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organisms : equations and stability theory 

By S. CHILDRESS, 
Courant Institute of Mathematical Sciences, New York University, 

New York 10012 

M. LEVANDOWSKY 
Haskins Laboratories, Pace University, New York 10038 

AND E. A. SPIEGEL 
Department of Astronomy, Columbia University, New York 10027 

(Received 13 August 1974) 

A model for collective movement and pattern formation in layered suspensions of 
negatively geotactic micro-organisms is presented. The motility of the organism 
is described by an average upward swimming speed U and a diffusivity tensor D. 
It is shown that the equilibrium suspension is unstable to infinitesimal perturba- 
tions when either the layer depth or the mean concentration of the organisms 
exceeds a critical value. For deep layers the maximum growth rate determines 
a preferred pattern size explicitly in terms of U and D. The results are compared 
with observations of patterns formed by the ciliated protozoan Tetrahymena 
pyriformis. 

1. Introduction 
From time to  time reports have appeared in the biological literature of 

observations of streaming patterns in liquid suspensions of swimming micro- 
organisms. The phenomenon involves fluid dynamics in that the experiments 
strongly suggest that the visible patterns of high concentrations of the organisms, 
as well as the associated motion of the suspending fluid, arise from a process of 
‘bioconvection’ (to use the term coined by Platt 1961), wherein natural dissipa- 
tive losses (presumably due mainly to the viscosity of the fluid) are compensated 
for by the work done on the fluid by the micro-organisms. Robbins (1952), 
observing Euglenu graciliis, and Loeffer & Mefferd (1952), observing cultures of 
the ciliated protozoan Tetrahymena pyriformis, found that patterns formed 
when the depth of the suspension or the organism number density exceeded 
critical values.? (Figures 1 and 3 a, plates 1 and 3, show the critical-depth effect.) 
The type of pattern apparently depends upon the suspension depth and upon the 
concentration and motility of the organisms. Wille & Ehret (1968), working with 

7 The critical values are given as 2 mm and 150 000 organisms/cm3. However, it is not 
clear whether or not these figures are intended to apply simultaneously at a critical state. 
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dense Tetrahymena cultures, observed two distinct steady-state patterns. The 
polka-dot pattern, in which spherical concentrations of the organism are arranged 
in a regular array, was formed in relatively shallow cultures (see figures 2 and 3 b,  
plates 2 and 3). A reticulate pattern emerged in deeper cultures as at the deep end 
of figure 1. The latter is usually described as consisting of irregular cells (‘regular 
cell’ being used here to mean a unit repeating periodically along the layer of the 
suspension), with the organisms swimming predominantly upwards over the 
interior of the cell, being carried laterally near the top and bottom of the layer, 
and plummeting downwards in thin vertical columns or sheets which mark the 
main visible features of the pattern. The concentration within these descending 
regions can exceed the mean concentration by a factor of 10 or more, and the 
fluid speed there is typically of the order of lmm/s. This speed appreciably 
exceeds the mean vertical swimming speed of the organisms (typically 0-5 mm/s 
in Tetrahymena); thus the organisms in the sheets or columns are swept to the 
bottom of the layer, eventually to swim again to the top and repeat the process. 
The pattern formation time is typically 10-30 s, which is also roughly the cycle 
time of individual organisms within the pattern, and increases as the motility 
(in the present context, the average swimming speed) of the organisms decreases. 

The dynamical explanation of bioconvection that has emerged in recent years 
(Platt 1961; Winet 1969; Winet & Jahn 1972; Plesset & Winet 1974) lies in the 
unstable stratification of the organism suspensions. The stratification is caused 
by the accumulation of organisms near the top of the layer and is a result of the 
swimming of organisms preferentially in the upward direction. We adopt the 
biological term and refer to this phenomenon as ‘negative geotaxis’. The occur- 
rence of negative geotaxis is now well established for Tetrahymena. Since the 
individual organisms are slightly denser than the ambient fluid, the process can 
produce an unstable subsurface layer of heavy material. 

Plesset & Winet (1974; see also Plesset & Whipple 1974) liken the onset of 
bioconvection to Rayleigh-Taylor instability. They model the organism-rich sub- 
layer as a layer of dense fluid overlying a less dense, deeper layer of fluid. They 
study the stability of this system under the influence of viscosity and find that 
the wavelength of the most rapidly growing mode agrees well with the observed 
scale of the reticular pattern. This result provides evidence that the onset of bio- 
convection is indeed due to a density inversion and that growing sedimentation 
fingers represent the formation of descending columns of organisms. 

The model of Plesset & Winet does not directly consider the negative geotaxis 
of the organisms, nor even their motility, except implicitly as a means by which 
the unstable equilibrium could be set up. Although it is possible that the negative 
geotaxib might be inhibited by the formation of the subsurface layer, it  is more 
likely that the mechanism which sets up the layering continues to act as the 
instability develops and influences the formation of a new stable equilibrium 
(should any exist), just as temperature differences remain the driving mechanism 
in nonlinear thermal convection. If the Plesset-Winet model were followed into 
the nonlinear range, the only possible new equilibrium would be one in which all 
or a major fraction of the subsurface fluid falls to the bottom, and which has 
a lighter and therefore stable subsurface layer. 
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BIGURE 2. Pattern formatiori in a 3 inin layer of C. cohnii at a mean coricentration of 
lo6 organisis/cm3. Tirnea: (a )  2 s, ( b )  13 s, (c) 19 s, ( d )  23 s, (e) 28 s ,  (f) 32 s ,  ( 9 )  36 s ,  
( h )  43 s, (i) 2 miri. The siisperision was swirled initially to render it hornogeneoiis arid t lw 
cxarly patterns are forming during tlie decay of the swirl. 

CHlLUHESS, LEVANUOWSKY AND SPlEGEL 
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(b)  
FIGURE 3. Patterns in layers of C. cohwii. (a )  Showing effect of slight \ariation in depth 
with sliallow v r d  at upper right. $“llaincntary structurcs arc in the process of breaking up 
into clumps. ( b )  (%)sc-iip of a polka-dot piittcrn wit11 sonic t o n .  Hliirring towardn ctlges is 
optical distort i o r i .  

CHILDREBS, LEVANDOWSKY AND SPIEGEL 
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The purpose of the present paper is to develop a simple model for pattern 
formation by negatively geotactic micro-organisms, based upon the physical 
picture provided by Winet & Jahn (1972)) but differing from the model of Plesset 
& Whet in this last respect. A system of equations is proposed in which the 
layering may be said to be internally generated as an equilibrium solution. Linear 
and nonlinear stability of this equilibrium solution can then be studied in the 
usual way. Guided by an analogy with solutes, we replace the discrete organism 
distribution by a continuous density and incorporate the negative geotaxis as 
a vertical drift of the organism ‘stuff’ relative to the suspending fluid. We also 
add an anisotropic diffusion. The motility of the organisms is thus parametrized 
by a vertical drift U and a diffusivity tensor D, both generally functions of 
vertical position and the local concentration of the organisms. The production 
of momentum associated with the locomotion of the organisms is averaged, SO 

that the effect of the heavy stuff on the fluid motion is through a negative 
buoyancy term. 

The equilibrium solution in this model describes the vertical stratification 
induced by the negative geotaxis, and in the present paper we investigate the 
linear stability of this stratified layer. In 3 2.4 we treat a special case satisfying 
the atypical condition that the layer depth is small compared with the virtual 
thickness of the subsurface layer. Some general results concerning the linear 
stability problem are given in § 3. In  3 4 we treat the case-where the layer depth 
greatly exceeds the sublayer thickness. A singular perturbation analysis allows 
us to study the transition from an exact mathematical analogy with BBnard 
convection under the condition of fixed heat flux to a convective instability 
with growth rates like those calculated by Plesset & Winet (1974), as the ratio 
of layer to sublayer thickness is increased. For deep layers we also derive an 
approximate expression in terms of U and D for the horizontal wavenumber 
for which growth is most rapid. Analytical details which are included here for 
completeness but which are not essential to the understanding of results are given 
in appendices. A discussion of the instability in physical terms is given by 
Levandowsky et al. (1975). Nonlinear aspects of the model and the construction 
of steady patterns will be taken up in a separate paper. 

2. The model 2.1. Formulation 

We consider a horizontally infinite, plane layer of homogeneous fluid bounded 
by the surfaces z = - H ,  0 and containing in suspension a large number of 
impermeable micro-organisms. We denote the density of the fluid by p and the 
mean density of an organism by po, and we consider the case po > p .  If the 
fractional volume occupied by organisms is c(r, t ) ,  the suspension has density 
p0c + (1 - c) p = p( 1 + ac),  where a = po/p - 1. For Tetrahymena Winet & Jahn 
(1972) give a = 0.09 while the values of c in the cultures discussed above are 
N This means that density fluctuations in the suspension are small and we 
describe its motion by the Boussinesq equations 

p du/dt + V p  -pV2u = - gp( 1 + O ~ C )  k, (2.1) 
v .u  = 0, (2.2) 

38 F L M  69 
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where u is the suspension velocity, p is the pressure, g k  is the acceleration due to 
gravity and where in view of the smallness of c we have taken the viscosity p to 
be constant. 

To describe the evolution of c we write 

dcldt + V .  J = 0, (2.3) 

where J is the flux of organisms through the fluid. We suppose that this flux 
consists of a part due to random motions, which is describable by diffusion, and 
a second part due to the negatively geotactic drift of organisms. Thus we write 

J = cU(c,z)k-D.Vc, 

D = K ~ ( c ,  x )  ( i . i+ j . j) + K ( c ,  z )  k. k, (2.4) 

where (i, j, k )  are orthogonal unit vectors and U ,  K 'and K~ are functions to be 
specified. 

The boundary conditions to be adopted will depend upon the nature of the 
bounding planes. In  all cases we require (with u = (u, v, w) and J = (J1, J2, J3) 
and suppressing all independent variables but z )  

w(0) = w( - H )  = 0, J3(0) = J3( - H )  = 0, (2.5a, b )  

which state that the vertical fluxes of fluid mass and of organisms vanish a t  both 
boundaries. We shall take the suspension boundary to coincide with the plane 
even when the boundary is free, and consider the cases ff (both free), fr (top free, 
lower rigid) and rr (both rigid), with conditions 

a2wlaz2 = 0 on a free boundary, ( 2 . 5 ~ )  

awl& = 0 on a rigid boundary. (2.5d) 

A final special case will be that of an infinitely deep fluid; there we replace the 
lower conditions by the requirements that u and c vanish as z -+ - 00. 

The central hypothesis of the model, that a continuous function c(r , t )  may 
replace a complex distribution of self-propelled particles, is certainly a crude 
simplification of the phenomenon. In  the densest parts of the pattern we are 
dealing with interparticle distances of the order of 10-2 to lO-3cm, yet we wish 
to resolve pattern structure on the scale of the sublayer thickness, which in 
typical experiments is about I mm. It therefore seems likely that the averaging 
envisaged here is over only 10-100 organisms, and that the vertical resolution in 
determining sublayer distributions (see $2.2) will be a fraction of the sublayer 
thickness. Another difficulty is that the function D(c, z )  is unknown, and for the 
most part we take D to be constant. There are certainly substantial errors in 
such a description of the random component of the organisms' motion. Fortu- 
nately in the linear stability theory (§§3  and 4) we find that certain important 
results (e.g. pattern size) are insensitive to the sublayer concentration profile; 
also, it seems likely that simple diffusion gives a reasonably accurate description 
over the main body of the layer. 
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2.2. The equilibrium solution and dejinition of dimensionless variables 

It is natural to take the basic pattern-free equilibrium to be a solution of (2.1)- 
(2.5) which is independent of x, y and t and has u = 0. For such a solution (2.1) 
determines p for given c and (2.3) and (2.4) integrate (with condition (2.5 b ) )  to 
give 

In this paper we shall refer to two special cases: 

cU(c, z )  - K(C, z )  dc/dz = 0. (2.6) 

(I) U = U,, K = K ~ ,  K~ = 6 ~ ~ ;  U,, K,,, 6 = constants; 

K/U not explicitly dependent on z ;  K~ arbitrary. 

Evidently, case I1 contains case I; we shall frequently specialize to case I for 
specific computations. In  both of these cases we may integrate (2.6) in the form 

(11) 

- dc, K(z)  = equilibrium concentration profile, 

which is an implicit definition of K as a function of z .  Using the non-negativity of 
the integrand we may invert to obtain c = K(z)  explicitly, where K is monotone 
increasing. The positive constant K(0)  is arbitrary and is equal to the maximum 
concentration in the sublayer. Another quantity of interest is the mean concen- 
tration c , .  We define ... 

0 
cO = K(O), c, = '1 Kdz. 

H -TI 
For example, in case I we have - 

K = coexp(UoZ/KO), co = 7 h eA U,H - 1crn). =----- 
KO 

TO illustrate case 11, consider the family of profiles generated by the choice 

K/U = zO(k + 1) (c/cO)k, z,, = constant, (2.9) 

where k is a positive number. We have 

--+1] ) -z,(k+l)/k < 2 6 0, 

(2.10) 

k z 

K(x) = co [ ( k  + 1) 20 i 0, z < - xg( k + l) /k,  
c, = cOzo/H if H > zo(k+ l)/k. 

This family includes the exponential profile (2.8) as the limit for small k and 
a rectangular profile as the limit for large k,  and describes tolerably well the 
observed profiles. 

The equilibrium profiles provide convenient length scales for non-dimensionali- 
zation. Evidently, KIU is a local scale height and its surface value is 

h = Ko/Uo, (2.11a) 

where K~ and UO are the values of K and U when z = 0 and c = co. An important 
dimensionless parameter is the ratio of H to h [cf. (2.8)], which we shall denote by 

h = H/h. (2.11 b)  
38-2 
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However, in case 11, where the profile may have a complicated form, it is some- 
times useful to define an equivalent sublayer thickness he by 

h e  = ( C m / C o ) H  (he G H ) ,  (2.12a) 

and to define a corresponding ratio 

A, = H/he (A ,  2 1). (2.12 b )  

If the layer is sufficiently deep, so that K vanishes on the lower boundary or is 
at least very small there, he will be equal to the thickness of a sublayer of constant 
concentration co having the same total number of organisms per unit horizontal 
area as the entire layer. 

For the illustration (2.9) and (2.10) of case I1 we see that he = zo if 

H > x,(k+ l ) /k .  

The occasional advantage of (2.12) over (2.11) as a unit of length will be apparent 
in $4.4.  We refer to a layer having small h (equivalently A, close to 1) as shallow, 
and one for which A, E h 

If Uo is taken as a characteristic speed in the problem, a set of dimensionless 
variables appropriate to the analysis of the stability of the equilibrium K(z) can 
be obtained by introducing h as the unit of length: 

1 as deep. 

r* = h-lr, t* = U0h-lt, U* = U ~ l u ,  p*  = ( h ~ U o ) ( p + p g z ) , }  (2.13) 

C* = CG'C,  K* = K/KO,  K: = K1/KO, u* = Ug1 u. 
The scaling of c, which is already dimensionless, is included for convenience. 

In  the starred variables (2.13) the equations become 

v-l du*/dt* + V*p* - V*'U* = - RG*k, 

dc* /d t*+V* . [c"U*k-D* .V*~*]  = 0 

(2.14 a )  

(2.14b) 

and the flux condition is 

c * ~ * - K * a c * / a Z *  = o (2" = 0, - A ) .  (2.14 c) 

Here a = ./KO (2.15) 

is a Schmidt number for vertical diffusion and 

R = gat, h 3 / v ~ ,  = gaC, K i / V  ut (2.16) 

is a parameter which measures the magnitude of the Archimedean force. We shall 
refer to R as the 'Rayleigh number' although the parameter of the BBnard 
problem is m o e  closely analogous to the parameter A4R [cf. (2.22)]. The experi- 
mental data discussed in $ 5  suggest that typical values of a exceed 1 and that 
values of R are usually in the range 1-100. 

2.3.  Linear equations 

We henceforth drop stars whenever the dimensionless variables (2.13) are used. 
The dynamical stability of the equilibrium will be studied in the usual way by 
linearizing (2.14) and separating out time and horizontal space variables. We set 
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c = K(z)  + #(x, y, z ,  t ) ,  where q5 is a perturbation, and eliminate the horizontal 
velocit'y components and pressure by applying the curl operator twice to the 
linearized momentum equation and ta,king the z component of the result. On 
substituting 

we obtain the equations 

($, w) = eYtf(x, y) (Wz), W(z) ) ,  vy = -a% 

(?/a) (D2 - a') W -  (0'- a')' JV = GRQ, (2.17) 

~@++WDK+D~=+CL~K~@ = 0, (2.18) 
where D = d/dz and 

As is shown in appendix A, this last formula can be rewritten as 

9 = K(DK) D[@/(DK)].  (2.19) 

The flux boundary conditions are 

P ( 0 )  = 9=( - A )  = 0. (2.20) 

We show in appendix A that for cases I and I1 (see $2.2) y is necessarily real 
for solutions of (2.17)-(2.20) with conditions from (2.5). The neutral-stability 
boundary will therefore be given by a function R(h, a) determined by the condi- 
tion y = 0. The critical values of R and a, denoted by R, and a,, are determined by 
minjmizing R for fixed h over all branches and all non-negative a. 

2.4. The shallow-layer limit 

It appears that bioconvection can only occur when asublayer can in some sense 
be defined, so the limiting case considered in the present subsection is mainly of 
formal interest. The stability problem obtained for shallow layers may be used 
to illustrate the nature of the eigenvalue problem and the method of solution. 
To avoid inessential complications we consider only case I .  If we rescale the 
(now dimensionless) vertical co-ordinate by A, z = xh (which in effect makes H 
the unit of length), the equation for K becomes 

DK = hK,  D = a/&, (2.21) 

and for small h we have 

This switch in length scale from h to H suggests the change of variables 

K = 1 +h.Z+O(h'). 

h'y= 7, h2W= W ,  ha = ii, 

R4 = h4R = g ~ c , , U a H 4 / ~ ~ ~  

in which case (2.17) indicates that the parameter 

(2.22) 

will replace R. If we now combine (2.18) and (2.19) and allow h to approach zero 
with barred quantities fixed, we obtain the following problem for shallow layers: 

(TI..) (DZ- 3) W- (D2- i i 2 ) 2  w = iF'R,(D, (2.23) 

pD+V-D'@+iF28@ = 0, (2.24) 

D(D = 0, x = - 1,o.  (2.25) 
- 
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If 6 = 1 equations (2.23)-(2.25) are identical to the linearized stability equa- 
tions for a Boussinesq fluid a t  a Rayleigh number R, and Prandtl number CT, but 
with the boundary condition (2.25) on the heat flux replacing the conventional 
condition CD = 0 corresponding to fixed wall temperature. In  this analogue - @ 
replaces the temperature perturbation, K~ the thermal diffusivity, a the coefficient 
of thermal expansion and co U,/K~ the equilibrium temperature gradient. 

Some calculations for this linear BBnard problem were included in a paper by 
Hurle, Jakeman & Pike (1967; see also Nield 1968), who showed that a treatment 
similar to the classical one is possible. As R, is increased, the mode which is first 
unstable is even in X+ 4, and Hurle et al. found that R4, is 120 for case8 and 720 
for case rr,  and that the critical wavenumber is zero in each case. Using estimates 
derived from two variational principles (Chandrasekhar 1961; see also $3) we 
find that case f r  is similar, with R4, = 320 and ii, = 0. 

The analysis of the onset of instability is t,hus simpler here in cases f r  and rr 
than in the BBnard problem with conventional boundary conditions, since expan- 
sions with respect to CC may be used to study the critical point. To see how these 
expansions proceed, we first note that (2.24) may be integrated, using (2.25), to 
dbtain 0 so CDdS(7+6Z2)+/ -1 V d Z  = 0. (2.26) 

Since we are interested in solutions for small 7 and a, (2.26) suggests that both 
7 and should be taken to be O(CC2); (2.23) then suggests that R4 is O(1). We 

(7, V )  = a2n+yyn, Wn), a) = c a2nan. (2.27) 

-1 

thus try CO co 

n=O n=O 

Substitution gives a sequence of equations starting with 

and continuing with systems of the form 

mD0 = 0 (2.28) 

(2.29) 

D2Qn+1 = Yn@o+gn(Wn, ..., w,; Qn-l, ... 7@0; Yn-l, .'.,YO), (2.30) 

where fo = 0 and go = Wo + 60,. The boundary conditions follow from (2.5) and 
(2.25). 

Because of the linearity and (2.25) we may take Q0 = I and CDn(0) = 0, 
n = 1,2, ... . The solutions are obtained a t  each stage by computing W,, then 
7% and finally CDn+l. Since (2.30) with the boundary condition (2.25) is a self- 
adjoint problem, the solvability condition for (2.30) is 

The resulting, expression for yn is identical to that obtained by substituting 
(2.27) into (2.26). The series formally determines 7 as a function of R, and a. 
The calculations are simple and we shall note only the expressions for yo and yl: 
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Case ff fr rr 

Rlc 120 320 720 
ac 0 0 0 
Y1(Rdc) - 0.0301 - 0.0340 - 0.0368 

TABLE 1. Critical parameters for the shallow layer, 6 = 1. yo(&) = 0. 

The critical Rayleigh number RdC is thus obtained by solving the simple 
boundary-value problem for Wo, and y1 can be found once 0, has been obtained. 
The results for 6 = 1 are given in table 1. Since Y ~ ( R , ~ )  is negative, the point ?i = 0 
is a relative minimum of the neutral-stability boundary, and when R, exceeds 
R,, slightly the growth rate has a local maximum a t  the positive wavenumber 
( -  BrolY1P. 

3. General results 3.1. Estimates of R(h, a )  

It  is shown in appendix A that whenever U / K  has no z dependence (case 11) the 
growth rate y in (2.17) and (2.18) is necessarily real. The analogous statement for 
the shallow layer was proved by Hurle et al. (1967). Since y then vanishes on the 
neutral curve, variational principles can be used to eskmate R(h, a )  (Chandra- 
sekhar 1961); it  is known from other similar problems that these approximations 
(which are upper bounds) can be accurate to within a few per cent for the simplest 
trial functions. We shall use this method to test the hypothesis that ac = 0 for 
arbitrary h in case I. 

The two variational principles can be stat,ed in term; of real functionals I ( @ )  
and Q( W )  defined by 

Here Q is a dimensionless viscous dissipation per unit horizontal area and the 
functions r(z) and g(z)  are defined in terms of K(z) ,  K and I C ~  in appendix A. Then 
R is given by either of 

a2R = min(I(CD)/Q(W)), (D2-a2)2W = --a, Wsatisfies ( 2 . 5 c , d ) ,  (3.3) 
rg 

a2R = min (Q(W)/I(CD)), CD satisfies (2.18)-(2.20); (3.4) 
W 

the minimum being over all functions satisfying the boundary conditions, and 
the dependent function ( W and CD in (3.3) and (3.4) respectively) being defined 
for each trial function as indicated. 

In table 2 we show results of calculations with constant U ,  K ,  6 = 1 using @ = 4 
in (3.3) and W = sin(nz/h) in (3.4) respectively. Both calculations are for free 
boundaries. In all cases R had its minimum a t  a = 0 and for small h the tabulated 
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(a) 

h ... 0.5 1 

a= 0 2459 195-9 
0.1 2461 196.3 
0.2 2465 197.5 
0.3 2471 199.4 
0.4 2479 202.2 
0.5 2491 205.9 
1.0 2585 237.1 
2.0 2981 385.3 

r - A -  7 
2 

19-55 
19-7 
20.2 
21.0 
22.1 
23.7 
41.6 

128.2 

( b )  
w-7 

0.5 1 2 

2465 197.0 19.9 
2467 197.3 20.1 
2470 198.5 20.5 
2476 200.5 21.3 
2485 203.2 22.4 
2496 206.7 23.9 
2588 237.4 38.2 
2973 380.2 126.0 

TABLE 2. Estimates of R for marginal stability in case I, freefree, 6 = 1. 
(a) (3.3) used with @ = ez. (b) (3.4) used with W = sinlrzfh. 

values bear out the very slow increase of R which is predicted by the values of 
y1 in table 1.  

Estimates of R(h, a )  when h is large but hR is of order unity are given in $4. 
When h = co, i.e. when the layer is semi-infinite, with free or rigid top surface, 
the eigenvalue problem may be solved exactly by the series method used in 9 3.3 
below. The neutral-stability boundary is shown in tabIe 3, along with estimates 
of R derived from (3.3) with 0 = ez. For each value of a in the table, wavenumbers 
smaller than a correspond to growing modeswhen R exceeds the tabulated 
values. 

3.2. Approximate expressions for y 

The accuracy of (3.3) rests on the fact that the equation for W is solved exactly. 
A similar approach can be used to compute'y approximately. Given a trial 
function @we solve [cf. (2.17)] 

(D2 - a2) ( 0 2 -  a2q2) W = - a2R@, p2 = 1 + y/a2c. (3.5) 

As in the shallow-layer analysis an expression relating y to @ and W can be , 

obtainedbyintegrating (2.18)from - A  tooandusing (2.20) (seealso 93.3 below): 

A simple choice for @ in case I1 is 
@ = D K  (3.7) 

since 9 then vanishes identically. In  case I (with K~ = 6 and @ = eZ)  the com- 
putation is straightforward and gives, in the limit h-too, an implicit equation 
for y :  

-6u2 ( A  = 00, free surface). (3.8) 1 2+a( l  + q )  
(1 +q)  ( 1  +a)2 ( 1  

This equation was solved numerically and y as a function of a always showed 
a unique maximum ym (at a wavenumber am). In  figure 4 we show ym and am as 
functions of R, v and 6, or more explicitly, y,/c and am are shown as functions 
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1.0 

a m  

0 

0.5 

5 

R b  

FIGURE 4. The solid curves indicate (a )  the predicted pattern wavenumber a, and ( b )  the 
maximum growth rate divided by u as functions of RIG, for &/a = 0 and 0.25, h = co. 
The curves for the profile parameter k [cf. (2.10)] were obtained from (3.8) for k = 0 and 
from (3.1 1) for k = a. The plotted points are exact values for k = 0 computed as described 
in 33.3 for the following parameter values: 0, 8/fa = 0, u = 1 ;  0 ,  &/a = 0, u = 4;  
m, &/g = 0.25, G = 4. 

of Ro and S / g .  Note that the estimates in table 3 for the free-surface case can be 
obtained by setting y = 0 and 6 = 1 in (3.8). 

If the horizontal diffusion term in (2.18) is neglected, the approximation 
(3.5)-(3.7) can be given a simple physical interpretation. In  neglecting diffusion 
we nevertheless retain the sublayer thickness h as a parameter and regard K as 
an arbitrary prescribed concentration profile. Then CD as defined by (3.7) deter- 
mines an infinitesimal vertical shift of K(z)  as the inktability develops,? and (3.6) 

(3.9) 

Viewed in this way y is the growth rate for a prescribed concentration profile, the 
process by which the stratification was established having disappeared from the 
problem. This provides a way of looking at the model studied by Plesset & Winet 

is replaced by 0 1 ( y+  W ) D K d z  = 0. 
- A  

(3.10) 

With (3.10) substituked in (3.9), y = - W(1) and (3.5) can be solved to obtain the 
following equation for infinite depth: 

y 2 + a 2 a y ( l + q )  = Rag/(l+cotha) ( A  = 8, free surface). (3.11) 

This expression agrees with that given by Plesset & Winet if the q appearing on 
the left is replaced by 1. Curves based on (3.11) are shown in figure 4. Note that 
(3.11) is in fact an exact result when all diffusion and the negative geotaxis are 
neglected. This is because (3.9) with (3.10) is then equivalent to (y + W )  DK = 0. 

t Physically, 0 = DK corresponds to a modulated vertical shift of the equilibrium 
concentration, and can be generated by K ( z + f e Y t )  for smallf(z, y). 
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Rigid 

a Computed 2( 1 +a)* 

0 2.00 2.00 
0.05 2.41 2.43 
0.10 2.83 2.93 
0-15 3.29 3.50 
0.20 3.80 4.15 
0.40 6.53 7.68 
0.60 10.83 13.11 
0.80 17.23 21.00 
1.00 26.26 32.00 

Free - 
Computed 2 4  1 + a)3 

0.00 0.00 
0.12 0.12 
0.26 0.27 
0.45 0.46 
0.67 0.69 
2.07 2.20 
4.60 4.92 
8.69 9.33 

14.85 16.00 

TABLE 3. Computed and estimated values of R for a fluid of infinite depth, case I, 8 = 1, 
for the upper surface rigid and free. The formulae follow from (3.3) with CD = ez. 

3.3. Solution for inJinite depth, case I 
To solve the eigenvalue problem exactly for h = co, we write 

w = A1 W1-k A2 j< + A3 1r39 

where the are solutions of 

(y + 6a2 + D - D2) (D2 - a2 ) ( 0 2  - a2q2) W = a2Re2: W 

We take 
rn 

n=O 

p l  = a, p 2  = aq, p 3  = +{I + [i + 4(Sa2 + y ) ] i ) .  

The boundary conditions are 

W = D 2 W =  ( D - 1 ) ( D 2 - a ~ ) ( D 2 - a 2 q 2 ) W = 0 ,  z = O .  

Thus y can be found by applying Newton’s method to a 3 x 3 determinant. 
Numerical results show the expected dependence on (T when a, and ym/g are 
expressed as functions of R/(T and S/g. The exact values of a, and y,/v agree 
reasonably we11 with the approximate values calculated as in $3.2, the largest 
discrepancy in a, occurring for 6 = 0, where the error is 7 % for (T = 4. Errors in 
y,/a are less than 3 % for (T = 0, but for 81.- = 0.25 the exact value is larger than 
the approximate one by 15% a t  R = 8, (T = 2 (see figure 4). We recall that 
exponential and square profiles are two extreme cases within the family (2.10) of 
concentration profiles which might be considered representative in this problem. 

3.4. Computation of R,(h) 

We turn now to the h dependence of the critical Rayleigh number. In view of the 
estimates in $3.1 the conjecture a, = 0 appears to be reasonable in case I. We 
have not been able to show that this is true generally, but we shall show here that 
quite generally R(h, 0) is finite and positive. Assuming that the conjecture holds 
and R,(h) = R(h,O), our sufficient condition for instability gives the critical 
Rayleigh number. 
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h 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
4.0 
5.0 
7.0 

10.0 
00 

ff 
2 459.0 

195.9 
49.04 
19.55 
10.03 
6.017 
2.883 
1-734 
0.892 
0.492 
0.000 

f r  
6213.0 

470.2 
122.2 
42.82 
21.09 
12.19 
5.481 
3.132 
1.494 
0.771 
0.000 

r r  

14 790.0 
1185.0 

300.0 
121.3 
63.37 
38-82 
19.54 
12.44 
7.244 
4.808 
2.000 

TABLE 4. R,(h)/c? for case I, with two free surfaces, one rigid and one free or both rigid. 

The analysis follows the scheme outlined in $2.4. Expansions of the form 

a3 a3 

(7) W )  = a2n+2(yn, K), 0 = 2: a2Qn 
n=O n=O 

are substituted into (2.17)-(2.20)) and R(h, 0) is obtained by setting yo = 0. One 
analytical point requiring comment concerns the form of the solvability condi- 
tion. The problem for 0% is now 

D.Fm = - ~ ~ @ ~ + g ~ ,  gn = -K(DK)D(@/DK),  (3.12a)b) 

Sn = 0) 2 = --h)O) ( 3 . 1 2 ~ )  

QO(O) = 1) CD,(O) = 0, n 3 1. (3.13) 

The boundary-value problem which is adjoint to tbe homogeneous version of 

D[K(DK)DY] = 0) (3.14 a )  
(3.12) is 

D Y  = 0,  z = -h,O. (3.14b) 

The solution for this problem is Y = constant. The solvability condition is there- 
fore again obtained a t  each stage simply by integrating the equation for Qn 
[cf. (2.26) and (3.6)]. 

The remainder of the calculation is straightforward and there results 

y , , [ l -X( -h)] -R/o  - A  (DzTl(,)zdz+/o - A  K ~ D K ~ z  = 0, ( 3 . 1 5 ~ )  

where D4WO = DK with Wo = 0, OWo or DzWo = 0 for z = -h,O. (3.15b) 

For case I the values for &(A) are given in table 4. We find 

3, q 4 p 4 )  A + 0, 

where Dl = (120, 320, 720) in cases (#)ff,r) rr) in agreement with the shallow-layer 
theory. We also note that for a free upper surface 

R, WZlh, + a, (3.16) 

where pz = (3 ,4)  for a (free, rigid) lower boundary. Thus a free sublayer on 
a sufficiently deep layer is always unstable. If R is fixed and the upper surface is 
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free, there is, moreover, a value of h (and hence a value of H )  below which the 
layer is stable. For fixed A, there is correspondingly a value of R (hence eo) below 
which the layer is stable. The last statement remains true if the reference con- 
centration in (2.14) is taken to be the mean concentration e, rather than co; this 
change in effect multiplies the tabulated values of R, by (1 - e-h)/h. 

4. Singular perturbation for deep layers 
4.1. Remarks 

The calculations given in ss3.2 and 3.3 describe the nature of the linear stability 
in deep layers when R is O( 1) (that is, when R is significantly greater than R,); 
there the maximum growth rate presumably gives an indication of pattern size. 
At the critical boundary, on the other hand, the onset of instability resembles 
a typical convective instability but with the unusual property that a, = 0. Our 
aim in the present section is to study the transition between these two distinct 
regimes in a parameter range for which a perturbation analysis is feasible. 

Such an analysis is motivated by observations of pattern formation in slightly 
tilted containers (see figure 1). Since the layer depth then varies linearly and 
rather slowly, one would expect to see rather large-scale structures near the 
critical depth (where a, is very small), followed by a gradual reduction of pattern 
size until the value appropriate to infinite depth-is reached. What is in fact 
observed is an abrupt appearance of a well-defined horizontal scale (determined 
by the spacing of polka dots or columns) with no noticeable transition through 
small wavenumbers. 

The key to a study of the transition region in deep layers is the introduction of 
the limit process 

h-tm with B = h R ,  & = h a ,  $7=h2yfixed (4.1) 

in place of the expansion for small a. In particular the horizontal wavelength will 
be of the order of the layer depth in the transition region. The justification for the 
choice (4.1) is the following: for h >> 1 the behaviour of R, is given by (3.16), 
suggesting that 8 is the proper O(1) Rayleigh number in the transition region. 
Moreover, near a = 0 on the neutral-stability boundary we expect to have 
R - R, = O(a), and in order to be able to resolve the transition we shall therefore 
want a - A-l. Finally, the definition of p is suggested by (3.6) when tilde variables 
are substituted. (Physically we expect the maximum growth rate to be estab- 
lished by the effect of horizontal diffusion, which is O(a2) in (3.6).) If the quantities 
(4.1) are introduced into (3.8) we obtain in the limit (v is fixed and O(1))  

p = d R / (  1 + q )  - 6E2, q 2  = 1 + y/&. ( 4 4  

We shall show that (4.2) is an asymptotic result provided that 8 and 6 are 
numerically large, with B/& = O(1). Thus in a sense (4.2) is the asymptotic (for 
large 8) form of a certain equation we wish to determine, the latter equation 
providing the dependence of $7, upon a right up to the critical value A, (note 
that B, = 4 for case fr). 
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4.2.  Construction of matched expansions 

The analysis is facilitated by the use of matched asymptotic expansions, since 
the sublayer (or inner) region requires special attention, while the flow in the 
main body of the layer (the outer region) has an especially simple structure. The 
correct choice of outer variable is suggested by the momentum equation (2.17) 
written in the variables (4 .  I) : 

0 4  W = A-2a"2( 1 + q2) 0 2  W - A-3G2BO - h-4cX4q2W. ( 4 . 3 ~ )  

The corresponding equation obtained from (2 .18)  is, in case I, 

D 2 0  - DO = ez W + h-2(j7 + &cX2) O. (4 .3  b )  

For (4 .3  a )  there is a simple limit as h-tco, namely 

D4W = 0.  

However, it is clear that this limit is not valid uniformly over the layer and we 
introduce an outer variable which makes D2 formally of order 

z" = x/h = O(1) (outer region). (4 .4)  

The fact that limits with z" fixed are clearly non-trivial provides additional 
evidence that d is the correct O( 1 )  wavenumber in the transition region. 

If (4 .3a )  is written in terms of the outer variable we have 

( D - 5 2 )  ( D 2 - 6 2 q 2 )  w = -hd2R07 D = d/dz". (4.5) 

In  view of (4 .3  b )  it is reasonable to expect that, in case I, O is exponentially small 
in the outer region (a fact already suggested by the expansions in a),  so that 
(4 .5 )  reduces to 

We shall apply a particular ordering of W and O formally and show that the 
required matching can be carried out using standard methods (Cole 1968, chap. 1). 
We consider case I first. 

( D ' 2 4 2 )  (D2-62q2) w = 0. (4 .6)  

Inner expansions having the forms 

W = h-2Wo + k3W,  + h-4W2 + . . . , 
O = @,+h-1O1+h-2O2+... 

(4.7 a )  
(4.7 b )  

are introduced, and we consider an outer solution of (4 .6):  

@ = h-l[A(h)sinhbz"+B(h) coshBx"+C(h)sinhdqz" 

+ D(h)  C O S ~  a"@] - + + . . . . (4 .8 )  

The boundary conditions on the lower wall require 

r n ( - 1 ) = o ,  BVn(-l) or D2Rn(-1)=o.  (4 .9 )  

Substitution of (4 .7 )  into (4 .3  a, b )  with the help of the conditions on z = 0 gives 
a series of easily solvable problems and we have for the first two terms 

W, = ~ r , z + , 8 ~ 2 ~ ,  

1~ = d 2 W ( i + ~ 2 2 - e z ) + ~ r ~ 2 + , 8 ~ 2 3 .  
(4.10) I Oo = eB, 

O~ = 0, 
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Here a, and P, are arbitrary constants. To indicate how these constants are 
determined by matching, we consider the outer expansion of the inner partial 
sum of W up to terms of order h-3, obtained simply by discarding exponentially 
small terms: 

h-Z%+h-3K = h ~ , X ” 3 + ~ 1 & 3 + h - ~ ( a 0 & + g d ~ ~ & 2 )  +O(h-2). (4.11) 

The addition of the term h-4W2 to the left side would add a polynomial to the 
right side, but it is apparent that only multiples of Z5, E4 and Z3 respectively could 
thereby be introduced into terms of order A ,  I and h-l, with even higher powers 
coming from subsequent terms. Thus the terms on the right side of (4.11) must 
coincide with terms of these orders in the power series for m. Now since (4.9) must 
be satisfied, the term of leading order in (4.11) cannot be a multiple of Z3. Hence 
Po = PI = 0. The last term on the right side of (3.11) gives the three conditions 
(withA = A,+h-lA,+..., etc.) 

B,+D, = 0, Bo+q2D, = R, (4.12 a) 

A,  + qc, = a&. (4.126) 

The first two of these, along with two Conditions from (4.9), determine mo 
uniquely, while the last determines the remaining constant a,. To complete the 
calculation, the equation for 9, valid to order 1, folIows from integration of 
( 4 . 3 ~ )  with H i  = a,z: 

7 = a, - 662. 

Solving for A,, ..., Do using (4.6) and ( 4 . 1 2 ~ ) )  and evaluating a, from (4.12b) we 
obtain 

7 = dRQ(d ,  q)  - 662, (4.13) 
where, for case f r ,  

1. (4.14) 
sinh d sinh dq  - 2q cosh d cosh dq + 29 

q sinh a” Gosh d q  - cosh d sinh dq 
G(d ,q )  = - 

This is the desired equation for the growth rate, valid through the transition 
region as discussed in 5 4.1. 

Before considering (4.13) in detail we indicate how the higher-order terms can 
be found. In  order to determine the equation for 7 to terms of order h-n inclusive, 
inner terms up to W,,, must be obtained. (Actually for the last term only D2W,+, 
need be known.) Each of these can be written as a finite sum of the form 
po(z) + ezpl(z) + . . . + emap,(z), where the pi are polynomials. Only p, enters the 
matching: If we now suppose that a,, ..., a,-,, Po, ..., P, are known, then the 
coefficients of zo and z2 in the outer expansion of ... +h-(n+3)Wn+, are 
known up to terms of order h-Cn+l). The corresponding matching conditions, along 
with the two conditions (4.9) on the lower wall, are then sufficient to determine 
m,, and czn can be found by matching the term in 2. Finally P,,, is obtained by 
matching with the Z3 term in Fn-,. We have carried out these calculations for 
n = 2 and record the results in appendix B. 
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0 4 
A 

FIGURE 5. Normalized pattern wavenumber and growth rate as functions of A = (R - R,)/R, 
for a deep layer. a: and y: are the asymptotic values of a, and ym for h -+ m, R < 1, and 
can be found from (4.2). 

4.3. Discussion of (4.13) 

Wefirstnotethat,ifBandiiare bothlargewithqandBl6 bothO(l), theexpression 
(4.14) reduces to G = 1/(1 +q) and (4.13) is then identical to (4.2). To determine 
yrn (the maximum of j7) and Zm when 2 is O(1) we first suppose that cr >> I so that 
q -N 1. We then may use 

(case f r ) .  
sinh2 6 - 1.2 

limG(6,q) = - 
q-1 

With this simplification f r n  and a“, are shown in figure 5 as functions of 
A = (R - Rc)/Rc. It is found that once R exceeds Re by 10 yo the pattern wave- 
number remains within 25 yo of the asymptotic value 

a: = $RS (R < I ,  h = CO). (4.15) 

This is the value of a which maximizes y in (4.2) and it is therefore appropriate 
to a layer of infinite depth when R is small compared with unity. Thus the 
transition from a ‘stable’ to a ‘deep’ layer is found to be remarkably abrupt for 
the weakly unstable situation considered here. We are led to conjecture that this 
abrupt transition will also occur when R has more realistic values in the range 
1-10. 

There remains the question of the possible effect of finite cr on these conclusions, 
(4.15) and figure 5 being formally valid only for large cr. An indication is given 
by the Prandtl-number dependence of the asymptotes 7% and 6:. We write (4.2) 
in the form 

(4.16) B/GS = 0 = ( q +  1)  [y(q2- 1) + 11 (y = +). 
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Differentiating (4.16) with respect to B and setting dyldG = 0 we obtain a second 
equation in q and 8: 

Eliminating q from the last two equations produces a quadratic equation for ~ ( 0 ) :  

g ( e - p ) 7 2 + ( -  2e3+ 1002- ioe- i )r  + 1 = 0. (4.17) 

Examination of the real roots of (4.17) shows that when 7 > 3j (on the basis of 
estimates given in $5, 8 is a satisfactory lower bound) the parameter 8 varies 
between 2 + 4 3  and 4, the latter corresponding to cr = co [cf. (4.15)]. Thus a; is 
within 8 % of the value at  CT = co when cr exceeds $8. The quantity yz21R2 varies 
from 0-041 to 0.0625 as crlS increases from $ to a. Consequently, in the limit 
considered here the effect of (r on the development of the instability is not very 
significant. 

42+( i -o )q++e  = 0. 

4.4. Case I1 

We now consider the effect of the choice of U and D upon the first-order expression 
(4.13) for the growth rate. We shall show that, if we define (still in the dimension- 

8 = 1 K 1 ( K ,  z )  DKdz 

and use the equivalent sublayer thickness defined by (2.12a) in place of h in the 
definition (2.13) of the starred variables, then (4.13) holds also in case 11. 

The proof hinges on the fact that the exact form of K(z)  enters into the com- 
putation of a0 only through the term z2 in the outer expansion of the inner W,; 
this term contributes the only inhomogeneous matching condition at  that order. 
Now in case I1 we have @, = DK and therefore 

less variables (2.13)) 0 

--A* 

D2JK = - d z 2 I z  K ( z ) d z + d 2 R I 0  - -A# K(i )dz ,  

which immediately gives the coeEcient of 3 in the outer expansion of W,. If  
(4.13) is to be unchanged we must have 

--A, 

0 
K(2)d.z = 1. (4.18) 

But (4.18) follows from the choice of he as the unit of length, since (4.18) and 
( 2 . 1 2 ~ )  are then equivalent. The above definition of 8 follows easily from the 
integral of (2.18) with W = W, and @ = Do = DK, with @,(O) taken as unity. 

S- -Ae 

5. Discussion 
The measurements of Winet & Jahn (1972) and the data reported by Plesset 

& Winet (1974) (see table 5 below), both for Tetruhymenu pyriformis, provide 
estimates of the values of the dimensionless parameters in typical Tetruhymena 
cultures. The variable c should be regarded as the volume density of only those 
organisms which actively participate in the pattern (here, the negatively geo- 
tactic organisms). A proper determination of c,  U ,  K and K~ would presumably 
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Pattern wavenumber, a, 
r 

0.15 1.21 x 5.9 1.5 0.94 0.92 0.73 (8 = 0, U = 1) 
0.05 1.1 x 6.0 4.4 0.57 0.70 0.69 (8 = 0, = 4) 

TABLE 5. Data from Plesset & Winet (1974) compared with theoretical values of a, 
obtained from the values shown in figure 4 (a).  The theoretical values given by Plesset & 
Winet are 0.86 (h = 0.15) and 0.65 (h = 0.05), and were obtained from (3.11) with q = 1. 
The parameter k is defined in (2.9). 

h > 
h (-1 agco R u Measured k = co k = O  

require a statistical average which accounts for the variability of organisms; as 
a rough approximation we shall simply regard c as the difference between the 
actual volume density and the (constant) value usually observed in deep cultures 
well outside the sublayer. We take a = 0.09 and U, = 0-045cm/s and assume 
throughout that v = 0.01 cm2/s. We are not aware of any direct measurement of 
effective diffusivities for the random component of the organisms’ motion, and 
we shall therefore infer a value of K, from the estimates of the sublayer thickness 
using K, = U,h. For a typical organism density of 105cm-3 and an organism 
volume of 1-8 x 10-Scm3 we estimate co as 1.8 x With h = 0.1 cm we obtain 
R = 3.5. The two measurements in table 5 are for R = 6 and CT in the range 1-5. 
We take R = 5, CT = 2 and h = 0.1 cm as typical of pattern-forming cultures of 
Tetrahymena pyriformis. 

Wille & Ehret (1968) report a critical depth of 2 mm, and if we assume that 
this critical depth applies to  our hypothetical culture with R = 5 we see from 
table 4 that R/S would be about 45, implying that Sis about 0.1. Another estimate 
of 6 can be obtained from the measurements of pattern size in table 5 .  These were 
calculated from the distribution of internodal distadces when the pattern is 
reticulate. Although these data are not sufficient for detailed comparison of 
various choices of U ,  K and K ~ ,  the indication is that 6 is small compared with 
unity and, if the functions (2.9) are adopted, that the profile parameter k should 
be positive. As a final check, we note that a simple random walk on a cubic lattice 
of side L would lead to isotropic diffusion with K~ = QL2/At = QUO L, and therefore 
6 = K , / K ~  = QL/h. If the mean free path of horizontal diffusion is of the order of h 
a value of S of about 0.1 is not unreasonable. 

The apparent difference between the effective vertical and horizontal diffusion 
prompts us to rewrite the diffusivity tensor as 

D = Kuk+K1l (5.1) 

and to conjecture that the parameter K~ = K - K~ vanishes when no gravity field 
is present. Thus K~ represents the effect of the random vertical movements which 
are involved in the organisms’ response to the gravitational field (and conceivably 
are involved in the mechanism by which the organisms sense the direction of the 
field). The isotropic term K~ I in (5.1) presumably accounts for the homogeneity 
of cultures which are not negatively geotactic. At present we do not know any 
way of obtaining K~ independently so that a comparison with the observed sub- 
layer thickness might be made. Roberts (1970) computes what is effectively 

39 F L M  69 
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a sublayer thickness for negative geotaxis of Paramecium, basing his calculation 
on the idea that the preferred orientation of the body is induced by its shape and 
density distribution. This is a restrictive assumption but Roberts’ result is com- 
patible with (5.1), in the sense that it shows one way of relating vertical diffusion 
directly to the response of the organism to the gravitational field. In  any case, 
even for non-identical organisms, dispersion in the motility can be modelled in 
terms of these diffusion constants. 

A related example of the combined effect of random and directed motion of 
organisms, leading to the formation of macroscopic structures, was studied in 
a continuum model by Keller & Segel (1970). In  their work an equation similar 
to (2.4), involving a chemotactically induced flux of organisms, was coupled with 
diffusion-reaction equations. Their chemotactic flux, proportional to the gradient 
of concentration of a chemical, corresponds to our geotactic flux kcU. The 
analogy suggests that the latter term may also be best regarded as proportional 
to a gradient, in particular to the pressure gradient. In  the dilute limit c < 1 this 
altered form would be equivalent to (2.4), but in general there would arise new 
physical effects, such as horizontally directed ‘ barotactic swimming ’. Advan- 
tages of using the pressure-gradient form may appear, even in the dilute case, if 
centrifugal acceleration is important. (Some very preliminary observations of 
pattern formation on a rotating turntable indicate that patterns may be modified 
by rotation.) In  addition, it is not impossible that actual chemotaxis is sometimes 
involved in pattern formation by swimming micro-organisms (Brinkman 1968). 

Returning to the present results, we see on comparing table 4 and figure 5 that 
we can estimate the width of the transition from a marginally stable to a ‘deep’ 
culture as H changes slowly with x. We assume that R is constant and that the 
small R theory can be applied to the transition even though R, is not small. For 
the culture with R = 5, a critical depth of 2h and 6 = O-l:we see that once the 
depth has increased to 3h the value of R, has dropped to about 1.2, making A in 
figure 4 about 1. This suggests that the critical depth is marked by a transition 
region in which the depth changes by no more than 0.5 mm. In some of our typical 
experiments with Tetrahymena we observed critical depths of about 4.5 mm, 
which, if S is again assumed to be 0.1, would indicate an R of only about 0.4, but 
nevertheless a value A = 0.25 was reached a t  a depth of 5mm. 

The linear stability problem considered in this paper is an idealization which 
cannot be completely realized in experiments, whether in tilted layers or in 
initially stirred, deep cultures. The sublayer forms in a time of the order of 
HIU, - 30 s, and if R is between 1 and 5 the equilibrium envisaged here presum- 
ably never has a chance to form completely. The transient nature of the con- 
vective instability is emphasized by the description of column formation given 
by Winet & Jshn (1972). 

A related thermal instability has been analysed and observed by Foster (1965, 
1969). He considered BBnard convection in a layer cooled from its top boundary. 
The formation of a cool zone at the top is clearly analogous to  sublayer formation, 
and the onset of what Poster called “manifest convection”, involving the abrupt 
falling away of thin sheets of cool fluid from the top layer, is similar to the rapid 
transition in a tilted layer envisaged in 54.3, the horizontal co-ordinate there 
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taking the place of the time variable in the thermal instability. In  detail the two 
problems are different, but in a broad sense the physical description of the 
instability is the 5ame.t Other dynamical analogies are suggested by observations 
of sedimentation of swarms of inert particles in a viscous fluid and by the 
behaviour of fluidized beds operating a t  small particle Reynolds number, but 
owing to differences in the boundary conditions neither of these analogies is exact. 

The structure of bioconvection patterns following the initial instability con- 
sidered above is likely to be a complex and nonlinear process since the Reynolds 
number based on U, and H is typically in the range 1-5 and any new steady 
equilibria are quite different from a simple vertically stratified layer. The 
application of the present model to this problem, and to the construction of 
steady solutions similar to the polka-dot patterns discussed in $ 1 ,  will be taken 
up in a separate paper. 
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for assistance with numerical work. This work was supported by NSF grants 
GP-32996x a t  New York University and GP 32336x at Columbia University, 
and NIH grant GRS FR-35596 a t  Haskins Laboratories. 

Appendix A. Integral identities of linear theory 

and integrate with respect to z from - h to 0 to obtain 
Multiply (2.17) by W* (where * means 'complex conjugate' in this appendix) 

Now differentiate condition (2.6) and evaluate the result for c = K(z): 

] D K - K ( K , z ) D ~ K  = 0.  (A 2) 
au a K  au a K D K  

Note that the first bracketed term in (A 2) vanishes for both case I and case I1 
since 

With the help of (A 2) and (A 3), note that (2.19) can be rewritten as 

Using this expression and (2.20), we multiply @/DK by the complex conjugate 
of (2.18) and integrate to obtain 

%= -K(DK)  D(@/DK). 

t (Note added in proof.) Other methods of generating a relatively heavy sublayer as 
a model for the initial bioconvective instability were considered by H. Wager (191 1).  

39-2 
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If we subtract a2R times (A 4) from (A 1) and take the imaginary part we find 

8. Childress, M .  Levandowsky and E.  A .  Spiegel 

Im(y) [u2R/' - A  (DK) -1 (@12dz+n-1 /o  - A  ( ~ D W [ 2 + u 2 1 W ~ z ) d z ]  = 0, (A 5) 

which establishes that y is real. 
A partial integration of (A 4) yields 

where I(@) is given by (3.2) with 

The variational principles (3.3) and (3.4) follow from (A 1) and (A6) with y = 0 
by computing the first variation and essentially reversing the steps in the above 
derivation. 

Appendix B. Matched asymptotic expansions for a deep layer, case I, 
,ff',,fr;a = Xa,B = AR,? = A2y, A-+m 

Inner expansions 

42 = i + y / i ~ g ,  = @, + A-w, + o(A-~) ,  
w = A-2( w, + A-lW, + A-ZW, + A-3W3) + O(A--6), 

W, = a,z, W, = a2Bp + $ z 2 - e ~ ] ,  W, aZz+pzz3, 

(Do = ez, QZ = &zoz2ez, 

W3 = G4R( 1 + q2) (32' +&z4 - ez) - a,62~ez(&2 - 42 + 10) 

+ 1 O a , 6 ~ B + $ i ~ ~ a 0 z ~ + c g z .  

Outer expansions 

r, = A ,  sinh dz" + B, cosh 62 + C, sinh Cqx" + 0, Gosh dqz". 

x" = Z/A, w = h-l[Vo + A-~TTQ + o(A-~) ,  

The constants in the above are given by the following expressions: 

a0 = dRG(d,q) ,  a2 = d(Az+pCz) ,  p2 = $d2(Ao+~3CO).  

a3 is determined by matching at the next stage. In  the expression for a, the 
function B is given by (4.14) for casefr and by 

1 q sinh d cosh dq - cosh a" sinh dq 
sinh 6 sinh dq  

G(d,q) = - 
92- l [  1 

for case 8. We give the coefficients in the outer expansion for case f r  onIy: 

A ,  = [I'B/(qz- I)] [qcoshdcoshdq-sinhdsinhdq-q], 

I' = [cosh d sinh dq - q sinh d cosh dq]--l, 
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C, = [I'B/(q2 - I)] [cosh a" cosh a"q - q sinh a" sinh n"q - 11, 

A ,  = (3a, + d2q2) A ,  + d21'R[sinh a" sinh 6q - q cosh a" cosh Bq], 

61 3 

D, = -B, = B/(q2- I),  

c, = (301, + ~ 2 )  c, + 6r8, D, = (3a, + ~ 2 )  D,, B, = 622 - D,. 

The equation for 7 up to terms of order h-, is found to be 

7 = iiRG(6, q)  - 662 - h-I(ga"2B) 

+ P [ ( q 2  - 6)63fiG(a", q)  + 3a"2w2G2(a", q)  + ii3RG1(a", q)]  + O(h-3), 

coth(d), case f f7  

-I'(q2- I)sinha"sinh6:q+G(a",q), casefr. 
where 

R E F E R E N C E S  

BRINKMAN, K. 1968 Keine Geotaxis bei Euglena. 2. Pjlanzen Physiol. 59, 12-16. 
CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability, chap. 2. Oxford 

COLE, J. D. 1968 Perturbation Methods i.n Applied Mathematics. Blaisdell. 
FOSTER, T. D. 1965 Onset of convection in a layer of fluid cooled from above. Phys.  

Fluids,  8, 1770-1774. 
FOSTER, T. D. 1969 Onset of manifest convection in a layer of fluid with time-dependent 

surface temperature. Phys.  Fluids, 12, 2482-2487. 
HURLE, D. T. G., JAKEMAN, E. & PIKE, E. R. 1967 On the solution of the BBnard 

problem with boundaries of finite conductivity. Proc. Roy. SOC. A 296, 469-475. 
KELLER, E. F. & SEGEL, L. A. 1970 Initiation of slime-mold aggregation viewed as an 

instability. J .  Theor. Biol. 26, 399-415. 
LEVANDOWSKY, M., CHILDRESS, S., SPIEGEL, E. A. & HUTNER, S. H. 1975 A mathematical 

model for pattern formation by swimming microorganisms. J .  Protozool. 22, 296-306. 
LOEFFER, J. B. & MEFFERD, R. B. 1952 Concerning pattern formation by free-swimming 

microorganisms. Am. Naturalist, 86, 325-329. 
NIELD, D. A. 1968 The RayleighJeffreys problem with boundary slab of finite con- 

ductivity. J .  Fluid Mech. 32, 393-398. 
PLATT, J. R. 1961 'Bioconvection patterns' in cultures of free-dwimming microorganisms. 

Science, 133, 1766-1767. 
PLESSET, M. S. & WHIPPLE, C. G. 1974 Viscous effects in Rayleigh-Taylor instability. 

PLESSET, M. S. & WINET, H. 1974 Bioconvection patterns in swimming microorganism 
cultures as an example of Rayleigh-Taylor instability. Nature, 248, 441-443. 

ROBBINS, W. J. 1952 Patterns formed by motile Euglena gracilis var. bacillaris. Bull. 
Torrey Bot. Club, 79, 107-109. 

ROBERTS, A. M. 1970 Geotaxis in motile microorganisms. J .  E x p .  Biol. 53, 687-699. 
WAGER, H. 1911 On the effect of gravity upon the movements and aggregation of 

Euglena viridis, Ehrb. and other micro-organisms. Phil. Trans.  B 201, 333-390. 
WILLE, J. J. & EHRET, C. F. 1968 Circulation rhythm of pattern formation in populations 

of a free-swimming organism, Tetrahyrnena. J .  Protozool. 15, 789-792. 
WINET, H. 1969 The influence of gravity and origin of bioconvection in Tetrahyrnena 

pyriformis cultures. Ph.D. thesis, University of California, Los Angeles. 
WINET, H. & JAHN, T. L. 1972 On the origin of bioconvective fluid instabilities in Tetra- 

hynaencc culture systems. Biorheol. 9, 87-94. 

University Press. 

Phys.  Fluids, 17, 1-7. 


