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When a suspension of bacterial cells of the species Bacillus subtilis is placed in a chamber with its 
upper surface open to the atmosphere complex bioconvection patterns are observed. These arise 
because the cells: (1) are denser than water; and (2) usually swim upwards, so that the density of 
an initially uniform suspension becomes greater at the top than the bottom. When the vertical 
density gradient becomes large enough, an overturning instability occurs which ultimately 
evolves into the observed patterns. The reason that the cells swim upwards is that they are 
aerotactic, i.e. they swim up gradients of oxygen, and they consume oxygen. These properties are 
incorporated in conservation equations for the cell (N) and oxygen (C) concentrations, and these 
are solved in the pre-instability phase of development when N and C depend only on the vertical 
coordinate and time. Numerical results are obtained for both shallow- and deep-layer chambers, 
which are intrinsically different and require different mathematical and numerical treatments. It 
is found that, for both shallow and deep chambers, a thin boundary layer, densely packed with 
cells, forms near the surface. Beneath this layer the suspension becomes severely depleted of cells. 
Furthermore, in the deep chamber cases, a discontinuity in the cell concentration arises between 
this cell-depleted region and a cell-rich region further below, where no significant oxygen 
concentration gradients develop before the oxygen is fully consumed. The results obtained from 
the model are in good qualitative agreement with the experimental observations. 

1. Introduction. The ultimate aim of this work is to provide a quantitative 
description of a pattern-formation process observed in concentrated suspen- 
sions of swimming bacteria of the species Bacillus subtilis (Kessler, 1989). 
Figure 1 contains photographs, taken from above, of patterns formed from an 
initially well-stirred suspension, of concentration No~ 10 6 cells mm -3, in a 
fluid layer of depth ca. 2.5 mm; the width of the primary patterns (rolls) is of a 
similar magnitude, although the bands observed on the rolls are narrower. The 
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mechanism by which the horizontally uniform suspension becomes unstable is 
one of bioconvection (Platt, 1961; Pedley and Kessler, 1992): the cells are 
denser than the fluid in which they are suspended, and generally they initially 
swim upwards so that the density of the suspension becomes greater at the top 
than the bottom. When the vertical density gradient becomes large enough an 
overturning, convective instability ensues. 

The reason that the bacteria initially swim upwards is that they are 
chemotactic (or, more strictly, aerotactic), swimming up a gradient of oxygen 
concentration, C, which they generate because they consume oxygen. In the 
initially well-stirred suspension, C may be assumed to be equal everywhere to 
the value Co, which is the concentration in equilibrium with the atmosphere. 
Consumption by the bacteria causes C to fall everywhere, except at the free 
surface of the suspension, open to atmosphere, where it remains at Co. 
Diffusion of oxygen leads to a gradient in C near the free surface, up which the 
cells swim, generating the unstable density distribution already remarked on. 

Evidence in favour of this explanation is shown in Fig. 2, a time-sequence of 
photographs, taken from above, of a suspension contained between a 
horizontal microscope slide and a coverslip, a distance 0.15 mm apart. The 
suspension surrounds an air bubble, there is no bioconvection, and the cell 
concentration increases with time near the bubble surface, where C is 
maintained at its initial value, leaving a dark band of cell-depleted fluid further 
away. Beyond a critical distance from the bubble surface, however, the cell 
concentration does not noticeably change with time, apparently because the 
gradient in C never reaches a value large enough to trigger chemotaxis. Indeed, 
after some time the cells in this distant region can be observed to become totally 
inactive, as they use up all the available oxygen. 

Figure 3 shows a similar sequence in a suspension held between vertical 
microscope slides, 1 mm apart. This time there is a horizontal upper free 
surface, so that a convective instability eventually develops. The cell 
concentration remains at its initial value and the cells become inactive at 
sufficiently great distances below the free surface. The plunging, cell-rich 
plumes, which descend from the vicinity of the free surface after the instability 
develops, also carry oxygen which resuscitates the inactive cells that it reaches. 
Thus, a larger proportion of the cell population is ventilated than would be the 
case if there were no bioconvection. If the depth of the suspension is sufficiently 
small, the bioconvective plumes penetrate to the bot tom of the chamber and 
the zone of inactive cells is abolished. For even smaller depths the zone does not 
exist in the absence of bioconvection because all cells can sense an oxygen 
gradient. 

In the examples shown it can be inferred that, in the absence of 
bioconvection, the concentration distributions of cells (N) and oxygen (C) 
develop with time as sketched in Fig. 4. The figure is drawn to correspond with 
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Figure 1. Plan view of the bioconvection patterns which form in a circular petri dish, 
of depth 2.5 ram, containing a suspension of the species Bacillus subtilis (initial 
concentration N o ~ 10  6 cells mm 3). The photographs were taken with dark-field 
illumination; the white regions correspond to relatively large concentrations of cells 
and regions low in cell concentration are black. The scale marks indicate i cm. (a) A 
portion of the wall of the Petri dish, where the meniscus causes a radial change in 
depth. Also note the lack of boundary-imposed symmetry. (b) Taken near the centre 

of the Petri dish; the fluid was slightly deeper than in (a). 
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Figure 2(a)-(f). Time sequence of photographs, taken from above, of a suspension 
in the presence of air bubble, with minor diameter 1.3 mm, contained between two 
horizontal microscope slides placed 1 mm apart. No bioconvection occurs in this 
system. The successive times are indicated in the readout at the upper left of each 

photograph. 

Figure 3(a)-(g). A time sequence of photographs, taken from the side, of a deep 
chamber, h ~ 7-8 mm (made from two vertical microscope slides a distance 1 mm 
apart), containing a suspension of Bacillus subtilis. Near the surface, where 
significant gradients of oxygen exist, the cells swim upwards. Ultimately, when the 
vertical density gradient becomes large enough, a convective instability forms. The 
cell-rich plumes, which descend from the surface, carry oxygen which resuscitates 
the inactive cells situated in the lower regions of the chamber. Note that the distance 
scale, in ram, is shown in figure (b), and the successive times are indicated at the 

upper left of each frame. 
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the experiments of Fig. 3, the z-axis being vertically upwards. The critical 
distance, beyond which the cells become inactive because they have run out of 
oxygen, is marked Z =  - h  c. The purpose of the present paper is to propose a 
quantitative model for this development. Subsequent papers will analyse its 
linear instability, in order to predict the onset of bioconvection, and the non- 
linear development of that instability, in an attempt to shed some light on the 
pattern-selection process. Even without the instability analysis, the present 
model will be useful both to see whether the proposed mechanisms can indeed 
explain the observations and to predict what other phenomena might be 
observed for different parameter values. 

2. The Model. A continuum model for bioconvection in a suspension of 
chemotactic cells requires a set of equations including the Navier-Stokes and 
mass-conservation equations of hydrodynamics as well as: (1) an equation 
describing conservation of cells; and (2) a reaction-diffusion equation for the 
oxygen concentration (Pedley and Kessler, 1992). In this paper, bulk fluid 
motion will be assumed not to occur, so the hydrodynamic equations are not 
required, and the equations become the same as those proposed by Keller and 
Segel (1971). 

2.1. Conservation of cells. The cell concentration N at a point X, defined as 
the number of cells per unit volume in a small volume element df~ surrounding 
X, varies with time T according to the following conservation equation: 

~N 
~ T -  -V" [N('v+ -V)- D" ~N]" (1) 

The quantity in the square brackets is the cell flux vector, to which there are, in 
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Figure 4. Sketch showing the evolution of the cell and oxygen concentrations in the 
experiment of Fig. 3. 
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general, three contributions. The first term, N u, represents advection by the 
bulk fluid velocity N which is taken to be zero here. The second term, NV, 
represents the flux due to directed cell swimming: V is the average swimming 
velocity of the cells in the volume element df~, and arises in the present example 
from chemotaxis. The third term in the cell flux represents diffusion of cells (D is 
the cell diffusivity tensor) and arises from the fact that individual cells swim 
actively all the time, but in random directions, as long as there is enough 
oxygen available; this process is termed chemokinesis (Keller et al., 1977). 
There could, in principle, also be a contribution to cell movement, and hence to 
D, from Brownian motion, and a contribution to V from sedimentation. The 
sedimentation speed in water of a sphere of diameter 2 #m, with density 1.1 
times that of water, is ca. 0.2 #m sec-1,100 times less than the maximum cell 
swimming speed. Similarly, a typical Brownian diffusivity for particles of such a 
size is 5 x 10- 9 cm 2 sec- t, much smaller than a typical cell diffusivity tensor 
( ~ l . 3 x l 0 - 6 c m Z s e c - X  for a (long) run time, r, of ca. lsec).  Thus, 
sedimentation and Brownian diffusion are negligible, except possibly in a 
region where the cells have become inactive, and henceforth they are neglected. 
Equation (1) does not contain a term representing biological growth or decay 
of the bacterial population because the time-scale for pattern development, of 
order 1 min, is much smaller than the reproductive time-scale of several hours. 

A self-consistent model for the quantities V and D would include both 
random and deterministic aspects of cell motion in a probability density 
function for the cell swimming direction (Pedley and Kessler, 1990). 
Insufficient knowledge of cell behaviour precludes this type of approach at 
present. Observations show that cells swim at a speed V s of several #m sec-1, 
and change direction randomly on a time scale, ~, of a fraction of a second. 
These quantities depend on C but are otherwise presumed to be an intrinsic 
property of the cells. 

If C is large enough, and uniform, the distribution function of cell swimming 
direction is isotropic, and so, therefore, is the cell diffusivity tensor D. Its 
magnitude, D N, will, following the standard argument from kinetic theory, be 
equal to �89 where 2 is the "mean free path" or average distance between 
direction changes (Berg, 1983). This is the same as: 

DN=�89 (2) 

If C is not uniform chemotaxis takes place. This is believed to be because the 
time v between direction changes increases if the ambient oxygen concentration 
is increasing with time, i.e. if the cell is swimming up a concentration gradient, 
and decreases if the ambient oxygen concentration is decreasing (Berg, 1975; 
Schnitzer et al., 1990). 

The cell swimming speed V s has an approximately constant value V~0 
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20 #m sec- 1 if there is enough oxygen available. However,  the cell becomes 
completely inactive if the ambient  value of C falls below some small positive 
value Cmi . (see Appendix A). It is therefore reasonable to suppose that  we can 
write, as a model  for the cell swimming speed as a function of oxygen 
concentrat ion,  

v =v 0w(0), (3) 

where 0 is a dimensionless measure of C: 

0 - C - -Cmin  (4) 
C0--Cm,.' 

and W(O) is a saturating function of the form depicted in Fig. 5. In this paper  we 
consider two different forms for W(O), a Heaviside step function: 

W(O)=H(O), (5a) 

and one that  saturates exponentially: 

W(O) = [1 - e-~176 (5b) 

Given the form of equat ion (3) for V s, equat ion (2) leads us to choose the 
following expression for the magni tude  of cell diffusivity: 

DN=DNoW2(O), (6) 

where DN0 = 1/3 V~o z ('c is here assumed to be a constant ,  a l though subsequent  
experimental data  may  require that  it too depends on 0). The simplest, and 
s tandard (Keller and Segel, 1971), way of representing chemotaxis in a 
con t inuum model  is to postulate that  the average cell swimming velocity V is 
parallel and propor t ional  to VC, or: 

V = a V~V0, (7a) 
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Figure 5. The two different forms for W(O), as defined by equations (5a) and (5b). 
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for some constant scale length, a. There may be a cut-off value of I VC[ below 
which chemotaxis does not  occur. In order to investigate the consequence of 
that we also consider a case in which: 

where: 

y = a (Iv01-  o)H(I V01- to), (7b) 

yo=lv01 , 

and ae o is a small, positive, dimensionless number.  

2.2. Oxygen concentration equation. The equation for oxygen concentra- 
tion, C, is also of the conservation type, but with an additional reaction term to 
represent the consumption of oxygen by the cells: 

OC 

~T 
- -  - - V .  ( C u  - D c V C )  - K N .  (8) 

Here we assume that the flux of oxygen, by bulk advection and by diffusion, is 
not affected by the presence and motion of the cells: in principle the stirring 
motion generated by random cell movements would tend to increase the 
oxygen diffusivity, Dr, but the effect will be negligible unless/)NO is larger than 
D r . Since D r ~ 10- 5 cm 2 sec- 1, assuming it to be a constant is justified. The 
direct effect of the cells on C occurs through the consumption term KN. Here K 
is expected to be another  saturating function of C, of the same form as that 
shown in Fig. 5, also switched offwhen the cells become inactive (for otherwise 
C could become negative). In fact, since we do not have any data on the 
functional dependence of K on C, we take it to be the same as for V~, i.e.: 

K =  K o W(O). (9) 

2.3. Boundary conditions. The boundary  conditions on the oxygen con- 
centration, C, are that it takes the given values C o (so 0 = 1) at any interface 
with the air, and that there is zero flux at all other boundaries. The boundary  
condition on the cell concentration, N, will be taken to be the obvious one of 
zero flux, balancing chemotaxis and cell diffusion, at all boundaries of the 
suspension. It should be recognized, however, that other boundary  conditions 
are possible: for example, there is some evidence that a free surface can saturate 
with cells, and that as more cells arrive at the surface they stick to it, forming 
close-packed cell layers. The surface would act as a sink of cells, and this could 
be represented by a boundary condition of fixed cell concentration, say N =  N s . 
This situation could affect the boundary  condition on C, too. Such alternative 
boundary conditions will not  be considered further here. 
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In this paper we seek to model the experiments shown in Fig. 3 and sketched 
in Fig. 4, with no bulk fluid motion. We therefore suppose that both 0 and N 
are functions of Z, the vertical coordinate, and T, the time, and that the 
boundary conditions are to be applied at the free surface, Z = 0, and the bottom 
of the suspension, Z =  - h .  The cells swim vertically upwards with speed V z 
given by the vertical component of equations (7a and b) with equation (3). The 
boundary conditions are, for all T~> 0: 

80 
0=1 at Z = 0 , ~ = 0  at Z = - h  

0Z 
ON } (10) 

VzN--DN ~-~ = 0 at Z = 0 ,  - h .  

The initial, well-stirred condition, at T= 0, is that the suspension is uniform: 

O(Z, 0)= 1, N(Z, 0 ) = N  o. (11) 

There is one further condition to be applied, that the total number of cells is 
conserved (since biological growth and decay are assumed negligible). Hence, 
for all T: 

f~ N(Z, T)dZ=Noh. 
h 

(12) 

2.4. Non-dimensionalization. Equation (4) gives the dimensionless form, 0, 
of the oxygen concentration. We now introduce dimensionless forms of the 
other variables, as follows (note that the sign of Z has been reversed, for 
convenience): 

n =N/No, z = -Z /h ,  t= (DNo/hZ)T. (13) 

The governing equations [(1) and (8)] for the model now become: 

8n_  8 (W2(0)8/'/ (14) 

o ost =  (~176 - w(o).) , (15) 

where W(O) is given by equation (5a or b) and the dimensionless constants are: 

_ Do aVso _ / ( o N o h  
DN0, 7=DNo, DcAC,  e=%h, (16) 
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with A C =  C O - C m i  n. Note  that  the square bracket  in the second term on the 
r ight-hand side of equat ion (14) is equal to + 1 when 0 falls with distance below 
the free surface, as expected here (see Fig. 4). 

The dimensionless boundary  condit ions equat ion (10) are: 

0(0, t )=  1, (17) 

Oz (1, t )=O, (18) 

0n 
+ at (19) 

with the initial conditions,  

O(z, O) = n(z, O) = 1, (20) 

and the integral constraint,  

ff n d z =  1. (21) 

2.5. Parameter values. Typical values of Vso, /)NO and D c were quoted 
above as Vso~20 #m sec -1, DNO~I.3 • 10 -4 m m  2 sec -1, Dc~10 -3 m m  2 
sec -x. It is still neccessary to estimate the quantities K o, the oxygen 
consumption-ra te  constant,  a, the chemotaxis constant ,  and 5, the oxygen 
gradient cut-off. The former can be assessed from the time, T c, taken, in the 
experiment,  for the cells below the critical depth  h c to run out  of oxygen. This 
appears to be of the order of 1-2 min, say T c ~ 100 sec. Now,  scaling equat ion 
(8) suggests that: 

AC 
--~KoNo, L 

so, KoNo/AC~ 1/Tc~0.01 sec-1, and it follows that,  

h 2 
f12 _ ~ 10 h 2, (22) 

OcT~ 

where h is measured in mm.  Thus,  fl is the appropriate  dimensionless depth 
parameter;  in the experiment shown in Fig. 3, fl is large ( ~  25), while, even in 
the shallow layer experiment of Fig. 1, fl takes the value of ~ 8. 

The chemotaxis constant,  a, and hence the dimensionless constant  7, is more  
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difficult to estimate in the absence of detailed data on the statistics of cell 
trajectories. From equation (7a) the upswimming velocity is: 

~0 
V~aVso ; 

a suitable time-scale for the concentration gradient must be AC divided by the 
critical depth ho, rather than the imposed suspension depth h, so V ~  a Vso/h ~ . 
Thus, the choice for the dimensionless a/hr is the ratio of average upswimming 
velocity to cell swimming speed. This can, in principle, take any value less than 
1. From the definition of V we have: 

a hr " 

Y~hr /)No ' 

experiment (see Fig. 3) suggests that hc~5 mm, so ~ 8 0 0  (a/hc). If a/hr 
(=  V/Vso ) is as small as 0.1, then ~ ~ 80, suggesting that ~ should be taken to be 
large when applying this model to the experiments on Bacillus subtilis. 
However, the above reasoning is based on a number of assumptions which 
need to be tested in more quantitative experiments. 

The quoted values for De and/)No give 6 ~ 7. Finally, there are no data at all 
on the value of the "gradient cut-off" parameter e, if it exists. It is included in the 
calculations below to see what qualitative difference it makes to the results. A 
typical non-zero value will be taken to be 0.1. 

3. Steady-State Solutions. In the steady state, ~n/Ot=~O/Ot=O; the cell- 
concentration equation [equation (14)] can then be integrated once, with the 
boundary condition of equation (19), to give zero cell flux for all z. The 
governing equations then become: 

) W(O) dz  = \ d z  + e H dz  ~ n, (23) 

d20 
dz 2 _ ~2 W(O)n, (24) 

whenever W ( O ) ~ 0 .  In section 2 two possible choices for W(O) were outlined. 
When W(O) is chosen to take the more complicated, yet more realistic, form of 
equation (5b) the task of solving equations (23) and (24) must be performed 
numerically. An analytical solution can be found if the step function form of 
equation (5a) is used, and therefore we concentrate on this form. 

As observed experimentally, the evolution of the cell concentration profile 
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varies according to the depth of the chamber. It is correlated with the oxygen 
concentration. If the overall depth is sufficiently small (h < h~) 0 does not fall to 
zero anywhere; otherwise a zone where 0 = 0  and cells become inactive 
develops for z < - h~. These zones are described as the shallow- and deep-layer 
cases, respectively. The two cases are considered separately, with both zero and 
non-zero oxygen concentration cut-off gradients. 

3.1. Shallow layer with e = 0. In all cases, consumption causes significant 
oxygen concentration gradients to form in the chamber. As a result of 
chemotaxis, cells gradually accumulate in the vicinity of the surface, forming a 
thin densely packed boundary layer. Immediately below this layer, experiment 
shows that there is a zone of significant cell depletion. From these observations 
it can be inferred that, in a shallow layer: 

(1) 0 > 0  for 0~<z~<l; 
(2) OO/&<O for 0~<z<l ;  

and that cell diffusion, cell chemotaxis and oxygen consumption are non-zero 
throughout. The (step-) function W(O) = - 1, and equations (23) and (24) can 
easily be manipulated to give the following equation for 0 only: 

d30 d20 dO 

dz 3 = 7 dz 2 dz" (25) 

This is to be solved subject to the boundary conditions: 

dO 
0(0)= 1, d~ (1)=0, (26) 

and, by equation (24) and the integral (21), 

dO _f12. 
dz (0)= (27) 

Wr i t i ng f ( z )=dO/ dz  and integrating equation (25) twice gives: 

f f  m=~  - ( l - z ) ,  
dl 7 

~) f 2 + A 2 

where A is an arbitrary constant. The possible solutions forfdepend on the sign 
of A. First, suppose A =  - A  2 (A 1 >0). This gives: 

f =  A 1 [1-- exp( -- TA 1(1 --z))]/[1 + exp ( -  7A1(1 --z))], 

but this is positive and cannot satisfy condition (27); the case A < 0  can 
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therefore be ruled out. The case A = 0  can also be discounted because the 
integral is singular at f = 0  (z= 1). Therefore, A =  +A~ (A 1>0) is used. 
Integration gives: 

f =  dz - 

Integrating once more, and applying the boundary condition 0(0) = 1, leads to 
the solution: 

O(z)=l 2 COS 7-A 1 (29) 

't cos0 ,) ) 
It also follows from equation (24) that: 

The constant A 1 is determined by applying the remaining unused boundary 
condition (27), which leads to the following transcendental equation: 

f12 tan( Ax)=   31, 
Clearly, for known values ofv and f12 there exists an infinite number of positive 
values for A 1 which satisfy this equation, and for each such value there 
corresponds a solution for O(z) and n(z). However, for all but the first, 
cos((v/2)Al(1-z)) changes sign in the range 0 < z < l ,  so the logarithm in 
equation (29) becomes singular. Therefore, the first zero, for which 0 ~<A 1 < 
re/V, must be chosen. 

A further condition to be satisfied by the shallow layer solution is 0 1> 0, with 
equality only at the bottom, z = 1, if anywhere. Now, 0 is a monotonic 
decreasing function of z, from equation (28), so it is sufficient to require 0(1 ) >~ 0. 
From equation (29) this gives: 

whence tan2((~/2)At) ~< 0.2, where 0 .2 = e ~ -  1. 
Then, from equation (31), we have: 

(32) 
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f12 ~<A1 o_ ~< 2 - tr t a n -  l(tr). (33) 

Values of 7 and f12 that  satisfy this inequality correspond to a shallow layer; all 
others correspond to a deep layer. Figure 6 represents this graphically. 

3 . 2 .  Deep layer with e=O. When the chamber  is sufficiently deep 
experiments show that  the cell concentrat ion in a region far enough away from 
the free surface does not  appear  to change significantly with time. Because the 
cells normally respond to oxygen gradients, this lack of activity indicates that  
the oxygen concentrat ion gradient here must  be below or equal to the threshold 
value required for chemotaxis,  zero in this instance. Moreover ,  the cells here 
will, in this model,  consume all the oxygen available to them and cease to be 
active, i.e. W(O) = 0. If this region is defined by z c ~< z ~< 1 (where zc = hr then 
we expect: 

(1) O(z)=-O, O0/Oz=-O for zr 
(2) O0/Oz<O, 0 > 0  for O<<.z<z~. 

The fact that  W(O) = 0 in the region zr ~< z ~< 1 causes problems in solving for 
n(z), since the cell flux is zero there and equat ion (23) does not  determine On~Oz. 
Consequently,  the steady state cell distr ibution in this region cannot  be 
determined from the steady state equations alone. Solution of the initial value 
problem (see section 4) shows that  some chemotactic  cell upswimming occurs 
in this region prior to the steady state being set up, so it cannot  be assumed that  
n - 1 .  Therefore, the total number  of cells in the upper  zone, O<<.z<zc, is not  
known,  and, instead of equat ion (21), we have: 

5 0 -  

0 -  

Deep 
30- 

20- 

10 - ~ ShQIIow 
Layer 

0 
o 1'o 

"7 
Figure 6. Curve in the ]~__f12 plane separating "deep-layer" and "shallow-layer" 

behaviours on the basis of the asymptotic steady state solution. 
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f~ ~ n dz = (34) ~c, 

where ar is an unknown constant, defined by ~o n d z =  1 - a r  and hence, 
presumably, lying in the range zr ~< ar < 1. 

No problems are encountered in the region 0 <~ z ~< zr as both the oxygen 
concentration and its gradient are non-zero there. Proceeding as in section 3.1, 
it is found that: 

and 

dO_ z 

/cos(Z 
_21nl. \2 ____ J.|, (36) 

with the condition: 

\2  
(37) 

tan A2z ~ - A2 , (38) 

where A 2 is a positive constant. In the shallow layer case there was an unknown 
constant, A 1, determined by equation (31). In this case there are three 
unknown constants, A2, zr and ~r One additional equation arises from the 
requirement that O(zr so that: 

O(z '=~ ln ( sec (2A2(zc - z ) ) ) ,  (36a) 

and explicit expressions can be obtained for A 2 and zc in terms of ar fl and 7: 

A 2 - ~ c f l 2 ,  ( 3 9 )  
O" 

_ 20" t a n -  l(a). 
zo ~o3  ~ (4o) 
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As stated above, it is not  possible in this analysis to calculate ~r its value 
must  be estimated from the numerical  results for the t ime-dependent  case (see 
section 5). The steady state solutions can then be constructed analytically and 
compared  with those calculated numerically, in order  to establish the accuracy 
of the latter (again, see section 5). 

Finally, it should be noted that  the condi t ion z c ~< 1, needed for consistency of 
the deep layer solution, requires: 

2o- 2 
fiE ~>__ t a n -  l(a) ~> _ a t a n -  l(a), 

precisely the converse of inequality (33), as expected. 

3.3. Shallow layer with e r 0. In t roducing a non-zero cut-off gradient for 
the cell upswimming speed suggests that  in the steady state there will be a 
region 0 ~< z < z* (say) where the cell swimming speed is non-zero and a region 
z* ~< z ~< 1 where it is zero. For  reasons explained in the corresponding case with 
e = 0  (section 3.1), it is expected that  0 (z )>0  for all z e [0 ,  1], so W(O)-1. 

For  the region z* ~< z ~< 1 the steady state equat ions (23) and (24) become: 

dn  
- -  = 0 ,  ( 4 1 )  
dz 

d 2 0  
dz z =/~Zn. (42) 

The solution to equat ion (41) is n = constant  = na (say). Again, assuming that  a 
small p ropor t ion  of chemotactic  cell upswimming occurs in this region prior to 
the steady state being set up, we may write: 

fz l n dz = l - e*, 

so that: 

nl \a--z'J" 

Consequently,  from equat ion (42), is obtained: 

(43) 

(z2 ) 
O(z)=flZnl ~ - z  +B 1, (44) 

where the no-oxygen-flux condi t ion at z = 1 has been applied and B 1 is an 
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* is unknown  constant.  Additionally,  the requirement  that  dO/dz = - e  at z = z c 
satisfied only if: 

8 
nl -- f12(1-z*)" (45) 

Equat ing (43) and (45) we find that: 

o~* = 1 - e/fl 2, (46) 

and is not  arbitrary (unlike ac in section 3.2). In the region 0 ~< z < z* equations 
(23) and (24) can be combined to give: 

d30 d20( dO ) 
dz3 = ?  dTz 2 

from which we find that: 

COS -? A3(z* --z) (47) 

The cell distribution obtained from equat ion (24) is: 

n(z)=(-~)Z 2sec2(2Aa(z* - z ) )  , (48) 

and upon  application of the integral constraint  it is found that: 

tan(2 A3z*)--fl2~*A3 (49) 

- * determines the constant  B 1 Cont inui ty  of the oxygen concentrat ion at z - z ~  
and a further relation is obtained from continuity of the cell concentrat ion,  
which is required because the cell diffusivity, propor t ional  to w a ( 0 ) =  1, is 
non-zero there. This gives: 

nl=  2' 

so, using equations (43) and (46), we obtain: 

(50) 
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* in equation (49) we obtain a single implicit By substituting for A 3 and ~r 
equation that determines the position of the cut-off point z* for known values 
of e, 7 and f12. The steady state solutions for n(z) and O(z) are then known 
completely. 

3.4. Deep layer with ~ # O. Here the features of the previous two sections 
are combined, and it is necessary to divide the chamber into three regions: 

(1) Region 1: V#O, DN#O, O<<.z<z*, 
* ~ < Z < Z  c (2) Region 2: V=0,  DN#O, zr 

(3) Region 3: V=0,  DN=0, h<<.z<~l. 

In terms of the dimensionless oxygen concentration, 0, we have: 

(1) Region 1: 0<0~<1, t3Ofi3z<<. -e,  
(2) Region 2: 0~<0< 1, -e<<. ~O/~z<<. O, 
(3) Region 3: 0=0 ,  aO/Oz=O, 

with continuity of both 0 and t30/~z at the interfaces z = zr and z = z*. The cell 
concentration n is continuous at z=z*, where t30/t~z=-e and On/tz=O. 
However, as in section 3.2, no condition on the continuity of n or its gradient 
can be imposed at z = z~ because D N = 0 for z >I zc. 

Assuming that in the entire chamber the steady state and initial cell 
distributions are different we may write: 

ndz+ ndz+ n dz=~* +ctxr 1. (51) 
* :c 

Dividing the integral constraint in this way enables the analysis to be carried 
out independently in each of the regions defined above. 

Region 1. In this region, as in section 3.3, equations (23) and (24) have the 
form: 

d n ( d O )  d20 
= + n ,  =  2n. 

The cell and oxygen concentrations are again given by equation (47)-(49) for 
some positive c o n s t a n t  A 3 . 

Region 2. In equation (23) the term representing cell upswimming is zero in 
this region, so the steady state equations become: 

dn O, d 2 0  
d~= ~ =  fl2n" 
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Proceeding as in section 3.3, we obtain: 

n(z) = n 1 = (zc - z* )e/fl 2, (52) 

O(z) = fl2n 1 (z 2/2 - zr + B2, (53) 

where B 2 is a constant which can be determined using the continuity of 0 at 
z =  z*, and: 

~1c = (zr - z*)Ze/fl 2. (54) 

Continuity of 0 and n at z = z *  gives: 

B 2 = l - e z  ~ -  In sec A3z* - - ~ z ~ t  ~ - - z * ) ( z * - 2 z ~ ) ,  (55) 

2 (56) 
A3z= 7 

Region 3. Once again, as in the deep-layer case with e=O, the cell 
distribution cannot be determined in this region because both the cell flux 
terms in equation (23) and the oxygen consumption term in equation (24) are 
zero. It then follows that the constant Ctzc will be unknown and in order to find 
analytical steady state solutions its value must be estimated from the numerical 
solution of the initial value problem. 

Applying the condition 0 = 0 at z = z~ we find from equation (53) that: 

1 , 2 )zo. 

Equating this expression with equation (55) gives an equation relating z c and 
zc*. Now ct c*-- 1-o~2c-(zr 2 and substituting this into equation (49) 
gives a second equation relating zr and z*. Solving these equations numerically 
for the two unknowns then gives the steady state solution. 

That concludes the analysis of the steady state cell and oxygen distributions 
for the step function form of W(O). The results will be compared with those of 
the numerical solution of the initial value problem in section 5. Steady state 
results for the non-step function form for W(O) [equation (5b)], which require 
numerical solution anyway, are also given in section 5. 

4. Solution of the Initial Value Problem. Here we return to the full time- 
dependent problem given by equations (14) and (15) with boundary, initial and 
integral conditions (17)-(21). This problem must be solved numerically in all 
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cases, even the simplest in which W(O) =- H(O) and e = 0. Only for short  times is 
an analytical solution available, and we state its leading terms here, in the case 
e = 0, as a means of initializing and checking the numerical  code. 

4.1. Short time solutions. For  short  times 0 and n are expected to depart  
only a small amoun t  from their initial values of 1. The first effect will be 
consumpt ion  of oxygen by the cells, uniformly except near the surface where 
the diffusion of oxygen in from the a tmosphere  generates a gradient. Then cells 
begin to swim up this gradient. Thus,  if we write: 

0 ~ 1 - 0 1 ,  n = l + n  1, 

with 01 and n 1 small, the equations to be solved for 01 and n 1 are: 

001 /'0201 

subject to (57) 

and 

subject to 

001_  0 01(0, t ) = 0 ,  Oz as z ~ o o ,  

On 1 02nl 0201 
& - 0z 2 + y 0z ~ 

0nl 001 
& + 7 &-z = 0 at z=O and as z ~ o o ,  (58) 

f ~ n 1 d z = 0 .  
0 

The solutions of these equations are: 

01 =fla &(err t /_2q2 erfc q + 2 t / e x p ( - q 2 ) / x / n ) + O ( t 2 ) ,  (59) 

where t /=  z / 2 ~ t .  For  8 = 1, 

n 1 =Tflzt((3t;2 + 1/2)erfc t / -  3 t / exp ( - t l z ) /x /n )+O( t2 ) ,  (60a) 

and for 8 r 1, 

27 6,8 2 
t(q e x p ( - q 2 ) / g n -  (,2 + 1/2)erfc t /+  x/8(x/n(1 - 8 ) -  1) nl = ( 8 -  1) 

( t / e x p ( -  8q2)/x/(nS)- (tt 2 + 1/(28))ertc(x/Sq))). (60b) 
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These solutions are in agreement with the numerically computed results, 
shown in section 5, at short times. 

4.2. The numerical solution for W(0)=H(0).  Since the analytical steady 
state solution was obtained for the case in which W(O) is a step function, we 
concentrate on that case first in the numerical solution. 

The numerical approach to this problem depends significantly upon whether 
we are dealing with a shallow or a deep layer, and the former case is much the 
simpler of the two and will be looked at first. The method will then be modified 
to deal with the additional difficulties (involving a moving boundary) that arise 
in the deep-layer case. 

Shallow layer. The integral constraint on n can be dealt with more easily in 
the numerical scheme if the integral of n is used as a dependent variable instead 
of n itself: 

Y(z ,  t)= ~o n(z, t) dz. 

The governing equations then have the form: 

(61) 

/ \lOzl ' 
(62) 

= - l 2H(O) / (63) 

where the integral constraint is replaced by the boundary conditions Jff(0, 
t) = 0 and X(1 ,  t )= 1 for all t. 

To solve this system of coupled non-linear reaction~liffusion equations we 
use the method of lines (Fletcher, 1991; Dew and Walsh, 1981). The range 
0 ~<z ~< 1 is divided into (Np-1)  intervals. The method essentially involves 
reducing the partial differential equations at each mesh point to a system of 
ordinary differential equations in the time direction which is then solved 
numerically, using an explicit, time-marching technique. All spatial derivatives 
are replaced by central differences, for example: 

g(U, Z, t) ~Z Zj+I/2--Zj_I/2 2 \Zj+ x --Zj/ 

gj-Jc-gj-1 (Uj - -Uj - I~ ,  
2 \ z j - z j_~ / /  
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where, uj=u(zj,  t), gj=g(uj, zj, t), Zj+ l/2= (Zj+ 1 + zj)/2. 
It can be shown, by Taylor expansion, that this representation has second- 

order accuracy provided the step length varies smoothly and g is continuous. 
At the boundaries only two points can be used in the finite difference 
representation and, therefore, the above equation has to be slightly modified; 
the resulting expression has only first-order accuracy. Our system of equations 
can now be written in the form: 

d u  i . ~'J  - F~,j(u, t) (64) 

, . . .  u r r ,  Y ( z j ,  t ) .  where u = [u 1 u z, , -Np] , U j =  [Ul, j, U2,j] Ul, j = O(Zj, t), Uz,j= 
For parabolic problems, the ordinary differential equations resulting from 

the method of lines form a stiff system. To solve it a version of Gear's method is 
adopted (a multi-step method) (Gear, 1971 ) where the derivative of u at t = tp is 
approximated by a backward difference formula, and the solution is computed 
iteratively using Newton's method. Convergence to a solution is achieved when 
the computed values of u at successive iterations differ by less than some 
specified small tolerance value. The cell concentration at the internal mesh 
points is then determined using central differences and is given by: 

J ~ j +  1 - -  J ~ ' j -  1 nj = (65) 
Zj+ 1 - - Z j _  1 

When there is a non-zero oxygen gradient cut-off point for the cell 
upswimming speed (i.e. e ~ 0) it is assumed that 0 and n are continuous at the 
cut-off point. Also, in the more general case, where W(O) is of the form of 
equation (5b), the numerical program deals with a discontinuity in the diffusion 
coefficient Dr~ by making (DN(~n/~?z)) continuous across the boundary. 

The accuracy of the integration in the time direction is controlled but, in 
general, it is not possible to specify the accuracy in the spatial direction. This 
was assessed by increasing the number of intervals until the solution ceased to 
vary, and by comparing the numerical results with both the analytical short- 
time solutions of section 4 and the analytical steady state solutions of section 3. 
This enabled us to determine the grid required to give a specified degree of 
accuracy and, in addition, to minimize the overall computation time. 

Deep layer. A characteristic feature of a deep-layer problem is that 
respiration causes the oxygen concentration to fall to its threshold value at the 
bottom of the chamber (z= 1) at some instant in time (t = t 1 , say). The oxygen 
concentration is lowest at z = 1 because its gradient is zero there, so diffusive 
replenishment of oxygen consumed by the cells is least. Just above the bottom 
the oxygen concentration is small but slightly greater than the threshold value. 
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An instant later (t-=t2=t 1+At, say), consumption by the cells causes the 
oxygen concentration to fall to its threshold value at a slightly higher point, 
signifying an upward movement of the boundary at which 0 = 0. Below this 
boundary, at any instant, the cell diffusivity, cell upswimming speed and 
oxygen consumption rate are all zero and no immediate change in the cell (or 
oxygen) distribution will occur. As a result, from a numerical viewpoint, we 
need only find the n and 0 values above the moving boundary at any instant. 
Note that, prior to the propagation of a moving boundary, the numerical 
method employed in the shallow-layer case is sufficient to give solutions in the 
deep-layer case. 

As the boundary position at any instant during its propagation is not known 
a priori we need to develop an algorithm that iteratively determines its position. 
Before explaining how the algorithm works we will show analytically that the 
oxygen conservation equation can be used to estimate not only when the 
boundary begins to propagate, but, for a limited period, its subsequent 
movement. 

Near the bottom of the chamber the oxygen conservation equation can be 
approximated by: 

00 
Ot = -6f12n" (66) 

The diffusion term is neglected because most of the oxygen diffusing through 
the free surface is consumed by the upswimming cells before it reaches the lower 
regions. In these regions the cell concentration remains approximately at its 
initial value and consequently the rate of loss of oxygen during this period is 
constant. It then follows that the time, t x , at which the oxygen concentration 
first reaches its threshold value is approximately: 

1 
tx = 6]~2" (67) 

To derive an analytical approximation for the initial movement of the 
boundary let the oxygen and cell concentrations near the bottom of the 
chamber be represented by O(z, t l )=  01 (z) and n(z, t l )=  n x (z), where n 1 (1)= 1, 
at t = t 1 . Integrating equation (66) with respect to t gives: 

O(z, t) = 01 (z) - 6f12n, (z) ( t -  t 1). (68) 

At t = t  2 let the new position of the boundary be z=  ~(t2); therefore 0[~(t2) , 
t2]----0. Using equation (68) it is easily shown that: 

A t - -  01 [~( t2)]  
6flZn,[~(t2)] . (69) 
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In the numerical scheme accurate tracking of the moving boundary requires 
that the change in boundary position over a small increment in time must be 
small. Therefore, equation (69) can be used to estimate the time-step needed to 
keep I~(ta)- ~(tl) I as small as required. 

To illustrate how the algorithm works we will describe how the boundary 
position is found together with the solutions for Jff and 0 at t = ta, assuming 
that the solutions at t = t 1 are known. 

Let ~(i)(t) denote the iterated value for the boundary position, where i = 1 
corresponds to the initial guess. We now set up the boundary conditions at 
~(i)(ta); these are: 

(1) ~?O/Sz=O, 
(2) t2] = t l ] .  

The first condition ensures continuity of oxygen concentration gradient 
across the boundary and the second condition assumes that, in the time 
interval At, cells become inactive in the region below the iterated boundary 
position so there is no cell flux across z=~(~ If z=~(~ does not 
correspond to a previously defined mesh point then at this point the current 
solutions ~ ( z ,  tl) and O(z, tl) will not be defined. To set up the initial solution 
for the next integration step these values are estimated by linear interpolation 
between the mesh points adjacent to ~(~ We then solve the problem using 
the method of lines (as outlined in the shallow-layer section) to obtain O(z, t:) 
and JV'(z, t2) in the region 0~<z~<~")(t2). For continuity of 0 across the 
boundary we require 0[~(~ t / I = 0  but, due to the limited machine 
precision, it is sufficient to specify that I 0[~(~ t:] I < Tol where Tol is a small 
user-defined value (typically Tol = O(10-6)). When this condition is satisfied 
we can proceed in a similar manner in order to find the subsequent boundary 
positions. Otherwise, a new guess for the boundary position must be made and 
the problem re-integrated from t = t~. 

Note that in guessing the boundary position we are in effect trying to find the 
point where the increase in oxygen concentration, due to the downward flux of 
oxygen entering through the free surface, balances with the loss of oxygen due 
to consumption. Therefore, if O[~(i)(t2), tz] >Tol,  the guessed boundary 
position is too close to the surface and must be increased, and if 0[~(~ 
t2] < - T o l ,  it is too far away and must be reduced. 

Suppose that at t = t~, the boundary position is z = ~(tt) and we wish to find 
its position at t=t2=t~+At.  For the first guess, we take the last valid 
boundary position, ~(tl), and continue the integration of the problem until 
t = t  2.  The value of 0[~(t~), t2] indicates which direction the boundary is 
propagating and therefore affects the next guess for the boundary position. 
Figure 7 shows the possible outcomes. 

If 0[~(tt), t2] < 0 [case (a)], the second guess for the boundary position is 
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taken to be at z = z o = ~(2)(t), as shown in Fig. 7. Note,  however, that if, at t = t l ,  
the cell concentration near the boundary  is approximately the same as the 
initial concentration, a better approximation for r can be found by choosing 
an appropriate value for ~(t2), and then setting the time increment, At, to that 
determined by equation (69). 

On the other hand, in some circumstances, after propagating upwards for a 
while, the boundary  begins to propagate downwards  again. Therefore, case (b), 
where O[~(t 1), t2] > 0, occurs. As we have no analytical means of estimating the 
downward  speed of propagat ion the second guess for the boundary  position is 
then given by: 

~(2)(t)=~(1)(t)+lq, (70) 

where/ l  I is estimated by computing the average change in boundary  position 
over the last few time steps. Once the value of the second guess for the boundary  
position has been determined, re-integration from t = t  1 to t = t  2 over the 
domain 0 ~<z ~< ~(2)(t2) then gives a new value for 0 at the new boundary.  All 
subsequent guesses are found using the following iterative procedure. 

For  any iteration where O[~(i)(t2), t2] > T o l  (O[~(i)(t2), t 2 ] < - T o l )  let us 
define an upper-bound (lower-bound) point to be the point with coordinates 

z = O  

zi 
Z = Z 

0 

0 = 0  

1 

ca,  
2xTOL 

e = 1 

/ t =  t 
2 

z = ( ( t )  
1 

Figure 7. Shows the two possible outcomes, (a) and (b), which can occur when the 
last computed boundary position, z=r is used as an initial guess for the 

boundary position at t = t 2 > t 1 . 
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(O[~(i)(t2), t2] , ~(i)(t2) ). The next guess for the boundary position, r 1)(t2) ' is 
found by linear interpolation using the lowest upper-bound point and the 
highest lower-bound point. If no upper-bound (lower-bound) points have been 
found during the previous iterations, ~"+ 1~(t2) is found by linear interpolation 
using the lower-bound (upper-bound) points only. This process normally gives 
convergence to a solution in as few as five iterations. 

5. Results and Discussion. In this section we look at the numerical results of 
the full time- and depth-dependent problem, as defined by equations (14) and 
(15), for particular shallow- and deep-layer cases with W(O) given by equations 
(5a) and (5b). In each case we are particularly interested in the following 
aspects: 

(1) how do the cell and oxygen concentrations vary with time? 
(2) where applicable, what are the values of ~c, z c , . . ,  etc.? 
(3) how long does it take for the steady state to be set up? 
(4) how do the parameter values influence the results? 
(5) does imposing a non-zero cut-off gradient, e, for the cell upswimming 

speed significantly alter the cell and oxygen distributions? 
(6) how does the choice of 141(0) affect the results? 

Each case is solved using a non-uniform grid consisting of 501 points which, 
owing to the nature of the cell distribution, are clustered at the upper boundary 
in an attempt to reduce inaccuracies. 

5.1. Shallow layer; ~ = 1, ~ = 25, f12 = 10, e = 0, W(0) ~ H(0). The values of~, 
and f12 in this case are chosen to be to the right of the curve in Fig. 6. Figure 
8a-c show, respectively, how the oxygen and cell concentrations vary with 
time. In Fig. 8a, initially the oxygen concentration falls everywhere due to 
consumption by the cells, and diffusion causes significant oxygen concentra- 
tion gradients to form near the free surface. Chemotactic cell upswimming 
consequently occurs, as shown in Fig. 8b. With time, the diffusive oxygen 
gradient penetrates deeper into the medium and more and more cells are 
caused to swim up. Gradually, cells accumulate in the vicinity of the surface 
forming a thin boundary layer of very high cell concentration (Fig. 8c). At large 
enough times, the cell and oxygen concentrations in the boundary layer, which 
are quasi-steady, can be represented analytically; see Appendix B. 

As the oxygen concentration throughout the chamber falls it does so at an 
ever decreasing rate until, when t ~0.14, a major change in its distribution 
occurs and it begins to rise again. This phenomenon develops after nearly all of 
the cells have swum up to the very thin boundary layer near the surface, where 
the inward diffusive oxygen flux is greatest. As a result, the cells do not have 
enough time to consume all the inward flux of oxygen and a certain proportion 
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manages to diffuse through the layer. Once this has occurred the oxygen is then 
able to diffuse further with minimal consumption into the cell-depleted region 
beneath, causing the concentration to rise. 

When the oxygen concentration rises in the lower regions of the fluid, the 
magnitude of the oxygen gradient decreases throughout  the chamber and the 
chemotactic cell upswimming speed falls. Eventually, downward cell diffusion 
takes over as the dominant  process and the cells in the boundary layer slowly 
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Figure 8. Results obtained for a shallow layer case where 6 = 1,7 = 25, f12 = 10, ~ = 0 
and W(O) = H(O). (a) Dimensionless oxygen concentration, 0, plotted vs depth, z. (b) 
Dimensionless cell concentration, n, plotted vs depth. (c) Shows, by choosing the 
appropriate range for z, the dimensionless cell concentration in the vicinity of the 

surface. 
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disperse. As they do so, the oxygen flux that formerly entered the lower regions 
is again consumed and eventually a balance between diffusive oxygen 
replenishment and oxygen consumption develops. Simultaneously a balance 
between downward cell diffusion and upward cell chemotaxis arises and the 
steady state is reached. After t = 4 the cell and oxygen distributions change 
insignificantly with time and therefore provide a good approximation to the 
steady state. 

The analytical steady state solutions, given by equations (29) and (30), where 
A a (=0.124666) is determined from equation (31), are graphically indis- 
tinguishable from the numerical solutions at t = 4.0. 

5.2. Deep layer; ~ = 1, 7 = 10, f12 = 75, e = 0, W ( 0 ) -  H(0). For convenience, 
the explanation of the results for this case is divided into three stages. 

Stage I (refer to Fig. 9a-c). Here, oxygen concentration gradients develop 
in the same manner as described in section 5.1. The main difference is that no 
significant gradients form in the lower regions of the chamber because oxygen 
that diffuses into the medium over this time period is unable to penetrate that 
far. Therefore, no oxygen replenishment takes place in this region, allowing the 
oxygen concentration to fall to its minimum value (0 = 0) at z = i when t ~ 0.013 
[this corresponds to the time predicted by equation (67)]. The variation of the 
cell concentration over this period reflects this developing gradient, showing 
that chemotaxis occurs in the upper part of the chamber, but lower down the 
cell concentration remains approximately at its initial value. 

Stage 2 (refer to Fig. 10a-c). In this stage a boundary marked by the point 
where the oxygen concentration falls to its minimum value (0 = 0) propagates 
rapidly towards the surface. As shown in Fig. 9a, the oxygen concentration at 
t ~0.013 is very low in the region immediately above z = 1, which suggests a 
rapid propagation of the boundary; Fig. 10a verifies this. The time increments 
used to track the boundary were of the order of 10- 5. Below the boundary at 
any instant the cells are inactive and the cell profile, denoted by the dotted line, 
does not change in the short term. On the other hand, above the boundary 
chemotaxis continues and, as before, the cell concentration near the surface 
increases and the region directly below is further depleted of cells, as shown in 
Fig. 10b and c. As the boundary propagates upwards the effects of chemotaxis 
are enhanced because the oxygen concentration gradient here increases with 
time. In addition, the speed of the boundary gradually decreases until, at 
t-~ 0.01965, it is momentarily zero. The reasons for this are twofold. Firstly, the 
cell concentration immediately above the boundary falls continually (due to 
chemotaxis) and so the overall amount of oxygen consumed here also 
decreases. Secondly, as the boundary gets closer to the top of the chamber it is 
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more likely to become influenced by the flux of oxygen entering the medium 
through the free surface. This, of course, depends upon what proportion of this 
flux is able to penetrate through the boundary  layer. After this instant the 
proport ion is large enough to ensure that oxygen replenishment is higher than 
oxygen consumption and the boundary  starts to propagate downwards again. 

Stage 3 (refer to Fig. lla--c). As shown in Fig. l l b ,  the downward 
propagation of the boundary enables cells that were previously inactive to 
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undergo chemotaxis once more. Therefore, a discontinuity in the cell 
concentration at the boundary  develops and grows in magnitude as observed 
experimentally. A large proport ion of cells are re-activated in this process and 
cell concentrations in the boundary  layer increase rapidly, as shown in 
Fig. l l c .  

Eventually, changes in the boundary  position, and the cell and oxygen 
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concentrations, become insignificant and we assume that the steady state has 
been reached; this occurs around t =  3.21. The final position of the moving 
boundary  is z~=0.771919 and the corresponding value of % [defined by 
equation (34)] is 0.801134. F rom equation (39) we obtain A 2 = 0.404859 and 
from equation (40), zc = 0.772643. Clearly there is good agreement between the 
analytical and numerical values of zr Furthermore,  comparison between the 
analytical and numerical solutions for n and 0 in the region 0 ~< z ~< z~ indicates 
an equally good degree of accuracy. 
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5.3. Shallow layer; 6=1 ,  7=25,  f12=10, e=0.1,  W(0) -H(0) .  This is an 
example with a cut-off gradient and the results are shown in Fig. 12a-c. In the 
steady state, the cell and oxygen distributions obtained in this case have the 
same characteristics as those found in section 5.1 (where e=0).  There is 
however a slight qualitative difference which is more apparent at small times. 
That is, when e is non-zero no cell chemotaxis occurs until the magnitude of the 
oxygen concentration gradient reaches the specified threshold value. In the 
present example this occurs when t~O(10-4) .  Immediately thereafter, the 
chemotactic cut-off point rapidly propagates from the surface down into the 
medium, initiating cell upswimming as it does so. This propagation represents 
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Figure 12(a)-(c). Behaviour of the cell and oxygen concentrations in the case 6 = 1, 
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a different sort of moving boundary, but no special numerical techniques are 
required to track it. 

Below the boundary changes in the cell distribution are entirely attributed to 
cell diffusion. Comparing the cell profiles in Figs 8b and 12b at t = 0.06 reveals, 
as expected, that when e ~ 0 less cell upswimming in the lower regions of the 
chamber (and indeed everywhere) has occurred. Whilst the oxygen concentra- 
tion is decreasing its gradient in the upper regions increases thus ensuring the 
downward propagation of the chemotactic cut-off point. When t,,~0.13 this 
cut-off point is situated at z=0.938751 and a significant amount  of cell 
upswimming even near the bot tom of the chamber has occurred. After this 
instant the oxygen concentration begins to increase (for reasons explained 
previously) and as a result the chemotactic cut-off point propagates upwards 

* 0.726549 and the until the steady state is reached. Its final position is z c = 
* is 0.989999. As indicated by the results, the corresponding value of ac 

behaviour of the cell and oxygen profiles during the approach to the steady 
state is similar in both the e = 0 and e r 0 cases. 

To provide a check upon the numerical steady state solutions the steady state 
position of the chemotatic cut-off point, z*, can be calculated numerically by 
solving equations (49) and (50) where, from equation (46), a* = 0.99. We find, 

* = 0.726575 which is in agreement using the Newton-Raphson method, that z~ 
with the estimated value above. The analytical steady state cell and oxygen 
distributions, given by equations (44), (45), (47) and (48) where A 3 = 0.171051, 
are graphically indistinguishable from the numerical steady state results and 
are therefore not included in the figures. 

5.4. Deep layer; 6= 1, 7= 10, f12 =75, e=0.1,  W(0)--H(0). 
Stage 1. The development of the cell and oxygen distributions in this stage 

is practically identical to the corresponding case with e = 0. The only notable 
difference is that slightly less cell upswimming occurs in the e 4= 0 case. 

Stage 2. Here the effect of less chemotactic cell upswimming is that the 
overall amount  of oxygen consumption is high everywhere except in the 
boundary layer because a higher proportion of cells, compared to the e = 0 case, 
are situated in these regions. As a result the boundary reaches its uppermost 
point slightly more quickly than for e = 0 (t = 0.01952 instead of t =  0.01965). 

Stage 3 (refer to Fig. 13a and b). Once again, because more of the cells are 
situated in the lower regions of the chamber, the net increase in oxygen 
concentration which occurs during this stage is lower and the boundary does 
not propagate as far into the medium. As a direct result, fewer cells become re- 
activated and the cell concentration in the boundary layer is approximately 
25% lower than in the e = 0  case. 
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The steady state position of the chemotactic cut-off point, computed 
numerically, is z* = 0.618980 and the corresponding value of ct* is 0.710850. In 
addition, it is found that the value of z c (as defined in section 3.4) is 0.703350 
and the value of cqc is 0.001420. 

5.5. Shallow layer; 6 = 1 ,  7=25 ,  # 2 = 1 0 ,  e = 0 ,  W(O)=H(O) (1 -exp (  - 
0/01) ). For  a shallow-layer case, where 0 > 0  for all z and t, the choice of the 
value 01 is important;  if it is too small, i.e. 01 < O(z, t), then 141(0)~ H(O), which 
is precisely the case considered in section 5.1. Therefore, in this example we take 
01 = 0.2; this value is of similar magnitude to the lowest oxygen concentration 
observed in the results of the aforementioned case (see Fig. 8a) and to some 
extent guarantees that W(O) will fall below its maximum value in some region, 
as desired. 

F rom the results it is found that, at t = 0.14, the oxygen concentration near 
the bo t tom does not fall as low compared to the corresponding step function 
case. This is because in this region the consumption rate, which is proportinal  
to W(O), is lower. However,  it should be noted that both  the chemotactic cell 
upswimming speed and the cell dispersion due to diffusion are also reduced, 
resulting in slightly higher cell concentrations in this region. Nevertheless, 
these cells consume oxygen at a lower rate and the relative increase in cell 
concentration is not large enough to increase the overall loss of oxygen due to 
consumption.  
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shown. 
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Near the surface of the chamber O(z, t)>> 01 , and consequently the cell and 
oxygen concentrations here are very similar to those observed in Fig. 8c. After 
t=0.14 the qualitative behaviour of the cell and oxygen distributions is the 
same as in the corresponding step function case and need not be explained. The 
quantitative differences occur purely because, during the time evolution, W(O) 
falls initially but then, as the steady state is approached, rises to a value close to 
its maximum. 

5.6. Deep layer; 6=1,  7=10, fl2=75, s=0 ,  W(O)==-H(O)(1-exp(- 
0/01). For this case the results are directly compared to those of section 5.2 in 
order to establish any difference that arises due to the imposition of a non-step 
function form for W(O). 

Prior to the propagation of the moving boundary there is no qualitative and 
minimal quantitative difference in the cell and oxygen distributions because 
during this period W(O)~ H(O) (0 > 01 = 0.01). The upward propagation of the 
boundary is initiated fractionally later than in the corresponding step function 
case because oxygen consumption [ocW(0)] reduces just prior to its 
propagation. In addition, the boundary does not propagate upwards as 
rapidly, nor as far, because just above the boundary at any instant the oxygen 
consumption rate (oc 0/01,0 ~ 01) is lower than in the step function case, where 
W(O) = 1 whenever 0 > 0. Similarly, the cell upswimming speed, V, and the cell 
diffusivity, DN, are relatively lower which results in a relatively higher cell 
concentration in this region for this case (see Fig. 14a). Furthermore, from the 
governing equations it can be deduced that in the step function case c~n/c3z = 0 at 
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the boundary (where 0 = 0, ~O/~?z = 0) at any instant, whereas, in the current 
case, dn/Oz is undetermined at the boundary. Comparison of Figs 14a and 10b 
verifies this point. 

As before, during the downward propagation of the boundary a rapid 
change in cell concentration at the boundary occurs and a discontinuity in the 
cell concentration gradient develops here (see Fig. 15a). However, a significant 
qualitative difference occurs in this case because diffusive oxygen replenish- 
ment is relatively more important than oxygen consumption near the 
boundary [since W(O) < 1] and, as a result, the boundary is able to propagate 
further into the chamber until eventually it again reaches z = 1. The cell and 
oxygen distributions then possess characteristics which are otherwise associ- 
ated with a shallow layer (see section 5.1), where 0 > 0  for all z and the cell 
concentration is continuous. 

5.7. Shallow layer; 6=1 ,  ;~=25, f l 2 = 1 0 ,  e=0.1,  W(O)=-H(O)(1-exp( - 
0/01)" The effects resulting from the imposition of a non-zero cut-off gradient 
have been discussed in section 5.3 and, therefore, in this case, only the 
differences in the cell and oxygen concentrations caused by the variation of 
W(O) with depth are considered. Indeed, these effects are the same as those 
discussed in section 5.5, the main difference being that in this case, below the 
chemotactic cut-off point at any instant, the only process acting on the cells is 
diffusion. Furthermore, near the bot tom of the chamber, this effect weakens as 
W(O) falls. This explains why, at early enough times, a noticeable difference 
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Figure 15(a) and (b). The effect on the cell concentration during the downward 
phase of the boundary propagation when W(O) isof the form of equation (5b) (with 
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CONCENTRATION GRADIENTS OF CHEMOTACTIC BACTERIA 337 

between the cell concentrat ions in this case and the corresponding step function 
case occurs (see Figs 16b and 12b). After t = 0.14, W(O) increases and below the 
now upwardly propagat ing cut-off point  the effect of cell diffusion becomes 
more  apparent ,  thus resulting in the steady state cell profile as shown in 
Fig. 16b. 

5.8. Deep layer; 6 = 1 ,  7=10 ,  f l2=75,  e=O.1, W(O)-H(O)(1--exp(- 
0/01). Imposing  a non-zero cut-off gradient,  e, when W(O) has a non-step 
function form has no qualitative effect on the evolution of the cell and oxygen 
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distributions although, as expected, a slight quantitative difference occurs. This 
difference can be explained using the same arguments as in section 5.4 and is 
therefore not  discussed here. 

5.9. Further discussion. From the results it is clear that there is an 
insignificant qualitative effect on the development of the cell and oxygen 
concentrations when a non-zero cut-off gradient for the cell upswimming speed 
is incorporated. We now discuss how variations in the parameters 8, 7 and/32 in 
the cases considered in sections 5.1 and 5.2 affect the time evolution of the cell 
and oxygen concentrations. 

Increase 7 (8 and/32 fixed). An increase in the value of 7 (~ directly 
enhances the overall amount  of cell upswimming causing higher cell 
concentrations in the surface boundary layer. In addition, the cells vacate the 
lower regions of the chamber more rapidly and therefore less overall oxygen 
consumption occurs in these regions. In a deep layer, this results in less overall 
upward movement of the boundary and, in the steady state, it is situated closer 
to the bot tom of the chamber. However, the overall qualitative behaviour of 
the cell and oxygen concentrations is not altered. 

Decrease/32 (7 and c5 fixed). Any decrease in fi2 signifies a decrease in the 
depth, h, of the chamber which causes a relative increase in diffusive oxygen 
replenishment throughout  the chamber. Not  only is the net loss of oxygen in 
the chamber reduced, but so too is the oxygen concentration gradient at any 
instant. In a deep layer this means that the vertical distance travelled by the 
moving boundary is reduced. More generally, cell upswimming decreases, 
causing fewer cells to congregate in the boundary layer. As a result, the amount  
of oxygen able to penetrate through the boundary layer decreases. In a shallow 
layer this causes the oscillation in the oxygen concentration to become less 
pronounced, and in a deep layer, the steady state position of the moving 
boundary becomes closer to the bot tom of the chamber. Moreover, in the latter 
case, if/32 is reduced sufficiently, then a transition from a deep layer to a shallow 
layer takes place, in agreement with Fig. 6. 

Increase 8 (7 and/32 fixed). In a shallow layer, when 8 is increased by a 
sufficient amount  a significant change in the qualitative behaviour of the cell 
and oxygen distributions occurs. From the results, initially the net loss of 
oxygen (particularly near z = 1) is so great that the oxygen concentration falls 
rapidly to its threshold value and a moving boundary propagates upwards just 
as in a deep-layer case. Eventually the boundary stops (momentarily) and then 
reverses its direction of propagation. As it travels back towards z = l  a 
discontinuity in the cell concentration develops and the re-activation of the 
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previously inactive cells causes a much higher proportion of cell upswimming. 
However, unlike a deep-layer case, the boundary propagates back to z = 1 and 
the discontinuity in the cell concentration disappears. After this the oxygen 
concentration increases above its threshold value and the cell and oxygen 
profiles are more reminiscent of a typical shallow-layer case. Notably, the 
steady state is reached much more rapidly (measured in the dimensionless time- 
scale) and, in addition, the cell and oxygen distributions are invariant to any 
change in the value of ~ (provided y and/32 remain fixed). This result is not 
surprising, since the analytical steady state solutions given by equations 
(29)-(31) are independent of 3. 

To explain the qualitative differences described above it is neessary to 
consider how an increase in 6 relates to the original dimensional parameters. 
Since 6 = Dc/DNo, an increase in 6 can be viewed as either a decrease in/)No 
(with Dc fixed) or an increase in D~ (with/)No fixed). If the former is true, the 
value of ~ ( = a Vso/DNo ) is unchanged only if a Vso (ac VN) decreases by the same 
proportion. Consequently, cell upswimming is smaller and, because the cells 
spend relatively more time in the lower regions of the chamber, increased 
oxygen consumption occurs here. This is the reason why the oxygen 
concentration falls to its minimum value. The explanation of the subsequent 
behaviour of the cell and oxygen distributions has already been considered (see 
section 5.1). The dimensionless time-scale t is proportional to/)No and, hence, 
the steady state is reached more rapidly. 

If De is increased (Duo fixed) then/32 remains constant only if (KoNo h 2/AC) 
increases by an equal proportion. If it is assumed that this increase is attributed 
to an increase in the depth, h, then once again a higher amount of oxygen 
consumption in the lower regions of the chamber (where diffusive oxygen 
replenishment is least) will occur resulting in the behaviour observed in the 
results. In addition, toc 1/h 2, and so the time it takes for the steady state to be 
reached reduces, as observed. 

These ideas can also be applied to a deep-layer case. The effective decrease in 
V, caused if the case where Duo is decreased (with De fixed) is considered, results 
in reduced cell upswimming throughout the chamber during the upward 
propagation of the boundary. As a direct result the distance travelled by the 
moving boundary increases (due to the relative overall increase in oxygen 
consumption) during this phase of its motion. As before, after this phase, the 
boundary propagates downwards until it reaches its steady state position, z*, 
which is situated nearer to the surface than before. Note too that the 
corresponding value of e* also decreases. The downward distance travelled by 
the boundary, which depends on the overall amount of oxygen consumption, 
falls because relatively more cells are situated in the lower regions of the 
chamber thereby creating a greater "barrier" to diffusive oxygen replenish- 
ment. In addition, during this phase the oxygen concentration gradient near 
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the surface is relatively higher and any cells that become re-activated swim 
upwards at greater speed. The result is that the cell concentration near the 
surface increases and the region from which the cells have swum from becomes 
even more depleted. Interpreting this result experimentally, one would observe 
a more well-defined discontinuity in the cell concentration and a thinner, more 
densely packed, cell boundary layer at the surface. 

By investigating many other deep-layer examples it has been found that, if 7 
and f12 a r e  chosen so that the corresponding point in the 7-fl 2 parameter space 
of Fig. 6 is close enough to the c u r v e  f12 : (2a/7) t an -  1 a, then the effect upon 
the steady state solutions of varying the value of 6 becomes less pronounced. 
The converse of this result, where the chamber depth effectively increases, is 
also true. Furthermore, for any point on the curve the steady state results are, 
as expected from the shallow-layer results, totally independent of 6. 

6. Conclusion: Comparison With Experiment. The numerical results of the 
mathematical model for the pre-instability stage of the pattern formation 
process show certain qualitative features in common with experimental 
observation. Firtly, for both shallow and deep chambers, a densely packed cell 
layer develops in the vicinity of the surface (when 7 is sufficiently large). 
Secondly, for deep layers a discontinuity in the cell concentration arises 
because an insignificant amount  of cell upswimming occurs before a region 
close to the bot tom of the chamber becomes starved of oxygen. This is in 
marked contrast to the region above, where significant gradients of oxygen, the 
cause of chemotaxis, occur. Furthermore, from experimental observation it is 
known that the discontinuity propagates and becomes more well defined with 
time. This too agrees with the results of the model. 

For particular choices of 6, 7 and f12 a propagating discontinuity in the cell 
concentration, which at first travels towards the surface but later reverses 
direction and travels down to the bot tom of the chamber, has been predicted by 
the mathematical model. This behaviour has not yet been reported experimen- 
tally and a further investigation for chambers of various depths needs to be 
carried out. Of course, the behaviour may just be a product of the assumptions 
applied in our model. Therefore, other models with, for instance, a different 
boundary condition on the cell concentration at the upper surface (see section 
2.3), or different assumptions for the cell swimming speed, cell diffusivity, etc., 
may need to be considered in order to establish whether or not this behaviour 
still occurs. Indeed, better quantitative agreement between the model and 
experimental results may be achieved when more experimental data concern- 
ing the functional dependence of DN, V N and K, on the oxygen concentration, 
becomes available. 
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A P P E N D I X  A 

The average swimming speed of a celt is presumably correlated with its average internal oxygen 
concentration, C i. We expect q to be related to the external concentration C by an equation of 
the form: 

dCi_  
dt 

- -  - - k + 2 ( C -  C O, (A1) 

where k is a measure of oxygen consumption by the cell and 2 is a mass transfer coefficient for the 
cell membrane. 

Assuming that the length-scale of C variation is much greater than the distance swum in the 
equilibration time, 1/2, we have: 

G = C~oe- ~* + (c-k/,t)(1 - e -  z*). 

Hence, again for times large compared with 1/2: 

(n2) 

G--' C-- Cmin. 

As C approaches Cml . --k/2, the cells' swimming speed slows and eventually ceases. 

A P P E N D I X  B: B O U N D A R Y  L A Y E R  A N A L Y S I S  F O R  L A R G E  ~/ 

When the experimentally appropriate values for y ( >> 1), f12 (oc h 2 and h ~ 1 mm in the experiment 
of Fig. 3) and 6 are employed in the computer model the results show the formation of a very thin 
boundary layer at the upper surface, in accordance with experimental observations. We therefore 
seek an analytical description of the time-dependent concentrations using a boundary layer 
scaling. The following re-scalings are appropriate: 

n=(fl2/A)fi, 0 - 1 = A 0 ,  z=(A/fl2)Y, (A3) 

where A = (2/7) ~ t, and the model equations with W(O)=-H(O) and e--0 take the form: 

A 2 c~O /020 a), 
~-~ = 6 ~ y -  7 + (A4) 

A z dr1 0 /0ti  00 \  
f14 Ot  - -  ~ g ~ -  2 r / ~ ) .  (A5) 

The le•hand sides of these equations are relatively small which suggests that r/ and 0 are 
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quasi-steady in the boundary layer. Integration of the equations with the boundary conditions at 
Y=O and the condition that r~ and 0 are bounded as Y~oo then gives: 

1 = _ _ _  (A6) 
(2(0 + 11)2, 

OY-  (2(t)+ Y) ~ \(2(t)+ Y)]J '  

where 2(t) is an unknown function of time which must be positive in order that the solution 
should not be singular at finite Y>0. Rescaling of the steady state solution (28)-(31) gives the 
value 2 - 1 ,  so any solution for 2(t) should have 2 ~ 1 as t ~ oo. However, there appears to be no 
analytical way of determining 2(t), for example, using the method of matched asymptotic 
expansions, because the governing equations in the "outer" region (z = O(1), Y~ oo) are just the 
full time-dependent equations (14) and (15). Nevertheless, it is possible to use the full numerical 
solution to estimate the function 2(t) for any particular set of parameter values, and this permits 
us to estimate the value of t after which the time-dependent solution in the boundary layer can 
accurately be represented by the analytical expressions (A6) and (AT). Such analytical 
expressions will be particularly valuable in the stability analysis to be performed subsequently. 

The value of 2(0 for any t is given by (A6) and (A3) to be: 

2(t) = (fl:/An(O, t)) ~/2, (A8) 

where n(0, t) is to be taken from the numerical solution. 
Using this value, and equations (A6) and (A7), the functions fi and ~0/~ Ycan be plotted vs Yin 

the boundary layer and compared with the appropriately scaled functions obtained from the 
numerical solution. An example is shown in Figs Ala-f, for various values of t. The ranges of 
and ~0/~ Y in the figures have been chosen so that any differences between the numerical and 
boundary layer solutions are highlighted. It is interesting to note that, for the cell concentration 
in particular, the best agreement between the numerical and boundary layer solutions occurs at 
t = 0.7, and not at the steady state as one might expect. The function 2(Q is plotted for this case in 
Fig. A2 and, as predicted analytically, 2 ~  1 as t ~  oo. 
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Figure Al(a)-(f). Comparison between numerical ( - - )  and analytical ( -0- )  
boundary-layer solutions, at specific times, for the shallow-layer case 6 = 1, 7 = 25, 

f12= 10, e = 0  with W(O)=H(O). 
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Figure A2. Variation of 2 with time where 2, the parameter arising in the boundary 
layer solution [equation (A8)], is computed using the value of n(O, t) obtained from 

the numerical model [6= 1, 7=25, f12= 10, e=0 and W(O)=H(O)]. 
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