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After a long gap following the classic work of Taylor, there have recently been several studies dealing

with hydrodynamic synchronization. It is now apparent that synchronization driven by hydrodynamic

interactions is not only possible, but relevant to the efficiency of pumping by arrays of cilia and to

bacterial swimming. Recent work has included experiments demonstrating synchronization, both in

model systems and between bacterial flagella. The effect has been demonstrated in model swimmers and

pumps, and large scale simulations have been used to investigate synchronization of cilia and of sperm

cells. In this review article, we summarize the various experimental and theoretical studies of

hydrodynamic synchronization, and put them in a framework which draws parallels between the

different systems and suggests useful directions for further research.
I. Introduction

Reynolds number (Re) is defined as the ratio between typical

scales of the inertial forces and the viscous forces in the Navier–

Stokes equation, which describes the time evolution of fluid flow.

For a fluid with mass density r and viscosity h that flows with
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typical velocity v in a region controlled by boundaries of typical

length scale l, we have Re ¼ rvl/h. In the low Re regime, which

could be due to small size and/or high viscosity, hydrodynamics

is governed by viscous forces. For microorganisms in water, with

typical values l� 10 mm and v� 10 mm s�1, Re� 10�4. Therefore,

microorganisms live the ‘‘life at low Reynolds number’’.1

Towards the end of his distinguished career, which resulted in

numerous ground-breaking contributions to solid mechanics and

fluid dynamics,2 G. I. Taylor turned his attention to swimming

and hydrodynamic activities of microorganisms.3 He realized

that the absence of inertia means that the conventional knowl-

edge about hydrodynamics of swimming cannot be used to

describe how microorganisms propel themselves, and showed,
Julia M: Yeomans

Julia Yeomans is Professor of

Physics at the Rudolf Peierls

Centre for Theoretical Physics at

the University of Oxford. She is

a member of the Oxford Centre

for Soft and Biological Matter,

and is Pauline Chan Fellow at St

Hilda’s College. She obtained her

D. Phil. from Oxford and has

worked at Cornell University,

USA, and the University of

Southampton. Her research

interests include swimming at low

Reynolds number, wetting

dynamics and microfluids, and the

hydrodynamics of complex fluids.

This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c0sm01121e
http://dx.doi.org/10.1039/c0sm01121e
http://dx.doi.org/10.1039/c0sm01121e
http://dx.doi.org/10.1039/c0sm01121e
http://dx.doi.org/10.1039/c0sm01121e
http://dx.doi.org/10.1039/c0sm01121e
http://pubs.rsc.org/en/journals/journal/SM
http://pubs.rsc.org/en/journals/journal/SM?issueid=SM007007


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
02

 S
ep

te
m

be
r 

20
12

Pu
bl

is
he

d 
on

 0
4 

Ja
nu

ar
y 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

01
12

1E

View Online
using extensive arguments and explicit calculations, how force-

free swimming in a viscous medium is possible. In the same

paper, he then went on to propose an original idea, which forms

the subject of this review article. Through interactions with the

Cambridge zoologist James Gray, Taylor was fascinated to learn

of the observations made by several people that when two or

more spermatozoa get close to each other their tails tend to beat

synchronously.4 He proposed that hydrodynamic interaction

could explain this dynamical phenomenon, and made a calcula-

tion that suggested having in-phase synchronized beating mini-

mizes the rate of energy dissipation.3

Viscous hydrodynamics is governed by Stokes equation for the

fluid velocity field vi(r) (i ¼ x,y,z), which reads

�hv2vi ¼ �vip + fi, (1)

where vih
v

vri

, v2 ^ vivi with summation over repeated indices

implicit, p is the hydrostatic pressure, and fi is the density of the

body force exerted on the fluid. The incompressibility of the fluid

puts a constraint on the velocity field, vjvj ¼ 0, which can be used

to nominally solve for pressure in eqn (1) as p ¼
�

1

v2

�
vj fj .

Putting the expression for pressure back in eqn (1), we find the

governing equation for viscous hydrodynamics

�hv2vi ¼
�

dij �
vivj

v2

�
fj: (2)

Eqn (2) shows that the velocity profile in the medium is

determined by the distribution of body forces as well as boundary

conditions, through a tensorial Poisson equation that suggests an

electrostatic analogy. Eqn (2) is reversible, in the sense that for

any solution v corresponding to f, the reverse flow with velocity

�v will be a solution when the force changes to �f. This poses

a fundamental difficulty in creating a net directed flow from

a periodic activity that involves equal half cycles of f and�f, such

as swimming or pumping strokes. For a point force F located at

the origin, eqn (2) yields a fluid velocity at point r that reads

viðrÞ ¼
1

8phr

�
dij þ

rirj

r2

�
Fj ; (3)
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which defines the Green’s function for viscous hydrodynamics,

eqn (2), called the Oseen tensor.5 In analogy to electrostatics, the

Green’s function for point forces near planar6 or spherical5

boundaries can also be calculated and understood via the method

of images.

The long-ranged nature of hydrodynamic interaction apparent

from eqn (3) suggests that a collection of active components that

dynamically exert forces on the fluid medium they are immersed

in could influence each other very strongly, leading to the

possibility of novel collective behaviors. This suggests a strong

analogy to chemotaxis, where the slowly decaying concentration

field near a particle source, C(r) � 1/r, is used for chemical sig-

nalling. It would be interesting to discover what capacities exist

for hydrodynamic signalling.

Since the original work of Taylor in 1951, active hydrody-

namics at low Reynolds number has been the subject of intense

investigation in a variety of different contexts. Here, we aim to

review a collection of these studies, with an emphasis on the

possibility of achieving synchronization, solely via hydrody-

namic interactions, between active components that undergo

independent cyclic motion or deformation.

The rest of the paper is organized as follows. Section II gives

a brief overview of the general subject of low Reynolds number

hydrodynamics of active particles, such as swimming microor-

ganisms and beating cilia, with emphasis on elements that can

lead to hydrodynamic synchronization. Section III is devoted to

a comprehensive discussion of the many studies of hydrodynamic

synchronization, ranging from detailed simulations of beating

elastic filaments to synchronization of swimmers and minimal

model systems represented by simple beads, through to experi-

ments. This is followed by discussion of a number of generic

features of hydrodynamic synchronization in Sec. IV, and

concluding remarks in Sec. V.
II. Active hydrodynamics at low Reynolds number

Before focusing on the specific dynamical phenomenon of

synchronization, we first give a brief overview of the subject of

active viscous hydrodynamics.7
A. Observations, discoveries, and experimental developments

Nature has developed a number of mechanically active compo-

nents such as cilia and flagella that are capable of moving the

neighboring fluid for the purpose of motility, transport (of

mucus, for example), feeding (e.g. for sponges), or pumping.

Bacterial flagella are relatively rigid helical proto-filaments that

are attached to highly efficient rotary motors in bacteria such as

E. coli.8–10 An E. coli could have 6–10 such flagella around its

body, and their coordinated action could lead to two distinct

types of motion, termed as ‘‘run’’ (when the flagella bundle up

and corkscrew together) and ‘‘tumble’’ (when the flagella disor-

ganize and net motility is lost).11 Cilia (and eukaryotic flagella)

are elastic filaments that can cyclically actuate into different

conformations.12 This ability comes from the so-called axonemal

structure, which is an assembly of nine microtubule doublet

filaments that can slide along one another via dynein motor

proteins.13,14 The oscillating beating patterns are believed to be

the result of a nonlinear feedback mechanism involving the
Soft Matter, 2011, 7, 3074–3082 | 3075
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combination of the collective activity of molecular motors and

the elasticity of the microtubules.15–17

Cilia often appear in the form of arrays that beat with some

kind of pattern across the array to generate large scale motion.4

The beating cycle of an individual cilium is characteristically

irreversible: it consists of an effective stroke (or power stroke) in

the first half-cycle when the cilium is sticking out and pushing the

fluid to one side, and a recovery stroke in the second half-cycle

when the cilium is bent (almost folded) and returning to the

original conformation.18 This time irreversibility is a necessity if

the beating is to achieve a net movement of the fluid to one side

after a full cycle, in light of the reversibility property of the

Stokes equation (see above). When positioned in an array, the

presumably independent cyclic motion of the cilia is observed to

produce large scale patterns4 called metachronal waves. Similar

ciliary deformation cycles have been observed to lead to a variety

of different forms of metachronism, with varying relative

orientations between the direction of the propulsion of water and

the direction of the wave propagation,19 in a way which is

sensitive to membrane voltage and calcium levels.20 The cilia-

generated flow is not only used as a means of self-propulsion.

There are indications that flow produced by nodal cilia is

responsible for the establishment of left and right symmetry

breaking in developing embryos.21

Cooperativity has been observed in other hydrodynamically

active living systems. For example, it has been observed that

a group of sperms with dynamically beating tails could self-

organize into a vortex above a solid substrate,22 and that the

spherical algae Volvox can form a stable hydrodynamic bound-

state when they are near a solid surface.23 A recent experiment

by Polin et al. probed the dynamics of the two flagella that the

algae Chlamydomonas use for swimming.24 It revealed that the

beatings of the two flagella occur in two distinct synchronous

and asynchronous modes (see Fig. 1), and that the
Fig. 1 High-speed imaging probe of the beating patterns of the the

flagella of C. reinhardtii and the observed phase slip. (a)–(l) snapshots at

times indicated in the lower panel (n). (m) Phase difference between the

flagellar beating patterns as a function of time. (n) Signals from the

indicated areas in panel (b) near the two flagella. Picture reproduced

from25 courtesy of Raymond Goldstein and by permission from the

American Physical Society, copyright 2009 (doi:10.1103/Phys-

RevLett.103.168103).

3076 | Soft Matter, 2011, 7, 3074–3082
synchronization and the stochastic transitions between the two

modes could result from the hydrodynamic interactions

between the flagella.25

Suspensions of swimming bacteria have been shown to exhibit

enhanced activity, characterized by short time super-diffusive

motion of tracer particles with a crossover to diffusive behavior

at longer times, with much enhanced effective diffusion coeffi-

cient26–28 and correlated temporal fluctuations.29 Moreover,

sufficiently dense bacterial suspensions develop instabilities and

complex large scale flow patterns that are reminiscent of the

behavior of turbulent flows.30 Similarly, bacterial carpets (dense

layers of bacteria with their heads adsorbed on substrate and

hydrodynamically active tails) cause enhanced diffusion of tracer

particles and complex flow patterns with ‘‘whirlpools’’ and

‘‘rivers’’ near the substrate.31

Inspired by the hydrodynamic activity of biological organelles

and living cells, a number of artificial microswimmers and micro-

pumps have been made recently, using magnetic actuation of

assemblies of super-paramagnetic colloidal beads32,33 and

manipulation of colloids by optical tweezers.34 It has also been

possible to fabricate artificial cilia driven by magnetic actua-

tion.40,41 A different class of microswimmers, which takes

advantage of nonequilibrium interfacial self-phoretic effects, has

also been developed recently,35–37 and shown to allow a variety of

controlled trajectories38 and to exhibit chemotactic behavior.39
B. Theoretical developments

The pioneering works of Taylor3,42 and a contemporary contri-

bution from Lighthill that introduced the ‘‘squirmer’’ model of

microswimming43 were the starting point for the theoretical

studies of active hydrodynamics at low Reynolds number.44

Initial developments were focused on swimming of microor-

ganisms that use a single elastic tail,45,46 but they were soon fol-

lowed by studies of more elaborate phenomena, including the

beating patterns of cilia and metachronism.47–49

The reversibility of eqn (2) makes it difficult to achieve self-

propulsion when there are only a few degrees of freedom

available. Purcell showed that a single compact degree of

freedom cannot be used for swimming at low Reynolds number

and a minimal model swimmer would at least need two such

degrees of freedom.1 His ideas were later used to develop and

study simple model microswimmers that undergo prescribed63–71

and stochastic72,73 cyclic deformations, which envelope

a nonzero enclosed area in the two dimensional configuration

space. The cyclic nature of the configuration space trajectory

implies the existence of an internal phase for every micro-

swimmer, which can strongly affect the interaction between two

microswimmers74,75 and lead to the formation of novel, collec-

tive, symmetry-breaking, swimming phases.76,77 The idea of

collective nonlinear oscillations of molecular motors—in

analogy to the driving mechanism of the axoneme16—has been

used to develop a dynamical model for driving of the defor-

mation cycle of a three-sphere microswimmer model.78 The

concept of internal phase can also be introduced for stochastic

swimmers in terms of the transition rates for the different

conformational changes.79

Interaction between hydrodynamically active particles in bulk

suspensions and confined geometries (e.g. bacterial suspensions
This journal is ª The Royal Society of Chemistry 2011
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and carpets) leads to complex dynamical behaviors50–52 and

fascinating collective effects. Using continuum theories based on

phenomenological extensions of the hydrodynamic theory for

liquid crystals,53,54 these active fluids have been studied and

found to have instabilities and novel rheological properties,55–58

which could lead to complex flow patterns as observed in

numerical simulations.59–62
Fig. 2 (a) Snapshots showing the conformation of beating elastic fila-

ments in a Brownian dynamics simulation, with relatively slow (left) and

fast (right) strokes. The index n refers to the simulation time. (b) The flow

profile as a function of distance from the wall, with the number indices

referring to the corresponding conformations in (a). (c) Scale of the bulk

fluid pumping velocity as a function of time during the beating cycle. (d)

Snapshots of a relatively stiffer elastic filament. Picture reproduced

from86 courtesy of Roland Netz and by permission from the American

Physical Society, copyright 2006 (doi:10.1103/PhysRevLett.96.158101).
III. Studies of hydrodynamic synchronization

A. Synchronization: a general perspective

Synchronization is a ubiquitous phenomenon in nature, with

a wide variety of examples known in physics, chemistry, biology,

engineering, and social sciences.80 It is defined as the spontaneous

uniformity of the phases and/or frequencies of two or many

interacting oscillators. Theoretical models of synchronization are

often reduced to the phase description, in which the phase fi ¼
fi(t) of the i -th oscillator (i¼ 1,2,.,N) is taken as the dynamical

variable. A generic form of the evolution equation is

dfi

dt
¼ ui �

X
jsi

G
�
ri � rj

�
V 0
�
fi � fj

�
; (4)

where ui is the intrinsic frequency and ri is the position of the i -th

oscillator, and G(r) is an interaction kernel. The function V(f) is

a periodic ‘‘potential’’ with a minimum at f¼ 0, which drives the

system towards the fully synchronized state (fi ¼ fj for any i,j).

In an array of coupled oscillators, collective oscillation may or

may not occur depending on the range of the interaction. The

phase coherence is characterized by the macroscopic order

parameter S ¼ 1

N

����
X

i

eifi

����, with S ¼ 1 in the fully ordered

(synchronized) state and S ¼ 0 in the disordered (unsynchro-

nized) state. For the mean-field coupling G(r) ¼ g0/N (g0 ¼
const.), collective oscillation with global phase coherence takes

place if g0 exceeds a critical value gc, which is determined by the

distribution of the intrinsic frequencies.81 The mean-field models

exhibit the critical behavior S ¼ (gc � g0)b near the transition

point, where b ¼ 1

2
or 1 depending on the functional form of

V(f).81–83 In contrast, for a short-range (e. g. nearest-neighbor)

coupling, global synchronization is not possible.84 For a long-

range coupling G(r) f 1/ra with V(f)f � cosf, it is shown that

global phase coherence is possible if a\
3

2
d.85 Frequency

entrainment without global phase coherence is predicted to be

possible for
3

2
d\a\

5

2
d.85

The hydrodynamic interaction is long-ranged with the

exponent a being controlled by the geometry of the system.

Active elements that exert force monopoles in the bulk interact

via the Oseen tensor [see eqn (3)] corresponding to a ¼ 1, while

force dipoles in the bulk or force monopoles near a surface

interact with the dipolar interaction that corresponds to a ¼ 3

at large distances. The exponent and the spatial dimension of

the array determine whether collective synchronization is

possible or not. The anisotropic (tensorial) nature of the

hydrodynamic interaction adds a twist to the problem. The

anisotropy of the interaction can couple with the structural
This journal is ª The Royal Society of Chemistry 2011
anisotropy of the oscillators to cause synchronization, as we

shall see in more detail below.
B. Models of hydrodynamic synchronization: direct approaches

Synchronization induced by hydrodynamic interactions has been

studied with models at various levels of complexity, ranging from

direct simulations of elastic filaments/sheets to reduced descrip-

tion by coupled phase oscillator models. In an early work, Gueron

and Levit-Gurevich49 modeled cilia by inextensible elastic fila-

ments with hydrodynamic interaction. They showed that a linear

array of cilia exhibit a traveling wave that looks like a metachronal

wave. Kim and Netz86 simulated an array of semiflexible filaments

grafted to a surface as shown in Fig. 2, using a Brownian dynamics

method. In their study, the filaments were driven at the bottom by

a prescribed torque vertical to the substrate. They showed that

phase-locking occurs autonomously due to hydrodynamic inter-

actions and enhances the pumping efficiency. The relation

between dissipation rate and synchronization was also studied by

Elfring and Lauga.87 In the spirit of Taylor, they considered

a model of two elastic sheets with propagating lateral waves with

a prescribed waveform. Their analysis shows that front-back

asymmetry of the waveform causes either in-phase or anti-phase

synchronization, which would minimize or maximize the dissi-

pation rate, respectively. Guirao and Joanny88 modeled cilia as

semiflexible filaments with internal forces described by a two-state

model of molecular motors. They showed analytically that

spontaneous breaking of the beating symmetry occurs in an array
Soft Matter, 2011, 7, 3074–3082 | 3077
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Fig. 3 Spherical beads on circular trajectories exerting constant force F

on the surrounding fluid. The beads are supported by L-shaped thin arms

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
02

 S
ep

te
m

be
r 

20
12

Pu
bl

is
he

d 
on

 0
4 

Ja
nu

ar
y 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

01
12

1E

View Online
of cilia, due to macroscopic flow created by synchronization of the

beating. These direct approaches have been extremely helpful in

elucidating the role of hydrodynamic interactions in realistic

situations. However, the complexity of the dynamics of elastic

filaments makes it very difficult for such studies to go as far as

studying the phase behavior and collective properties of large

numbers of hydrodynamically active objects.
of height h from a substrate. The force is parallel to the substrate and

makes a finite angle d from the radial direction. The model reduces to

rigid beads driven by constant torque for d ¼ p/2, and the simple cilia

model88 for d¼ 0. The d-dependence of the collective dynamics have been

studied in.100
C. Hydrodynamic synchronization of swimmers

The original observations of Gray4 and the more recent experi-

ment on vortex formation of sperms above solid substrates22

suggest that hydrodynamic synchronization of free low Reynolds

number swimmers is a very rich and fascinating—and yet rela-

tively unexplored—subject. Yang et al.89 modeled swimming

sperms as semiflexible filaments with actively bending tails with

a prescribed amplitude and frequency. In their 2D simulation,

they showed that two sperms attract each other by hydrody-

namic interactions, and that the head-head distance decreases

with the phase difference. In a multi-sperm system, they obtained

swarm behavior with a power-law dependence of the average

cluster size on the width of the distribution of the beating

frequency. These studies suggest that synchronization of free

swimmers is a more complex problem than that of active fila-

ments constrained in fixed positions, as the mutual distances

between the swimmers vary with their phases.

Putz and Yeomans90 extended the definition of a simple linear,

three-sphere model swimmer to permit variable stroke periods,

hence allowing them to study the phase synchronization of free

swimmers. They found that, in general, two swimmers synchro-

nize to a phase difference of 0 or p, depending on their relative

positions. For three swimmers the relative phases oscillate,

together with a superimposed drift in time, as the swimmer posi-

tions vary. The locking is slow, typically taking thousands of

swimmer cycles, and becoming slower with increasing separation.
D. Minimal models of hydrodynamic synchronization

The necessary ingredients for hydrodynamic synchronization

have been illustrated using a variety of reduced models, in which

each active element has a few degrees of freedom, including the

phase variable. Kim and Powers91 showed that two rotating rigid

helices with fixed parallel axes do not synchronize under constant

driving torque. By numerical analysis and symmetry arguments,

they proved that hydrodynamic interaction acts to neither

enhance nor destroy phase locking. The neutral role of hydro-

dynamic interaction is well illustrated by a bead model of cilia,

due to Ryskin and Lenz.92 Following them, we consider two rigid

spherical beads of radius a, each constrained on a circular

trajectory of radius b and suspended at a fixed height h above

a substrate. Each bead is driven by a constant torque s, or

equivalently, a tangential force F ¼ s/b. This corresponds to the

case d¼ p/2 of the model shown in Fig. 3. The centre positions of

the trajectories r1 and r2 are separated by distance d [ b. The

phase fi ¼ fi(t) of the i -th bead (i ¼ 1,2) specifies its position as

Ri¼ ri + bn(fi) and velocity as Ṙi¼ b _fit(fi), where n(fi)¼ (cosfi,

sinfi, 0) and t(fi) ¼ (�sinfi, cosfi, 0) are the radial and

tangential unit vectors of the trajectories. The equation of

motion is obtained by balancing the driving force
3078 | Soft Matter, 2011, 7, 3074–3082
Fi ¼ Ft(fi), (5)

6pha is the friction coefficient of the bead. The fluid velocity is

related to the force via the Oseen-Blake tensor5,6 G(r)as v(Ri) xP
jsiG(ri �rj)$Fj. Then we obtain the phase velocity as

b
dfi

dt
¼ tðfiÞ,Fi

z
þ
X
jsi

tðfiÞ,G
�
ri � rj

�
,Fj : (6)

From eqn (5) and the symmetry relation G(r) ¼ G(�r), we see

that the right hand side of the dynamical equation is invariant

with respect to exchanging f1 and f2. This means that the phase

difference Df ¼ f2 � f1 is constant and is unaffected by the

hydrodynamic interaction.92

Thus we have seen that the rigid bead model with constant

torque is too simple to produce phase locking solutions. One

possible direction of modification is to introduce extra degrees of

freedom by adding some flexible elements to the model. Reichert

and Stark94 have shown that two rotating rigid helices can

synchronize if they are tethered by harmonic springs so that they

can tilt and move parallel to each other. The idea of anchoring

rigid rotors by springs has been implemented experimentally by

Qian et al.95 They used two rotating paddles with their shafts

anchored by torsional springs which allowed the shafts to tilt

slightly. They found that paddles that are asymmetric with

respect to the shafts synchronize with the phase difference Df ¼
0 (in-phase synchronization), while symmetric paddles are

stabilized at Df ¼ p/2, in agreement with their numerical simu-

lation results. Niedermayer et al.96 modeled cilia by rigid beads

that were softly anchored to circular trajectories by harmonic

potentials. The additional freedom of radial displacement was

shown to be essential to producing a phase-locked state for two

cilia and a metachronal traveling wave for a chain of cilia.

Guirao and Joanny88 presented an even simpler description of

cilia, where the beating motion in a plane vertical to the surface is

averaged over a cycle and is replaced by a constant radial force.

This corresponds to the case d ¼ 0 of the model shown in Fig. 3.

It creates a flow field that tends to align the rotors, which is

regarded as phase synchronization with zero intrinsic frequency.

Under thermal agitation, an array of rotors exhibits a transition

from the orientationally disordered (isotropic) state to the

ordered (nematic) state.

Cosentino Lagomarsino et al. have studied two related models

of metachronal coordination using one dimensional arrays of

linear oscillators.98,99 Using an asymmetric flashing ratchet
This journal is ª The Royal Society of Chemistry 2011
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model with two distinct modes mimicking the effective stroke

and the recovery stroke of cilia, they showed that spontaneous

symmetry breaking leading to a unidirectional flow is possible.98

In a subsequent work, they used a ‘‘rower’’ model for cilia with

two internal degrees of freedom (displacement and internal

state), and showed that a 1D array of such active oscillators can

sustain traveling wave solutions (metachronal waves) under

certain conditions.99 We note that studying synchronization of

linear oscillators is more delicate than orbiting particles, as the

phase degrees of freedom couple with both the forces and the

displacements.90,99

Uchida and Golestanian100 have generalized the model defined

in Fig. 3 by assuming the force angle d to have an arbitrary value

between 0 and p/2. They considered the collective dynamics of

rotors arrayed on a square lattice with the grid size d [ h. The

equation of motion is obtained by using

Fi ¼ F[sind$t(fi) + cosd$n(fi)], (7)

in eqn (6), for i ¼ 1,2,.,N. To see that this model contains the

necessary elements for synchronization, let us first consider two

such oscillators. Using eqn (6) and (7), we can write down the

dynamical equation for the phase difference,

D _f ¼ �ugcos d sin Df, (8)

where u ¼ F/(6phab) is the characteristic

frequency and g¼ 9ah2/d3 is the dimensionless coupling constant.

One can readily see that for ds
p

2
, two such rotors can

synchronize, as eqn (8) has a stable fixed point at Df ¼ 0.

Let us now consider a 2D array of active rotors. When g is

small such that g� sind, we can regard the deviatoric phase Fi¼
fi�(Fsind/zb)t as a slow variable, which obeys the dynamical

equation

1

u

dFi

dt
¼ sin d� g

X
jsi

d3

jri � rj j3
sin
�
Fi � Fj � d

�
: (9)

In this form, anisotropy of the hydrodynamic interaction is

averaged out and the model is mapped onto the standard coupled

oscillator description presented in eqn (4). For d ¼ 0, the authors

have numerically reproduced the isotropic-nematic transition

predicted by Guirao and Joanny.88 The nematic phase ordering

proceeds via pair annihilation of topological defects character-

ized by winding numbers +1 and �1. For d ¼ p/2, a fully

disordered state is obtained, due to geometric frustration. For

intermediate value of d, the model exhibits turbulent spiral waves

as a dynamical steady state, as shown in Fig. 4. The spirals are

either clockwise or anticlockwise, depending on the winding

number of the defect at the core. The flow field is also turbulent

and is highly correlated with the orientational field of the rotors.

Such turbulent dynamical patterns may find application in

micro-mixing devices. A random distribution of d (with average
�d ¼ 0) was also studied,101 and a synchronized-desynchronized

transition was obtained as the randomness was increased. The

transition in this case is a smooth crossover, in contrast to the

sharp transition in mean-field models.81–83 However, it is expec-

ted that the globally synchronized state in the thermodynamic

limit N / N is fragile, because eqn (9) corresponds to the

marginal case a ¼ 3d/2 in ref. 85. This might help with the
This journal is ª The Royal Society of Chemistry 2011
understanding of the local (not global) orientational ordering

observed in bacterial carpets.31 Flagellar tails are often bent and

not straight, and this could create a non-radial component of the

driving force in a random fashion. A very small randomness in

d could destroy the phase-ordered state.

Another way to produce synchronization by generalizing the

basic rigid bead model is to give the driving force some dynam-

ical pattern by allowing it to be a function of the phase, in

analogy to the two-mode beating pattern of cilia. Vilfan and

J€ulicher97 considered two rigid beads that make tilted elliptic

trajectories near a substrate. In their model, the tilt introduces

modulation of the intrinsic phase velocity, which is coupled to

the anisotropy of the hydrodynamic interaction to cause

synchronization. They found in-phase or anti-phase synchroni-

zation, depending on the relative orientation of the two trajec-

tories. Ryskin and Lenz92,93 derived a set of coupled oscillator

equations from a generic model of cilia with prescribed beating

patterns, and analyzed the linear stability of the collective modes

for a linear array of rotors. They also presented specific models of

the beating patterns with the power stroke and recovery stroke,

which do not stabilize a global synchronized state but allow

traveling (metachronal) wave solutions. We can see how the

jerkiness of the force can or cannot produce synchronization

using the rigid bead model, eqn(6), with the general force profile

Fi ¼ F(fi)t(fi). It can be shown102 that two rotors (i ¼ 1,2)

positioned on the x -axis are synchronized if and only if the

Fourier expansion of lnF(f) for sin2f has a negative sign. For

example, the profile F(f) ¼ F0(1 � 3 sin2f) with 0 < 3 < 1,

contains the second harmonic at O(3). The two-mode beating

pattern of cilia would be most simply mimicked by the profile

F(f)¼ F0(1� 3 sinf) with |3| < 1, which also produces the second

harmonic for lnF(f), but only at O(32) via period doubling. The

study suggests that cilia and other active organisms might be

exploiting the second-rank tensorial nature of the hydrodynamic

interaction kernel to control their coordinated motion.
E. Experimental studies of hydrodynamic synchronization

There are relatively few experimental studies of hydrodynamic

synchronization under low Reynolds number conditions. Kim

et al.103 investigated the physics behind bundling of bacterial

flagella by studying a macroscopic scale model of the helical

filaments in highly viscous silicone oil (such that the low Rey-

nolds number condition was maintained). They observed

bundling in their model system, and found that it arises due to an

interplay between the hydrodynamic interactions and the

geometry of the filaments as well as their bending and twisting

elasticity. Other examples that involve living systems, already

mentioned above, are the study of synchronization of a group of

sperms that form a vortex near a solid substrate,22 and

synchronization and phase-slip in pairs of beating flagella.24,25

Recently, Kotar et al.104 studied the synchronization of colloidal

linear oscillators using optical tweezers equipped with feedback

control. For two oscillating colloidal beads they found that, in

the absence of noise, the anti-phase dynamical state is stable, and

that the period of oscillation depends on the strength of the

hydrodynamic coupling. While these experiments verify that

hydrodynamic interaction can lead to synchronization between

active objects in a viscous fluid, it would be highly desirable to
Soft Matter, 2011, 7, 3074–3082 | 3079
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Fig. 4 Snapshots of turbulent spiral waves in a 2D array of hydrodynamically coupled rotors, with the greyscale representing cos[f(r)� �f].100 (a) d¼p/4.

Dynamical steady state. (b) d¼p/3. Initial developments of spirals from a pair of topological defects. In the schematic picture of the spiral core (right), the

arms of the rotors are shown as solid arrows and the forces they exert on the fluid as dotted arrows.
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experimentally demonstrate and explore the full potential of this

dynamical phenomenon.

IV. Generic features in hydrodynamic
synchronization

a. Exactly which features are relevant for synchronization?

Hydrodynamic synchronization between a pair of oscillators has

been studied in a variety of different models, which has led to

verdicts about when it is, or it is not, possible. The studies on

those models that involve the rotation of beads or rigid filaments

on closed trajectories:91,92,94–97 (where the motion can be

described by a scalar dynamical variable that is the corre-

sponding phase) can be summarized very neatly into the

following statement92 if the system is symmetric under the

exchange of the two oscillators (1 4 2), then it cannot

synchronize. The statement can be verified using the governing

dynamical equations by exchanging the indices 1 4 2 every-

where, as discussed in Sec. III D. The condition for synchroni-

zation has been studied in more complicated cases where the

dynamical variable is vectorial. The study of synchronization of

deforming elastic sheets by Elfring and Lauga,87 revealed

a condition of lack of left-right symmetry for the waveform. If we

rotate the system of two parallel deforming sheets (that each have

a reflection symmetry together with a p phase shift87) by 180

degrees, the system will be mapped onto itself with a 1 4 2

exchange if the waveform is left-right symmetric. Since the

equations of motion should be invariant under such a rotation,

we find that the condition of left-right symmetry of the wavefront

is equivalent to 1 4 2 exchange symmetry. Putz and Yeomans90

pointed out that swimmers with quadrupolar flow fields (i.e.

swimmers that are time reversal covariant) do not synchronize. A

similar transformation argument could be used for the case of

two swimmers, and the condition for their synchronization could

also be reinterpreted in terms of lack of the 1 4 2 exchange

symmetry.

b. Synchronization as a collective behavior

Globally synchronized states or metachronal waves are emergent

non-equilibrium steady states of a large collection of mechanical

elements with cyclic activity. To understand the phenomena of
3080 | Soft Matter, 2011, 7, 3074–3082
synchronization and metachronism, a number of issues need to be

addressed.99 First we need to examine whether stationary

synchronized states or metachronal wavelike solutions satisfy the

governing equations of motion for the model system. The next

step is to check whether solutions are (linearly) stable, and which

domains of the initial conditions in the phase space will be

attracted to each solution. Finally, we need to examine whether

this picture persists in the presence of noise, of thermal or other

origin, and disorder. The globally synchronized state could be

destroyed by arbitrarily weak intrinsic randomness, depending on

the dimensionality of the array of oscillators and the geometry,

which determine the asymptotic behavior of the interaction.85
c. Relation to dissipation

Since the main idea of hydrodynamic synchronization has emerged

from observations on the behavior of living systems, it has long

been speculated that adopting synchronization or metachrony by

the organelles may be driven by a search for a functional dynamical

state with the minimum energy consumption rate. A few systematic

studies have addressed this issue, and found that the synchronized

state can correspond to both the minimum and the maximum

energy dissipation rate.86,87,94,97
V. Conclusion and outlook

The long-ranged hydrodynamic interaction between objects that

undergo cyclic motion or deformation in a viscous fluid is shown

to be able to lead to synchronization. Originating from obser-

vations in complex living systems, the idea has been examined in

a variety of different systems from very complex beating fila-

ments to simple beads on circular trajectories. The more realistic

models allow us to study the role of hydrodynamic interactions

in the intricate details involved in the biological processes that

exhibit synchronization and metachronism. However, the

complexities of these systems make them unsuitable for

comprehensive studies of the physics behind these emergent

phenomena.

There are a number of very interesting open questions con-

cerning the generic features of synchronization that can be

addressed using simple, minimal, models of hydrodynamically

active objects. For two oscillators, while we know a necessary
This journal is ª The Royal Society of Chemistry 2011
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condition for synchronization, we have still to address the

question of sufficient conditions: what minimal properties should

the oscillators have to be able to synchronize? For many oscil-

lators, one would like to know more about the role of different

geometries, disorder, and finite size effects, as well as whether or

not it is possible to have a phase diagram with more than one

type of metachronal phase for a properly constructed minimal

model system. It would be interesting to probe the role of dissi-

pation in selecting the dynamical state of the system in models

that are sufficiently complex that they can accommodate multiple

possible solutions.

Another interesting direction for future work concerns the

behavior of bulk suspensions of swimmers, which has been

studied using continuum theories that describe the system by

a slowly varying density and orientational order parameter.55–62 In

these studies the internal phases of the swimmers have been

considered as externally determined parameters. In light of the

significant effect of the prescribed internal phase configuration of

the swimmers on their collective behavior, it will be interesting to

also study the case where the internal phases are treated as

dynamical variables, and address issues such as hydrodynamic

synchronization in suspensions of model microswimmers (see Sec.

III C). We note that the model developed by G€unther and Kruse78

for the driving of the deformation cycle of a three-sphere micro-

swimmer model could be a suitable framework for such a study.
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