kz;’ C":‘CKH%(g)Pk(M)

+ ;Rf(p)P,»(u)] ,  (22)
where

18T, D. Taylor, Ph.D. dissertation, University of Cali-
fornia, Berkeley (1961).
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e e e P 2 0 Su
Ro(ﬁ)—é‘“ p—a;dx-*-—é—lnp, eH, + ¢ H, — exp 5(“—1) 2,0 1—7
e *n 1 In
3 2N, ALY z[(u__v
R =20~ [[Ca o o (Lo tn)
p
Py _S_P_]
——3—(1 +—2-)e‘*" Inp— e, (23) Tt @)
4p p 2p

-1, 29

3 1
Rz(P)"";E(g ~Iny) — 8p @—-lnm+ 24
where In y = 0.577215 is the familiar Euler constant.

We now perceive that, in the (p, u) variables,
the “‘inner’”’ expansion given by Egs. (17) and (19)
has the form

ho + ehy = e[1/p + 3u — 1]

+ (€/20(1 — 3w + O(),  (25)

where all the terms o™ (m > 1) of the complete
“inner” solution h are given exactly as shown above
up to an accuracy of at least O(¢®). This is so,
because in view of the condition f,(¢) < efor e = 0,
the contribution of f,(e)h, to any given term p™"
(m > 0) of h must necessarily be of higher order
in ¢ than that of eh,. We may conciude therefore
that if the function eH, + ¢€H, is to be matched
exactly as p — 0 with Eq. (25), and since the O(e)
terms have already been matched in the construction
of h,, we must require that all o™ (m 2> 2) terms
of H, be zero and that the term p~* of H, be equal

to 3(1 — 2u). It is possible then to establish, after
making careful use of Egs. (22)-(24), that
C¥=20, for k2> 3,
K o _—
CF = 3(1 ~— Inv)/dn,

Cf =1+ Inv)/2r,

and that, as p — 0,

with

C. Higher-Order Terms

The next term of the “inner’” expansion may again
be obtained from Eq. (8) if it is assumed that f, = €.
Therefore,

3h1

Vh2=U-—+U"~a~’ﬁ

r 00’

which, in view of Egs. (6) and (19), may be re-
arranged into

Vhs = Z Z(DP(w), @7)
where
Zo = ‘3%« - '2%7 48r“ 5 167-6 + 127«7 ’
Z, = 2—i§+4~?;—3—4-1rg, (28)
Zy =~ +4—r_ 513‘?§ 4%%_—1%(%—_ 16r°+48r

As before, the homogeneous solution to Eq. (27)
(hs) 5 is the familiar expression

(= 3 10" + B VIR, (20)
whereas the particular solution (k,), becomes
(o = X LPG, (30)
where
L =1 - —g; - l—ér , 31)
L,(r) = {5 24 + 16* 15257‘
168~ 3t
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Now, since h, must be matched with the “outer”
expansion as given by Eq. (27), it cannot contain
Legendre polynomials of order greater than 2, and
therefore

C.=B.=0 for k> 3.

Similarly, since h, = 0 at r = 1, we must require
that the remaining C,’s be so chosen that

};,2 — i—: [Bk?—-(lﬁl)
— By + L()] + Li»IP:(w)-

It remains then to evaluate the B,'s from the
matching requirement between the inner and the
outer expansions. It is apparent, however, that since
Ly(r) contains a term In r, the substitution p = re
into €'k, will generate a net contribution of O(¢ In ¢)
which cannot be matched to the ‘“outer’” solution
given by Eq. (27). It is clear then that the postu-
lated “inner”’ expansion of A should contain a term
(€ In k¥ so that

ho=bho+ ey + (Elnohf + b+ --- . (33)

If we next substitute Eq. (33) into Eq. (5) and
equate terms O(¢ In ¢), we can readily see that

VihE = 0,

and since, because of the matching requirement with
Eq. (27), Eq. (33) cannot contain terms of O(¢ In ¢)
as r — o, it immediately follows that

RE = 1(1/r — 1).

Therefore, with p = re,

32)

(34)

Elneht + by = — kEO 6(2-“.0)‘{355 + Li(D]P(w)

2 2
o b o _ S
+6+ 4 +P2{12 24}

elnp . Elne
T2 + 2p
which, when added to Eq. (25), may be matched
with Eqgs. (27) by letting

Bz + Lz(l) = OJ Bl + LI(I) = %’
By + L) = $Iny — }.

It becomes apparent, however, that this matching
cannot include the O(é® In ¢ term in Eq. (35),
and this can only mean that the next term of
the ‘‘outer” expansion, Eq. (10b), must be of the
form (€ In € H,(p, u). It is also rather obvious that
since H, and H, must satisfy the same differential

+ 0(, (35)

(36)
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equation, and since the matching requirement is
such that

Hy(p, 1) > 1/2p as p—0,
it must follow that
H, = 3H, = (1/2p) exp [Bolp — nl.

This would in turn imply that the next term in the
“inner” expansion would have to be (¢ In €k, and
that, as a matter of fact, h; should be equal to
3hy, since h; and h, can easily be shown to satisfy
exactly the same differential equation and an identi-
cal matching requirement except for a factor of 1.

We can conclude therefore that the “inner” ex-
pansion takes the form

h=1/r+ (e+ i€ In Oh,
+ ¥ nolfr —1) + Ehy + -1,

where h;, and h, are given, respectively, by Egs.
(19) and (32) and where, it can easily be demon-
strated that the higher-order terms of Eq. (37) must
be successively O(é®), Ole* (In €)’], O(é* In ¢), ete.
We shall, however, refrain from continuing the
perturbation any further because of the excessive
algebraic effort which would be required to compute
the O(¢®) contribution.

37

IV. EXPRESSION FOR THE AVERAGE
NUSSELT NUMBER

We next turn our attention to the determination
of the average number, Nu. If the diameter of the
sphere is chosen as the characteristic length,

! ah)
-1 (ar I du,

where h refers to the “inner” expansion as given
by Eq. (37). This in turn may be put into the form

h= gq»,-(r, 9P,

Nu = — (38)

so that, in view of the orthogonality relation
1
[ Plyan=o0, for j=o,
-1

only the term ¢,(r, €) will contribute to the integral
in Eq. (88). Thus, we can easily deduce from Egs.
(19), (31), (32), and (36)—(38) that

Nu=2{l+3e+elnet+ i’lneg
+ € ny —§ — L) — LM+ ---},

which may be rearranged into

Downloaded 28 Sep 2008 to 150.135.239.97. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



HEAT AND MASS TRANSFER FROM SPHERES

TapLE I. A numerical comparison of Egs. (1), (2), and (39).

Pe Nufrom Eq. (2) Nu from Eq. (1) Nu from Eq. (39)

0.1 2.065 2.053 2.044
0.2 2.115 2.112 2.084
0.3 2.174 2.177 2.124
0.4 2,231 2.248 2,165
0.5 2.284 2.326 2.209
0.6 2.334 2.409 2.259
0.7 2.377 2.498 2.315
0.8 2.414 2.594 2.379
0.9 2.444 2.695 2.451
1.0 2.467 2.803 2.534
Nu= 2+ 3 Pe+ 1 Pe’In Pe
+ 0.03404 Pe® + & Pe’ In Pe + - -- (39)

by the substitutions
Ly(1) = 239/960, and L{(1) = —13.

Equation (39), which incidentally bears a con-
siderable resemblance to the small Reynolds number
expansion for the drag coefficient of a sphere as
derived by Proudman and Pearson,"” summarizes
then the principal result of our analysis and allows
us to compute the Nusselt number for values of
Pe up to about 1. It is indeed apparent that the
first two terms of our series remain in complete
agreement with the corresponding terms of Eqgs. (1)
and (2), but that, beyond this point, the earlier
results cease to be valid even though Breiman's
formula [Eq. (2)] correctly predicts the absolute
magnitude but not the sign of the third and fourth
terms. It is also worthwhile to point out, however,
that the advantage of the singular perturbation
technique over other methods of solution consists
in providing us with a fairly rigid check on the
correctness of all the many steps in the rather in-
volved analysis, since otherwise the matching re-
quirement between the “inner” and the ‘“‘outer”
expansions could not in general be satisfied. The
numerical values of Nu, as computed from Egs.
(1), (2), and (39) are shown in Table I for the range
0<Pe<l.

e = } Pe,

V. INFLUENCE OF AN INCREASING
REYNOLDS NUMBER

Our discussion has been restricted, up to this
point, to systems with strictly speaking vanishingly
small Reynolds numbers, since it is known that the
velocity components given by Eq. (6) may be used
to describe the flow field exactly only in the limit
Re — 0. It is of interest therefore to examine how
the introduction of a velocity profile more realistic
than Eq. (6) will affect the results arrived at earlier

393

and in particular the functional dependence of
Nu on Pe.

It is immediately clear of course, that to attempt
a generalization of Eq. (39) would at this stage be
prohibitively cumbersome. Instead, what will be
studied is the effect of the Reynolds number on the
first two terms of Eq. (39) and on the asymptotic
solution for Pe — =, in order to provide us with a
reasonably clear indication concerning the range
of validity of the Re — 0 result which we have
just obtained.

A. Effect of Re on the Solution for Small Pe

Let us now refer once again to Eq. (5), where
U, and U, are left unspecified, except for the re-
quirement that

U,—u as 1> o,
and

Ug— —(1 — i as r— o.

It is at once apparent that the first terms of the

“inner” and the ‘‘outer’” expansions, h, and H,,
respectively, will remain exactly the same as before,
and will be given by Eq. (17). The function A, will
have to be modified, however, since

Vb = =U.lr, w/r.

The general solution of Eq. (40) is once more of
the form

(40)

by = Z 6P,

but since we shall be mainly interested in obtaining
the average Nusselt number, Nu, as defined by
Eq. (38), it is clear that only ¢4(r) needs to be
computed. Because of the continuity equation,
though,

T.6) =1 f Ur,wdu = 0 forall r andall Re,

and therefore
d/dr(r*(dgo/dr)] = 0

with boundary conditions ¢o(1) = 0 and ¢, — ~3%
as r — « because of the matching requirement
with H,.

We can conclude then that

Nu = 2 4+ 1 Pe + O(Pe’ In Pe) (41)

and that the first two terms will remain completely
indeperident of the Reynolds number Re.
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B. Effect of Re on the Pe — « Asymptote

The asymptotic solution for Pe — o may also
be derived rather simply since, by repeating the
rigorous arguments of Morgan and Warner® con-
cerning the solution to the laminar-boundary-layer
energy equation for large Prandtl numbers, it is
possible to show that Eq. (6) may be rearranged
as Pe — « into the form

o : ah _Th
a1 — WPy 5 + By 5 = SE,
where
y = — 1) Pe)?,
while
aly) = liIIll <1—[_{6—7‘) and Bu) = 11_{111 HU—)--

It is then easy to establish from the results of
Proudman and Pearson'”'?! that if the Reynolds
number is defined with the diameter as the charac-
teristic length,

=31 — A1 + 2 Re (1 — 3p)
+ (9/160) Re” In Re + O(Re")]

i)
(43)

and

Blw) = —3(d/du)[(1 ~ u*)la(w)],

so that the solution to Eq. (42) may be derived in
a straightforward manner by a similarity trans-

20 G. W. Morgan and W. H. Warner, J. Aeronaut. Sci. 23,
937 (1956).

2 In the Proudman and Pearson analysis the Reynolds
number Re has the radius as the characteristic dimension.
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formation method.?* Thus
Nu = (-2~P‘i)—3 {f (1 - ()] d#}

which in turn can be simplified into

Nu = 0.991 Pet
‘[1 + & Re + (3/160) Re? In Re + O(Re?)]

And finally, by comparing the above with the Proud-
man and Pearson'”"*! formula for the drag of a
solid sphere, we can conclude that

Nu = 0.991 Pe! [C,/Cp(s)]} (44)

up to but not necessarily including O(Re®), where
Cp/Cs(s) is the correction to Stokes’ law for the
drag coefficient.

This intriguing result then not only allows us to
predict, in a simple and convenient manner, the
effect of increasing Re on the Nusselt number for
large Pe, but, together with Eq. (41), permits us
to conclude that the functional relation between Nu
and Pe, as obtained with the Stokes velocity profile,
is considerably less sensitive to an increase in the
Reynolds number than the familiar Stokes’ law for
the drag coefficient.
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