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Escherichia colibacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia,
and there are significant hydrodynamic interactions between nearby helices. These interactions cause the
flagella to bundle during the “runs” of bacterial chemotaxis. Here we use slender-body theory to solve for the
flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces
and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not
synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to
show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or
repulsive force between the helices.
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I. INTRODUCTION

In hydrodynamics at the micron scale, viscous damping
determines the characteristics of the flow, and inertia is irrel-
evant [1]. Consequently, microorganisms cannot swim by
imparting momentum to the fluid. Instead, their propulsion
mechanisms are based on designs which are fundamentally
different from schemes exploited by macroscopic organisms.
For example, bacteria such asEscherichia coliswim by ro-
tating thin helical propellers[2] which would be hopelessly
inefficient at the macroscopic scale. The thrust generated by
a bacterial flagellum arises from viscous drag. A second
striking feature of fluid mechanics in the viscously domi-
nated regime, or equivalently, at low Reynolds number, is the
long range of hydrodynamic interactions. For example, the
Stokeslet, or flow field induced by a point force, falls off
inversely with distance[3]. This effect has been argued to be
important for the patterns of feeding currents in cho-
anoflagellates[4], the metachronal waves of ciliary beat pat-
terns inParamecium[5], and the bundling of bacterial fla-
gella [6].

In this paper we study the role of hydrodynamic interac-
tions in a toy model for the flagella of bacteria such asE. coli
andSalmonella(see Ref.[2] for a review). These cells have
four to ten flagella per cell. Each flagellum consists of a
rotary motor; a universal joint about 50 nm long, known as
the hook, and a helical filament 20 nm in diameter and about
10 mm long. The motor rotates the filament at roughly
100 Hz. In the wild type, the filaments have the left-handed
“normal” form in the absence of external stress, with a pitch
of about 2.28mm and a helical diameter of 0.37mm [7]. The
helices are flexible enough that viscous stresses can cause
them to wrap around each other and also cause polymorphic
transformations during chemotaxis[7]. Here for simplicity
we disregard flexibility, and focus on hydrodynamic interac-
tions by considering two rotatingrigid helices. We suppose
the helices are driven by stationary motors, as when the cell
body is stuck to a wall such as a microscope slide. However,

for simplicity, we ignore the effect on the flow of the no-slip
boundary condition at the wall; in our calculation, its only
role is to provide external forces and torques on the helices.
Although the neglect of flexibility and the no-slip condition
at the wall are drastic simplifications, our calculations shed
light on the hydrodynamic interactions between rotating he-
lices in the simplest possible situation. Furthermore, our cal-
culations are the first step towards developing a framework
to treat more complicated situations, such as the “bacterial
carpet” of Ref.[8] in which the flagella from a dense layer of
Serratia maracensbacteria adsorbed to a substrate induce
complex flows that can lead to enhanced mixing.

In this paper, we begin with a brief review of related
work. After describing the model and its parameters, we
present symmetry arguments for the time-averaged forces on
the helices. In the next section, we describe the numerical
results in terms of resistance matrices, and argue that, despite
the hydrodynamic interaction, nearby helices driven at con-
stant torque do not entrain each other. Finally, the flows are
presented for in-phase and out-of-phase rotation.

For a swimming bacterium, the Reynolds number, Re
=rvL /h, is about 10−5, wherer=103 kg/m3 is the density of
water,v<10 mm/s is the swimming speed,L<1 mm is the
size of the cell body, andh=10−3 N s/m2 is the viscosity of
water. We can therefore model the flow as zero Reynolds
number flow, or Stokes flow. The Stokes flow generated by a
single rotating and translating helix was calculated by Light-
hill in the slender-body approximation[9]. There is no net
force on a swimming body. Thus, Lighthill considered an
infinite rotating and translating helix subject to zero net
force. In more recent work, Ramiaet al. computed the flows
induced by two nearby model swimming microorganisms,
which each consisted of a sphere propelled by a rotating
helix [10]. For a swimming microorganism, the flow in the
far field falls off inversely with the square of distance, since
the requirement of zero net force eliminates the Stokeslet
from the multipole expansion. However, if an external force
prevents the microorganisms from swimming, then the far-
field flow decays inversely with distance. Here, we consider
two rotating helices which are prevented from translating by
an external force. We give a precise, quantitative assessment
of the role of hydrodynamic interactions in this key geom-*Email: mjkim@brown.edu,Thomas_Powers@brown.edu
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etry. Our results are complementary to those of Ramiaet al.,
since the hydrodynamic interactions between our helices are
stronger. Our work is also related to that of Higdon, who
studied the feeding currents generated by single rotating he-
lix attached to a wall[4].

II. MODEL

Figure 1 defines the parameters of our model. Two iden-
tical helices with amplitudeb, pitchp, and rod radiusa rotate
with speedsv1 andv2. Thex axis coincides with the axis of
the first helix; both axes lie in thexy plane. The helices have
four turns; only two are shown. Since the helices are rigid,
their axes are parallel with constant separationh. In this pa-
per we study helices with the dimensions of the normal wave
form, given in the Introduction. We focus on nearby helices,
with h=3b. The centerlines of the helices are parametrized
by

X1„s,td = „as,b cossks+ f1d,b sinsks+ f1d…

X2ss,td = sas,b cossks+ f2d + h,b sinsks+ f2dd, s1d

where a=puku / s2pd, k=−fb2+p2/ s4p2dg−1/2, f1=v1t, f2

=v2t+Df0, Df0 is the initial phase difference,s is arclength,
and t is time. Note thatk,0, since the normal flagella are
left-handed. It is convenient to introduce the length unit,
=p/2.28, so that,=1 mm.

At Re=0, the flow is governed by the Stokes equations
for incompressible flow,h¹2v= ¹p, wherev is the velocity
s= ·v=0d, p is the pressure, andh is the dynamic viscosity.
The boundary conditions arev→0 far from the helices, and
no slip at the surfaces of the helices. Although the Stokes
equations are linear, the complex geometry of the rotating
helices makes it difficult to solve the equations analytically.
We therefore turn to the slender-body approximation[3,11],
in which line distributions of point forces(Stokeslets) and
source dipoles(doublets) replace the helices. The density of
the doublets relative to the Stokeslets is chosen to enforce
the no-slip boundary condition around the circumference of
the filament at each points, and the velocity at any pointx is
found toOskad [3] by linear superposition:

visxd = o
m j
E FSij

fm j

8ph
− Dij

a2fm' j

16ph
Gdsm, s2d

wherei and j run overx, y, andz, andm runs over 1 and 2.
In Eq. (2), the integration runs over the arc length of both
helices;fm= fm(Xssd) is the force per unit length exertedon
the fluid by themth helix, fm' is the transverse part offm

sfm' ·]Xm /]s=0d,

Sijsx,Xd =
di j

ux − X u
+

sxi − Xidsxj − Xjd
ux − X u3

s3d

is the Stokeslet tensor, and

Dijsx,Xd = −
di j

ux − X u3
+ 3

sxi − Xidsxj − Xjd
ux − X u5

s4d

is the doublet tensor. In principle there should be another
term in Eq.(2) consisting of a superposition of rotlets, cor-
responding to the viscous resistance to rotation of each fila-
ment element about its local axis[12]. These terms would be
the only terms present for a rigid straight rod rotating about
its long axis, but not translating. However, for the helices we
consider here, the contributions of the rotlets to the torque
(and flow) are suppressed relative to the terms kept in Eq.(2)
by factors ofa2/b2, and henceforth disregarded.

To determine the force densityfsXd, we consider Eq.(2)
for positions x which lie on the helix surface, such asx
=Xm+anm, where nm is the unit normal to themth helix.
Note that the nonzero radius of the filamenta.0 cuts off the
divergences of the singular tensors of Eqs.(3) and(4). Thus
Eq. (2) becomes an integral equation, since the no-slip con-
dition determinesv at the helix surface. To solve Eq.(2), we
approximate each helix as a series of straight rods with
length q and radiusa=, /100, corresponding toa=10 nm
(see Fig. 2) [11]. Then the integral equation(2) becomes a
matrix equation, which we solve numerically. The axis of
each rod is tangent to the centerline of the helix at the middle
of the rod. There is a range of optimal choices for the num-
ber N of straight rods, and thusq. If the number of straight
rods is too small, the geometry of the helix will be poorly
approximated. If the number of straight rods is too large,
then the rods will not be long and thin(sincea is fixed). For

FIG. 1. Two identical rotating helices.

FIG. 2. Line segment approximation of a helix. Only two turns
are shown.
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the normal, four-turn helix we choseN=33, which leads to
a/q,1/30. As shown in Fig. 2, this choice closely approxi-
mates the helix. To validate this approach and our choice of
a/q, we considered a ring falling through a highly viscous
fluid, where the velocity is perpendicular to the plane of the
ring. This case is simple enough to solve analytically; we
found excellent agreement between our numerical calcula-
tions and the analytic solution. OncefsXd is determined, we
can use Eq.(2) to evaluate the fluid velocity at any pointx.

III. SYMMETRY ARGUMENTS

Before we present the numerical results, we use symmetry
to relate the time-averaged forces and moments exerted on
the fluid by two identical rotating helices. The argument re-
lies upon the principle of kinematic reversibility of Stokes
flow, which holds that reversing the direction of motion of
the boundaries causes the reversal the velocity of every fluid
element as well as the hydrodynamic forces and torques act-
ing on any surface[13].

Also, since in Stokes flow the velocity field depends on
the instantaneous position of the boundaries only, the force
Fm exerted by each helix on the fluid depends on time only
through the phasef1 of the helixX1 and the phase difference
Df;f2−f1: Fm=Fmsf1,Df ,v1,v2d (for fixed h), where
m=1 or 2. Note that theFm are periodic inf1 andDf with
period 2p. We assume that the helices have a whole number
of turns. If we rotate the helices byp about thez axis, then
translate along they axis by h (see Fig. 3), and finally re-
verse the directions of rotation of both helices, then by kine-
matic reversibility and the rules for transformation of vectors
under rotations and translations we have

F1xsp − f2,Df,v2,v1d = F2xsf1,Df,v1,v2d,

F1ysp − f2,Df,v2,v1d = F2ysf1,Df,v1,v2d,

F1zsp − f2,Df,v2,v1d = − F2zsf1,Df,v1,v2d. s5d

The net effect of these transformations is the same as rotating
each helix about its axis byp−f1−f2. Furthermore, if both
helices rotate at the same speedv, thenDf is constant and
the time average of a force over a period is the average of the
force over one of the phases,kF1l;v / s2pdeF1dt
=eF1df1/ s2pd. Thus

ksF1x,F1y,F1zdl = ksF2x,F2y,− F2zdl, s6d

where the argument of each component of force in Eq.(6) is
sf1,Df0,v ,vd.

When the helices rotate at the same speed and haveDf
=Df0=0, then a similar argument implies that there is no
y-component of the time-averaged force exerted by each he-
lix. Rotating the helices about they axis, translating by their
length along thex axis, reversing the direction of rotation of
each helix, and averaging overf1 with v1=v2=v (with the
appropriate changes of variables) yields

kF1ysf1,− Df0,v,vdl = − kF1ysf1,Df0,v,vdl, s7d

or kF1yl=0 for Df0=0. Similar arguments lead to relations
among the moments(relative to the centers) M m

;efXmssm ,td−Cmg3 fmssmddsm [whereC1=s0,0,0d and C2

=s0,h,0d]:

ksM1x,M1y,M1zdl = ksM2x,− M2y,− M2zdl. s8d

Also, these symmetry arguments can be used to show that
the tipping torquekM1yl=−sH /2dkF1zl, whereH is the axial
(not contour) length of each helix. This result can also be
derived immediately by observing that in our approximation,
all moments on the helices arise from the forcesFm.

IV. RESISTANCE MATRICES

We now consider the time dependence of thex compo-
nents of the torque and force. By the linearity of the Stokes
equations,

SM1x

M2x
D = h,3SA11 A12

A21 A22
DSv1

v2
D , s9d

where theAmn are functions off1 andDf (for fixed separa-
tion h). The reciprocal theorem[13] applied to Eq.(9) with
the flows induced bysv1=v ,v2=0d andsv1=0,v2=vd im-
plies thatA12sf1,Dfd=A21sf1,Dfd. Direct computation us-
ing the numerical slender-body technique reveals that the
Amn depend weakly on phasef1; for example, the moments

FIG. 4. Torque versus phase difference forh=3b. The symbols
in the legend correspond to direct numerical calculation. The solid
flat line is the torque on a single isolated helix turning at speedv;

the other solid lines correspond to the analytic forms for theĀmn

described in the text.

FIG. 3. (a) Reference configuration.(b) The two helices after
rotation about thez axis by p and translation alongy by h, but
beforereversing the rotation speeds.
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vary by less than 1% as the phase is varied for fixed phase
difference andv1=v2. Therefore, since the same symmetry
arguments which led to Eq. (5) imply M1xsp
−f2,Df ,v2,v1d=M2xsf1,Df ,v1,v2d, we have
M1xsv2,v1d<M2xsv1,v2d, or A11<A22. For each phase dif-

ference, we average the torques over the phasef1: Ā11
=edf1A11/ s2pd. To an excellent approximation(see Fig. 4),
our numerical results are captured by the analytic forms

Ā11=Ā22=a1−b1 cossDfd and Ā12=Ā21=a2−b2cossDfd,
where a1, a2, b1, and b2 take the valuesa1=0.9181,a2=
−0.0113, b1=0.0029, andb2=0.1017 for h=3b. As h in-
creases,a2, b2, andb1 approach zero, anda1 approaches the
resistance coefficient for a single isolated helix,a1=0.8904.

When the rotation speeds are equal, the phase difference
is constant in time and the torque on each helix is approxi-
mately constant with a smalls,1%d fluctuation. For unequal
rotation speeds,v1Þv2, the phase differenceDf increases
linearly with time, and the moments vary sinusoidally about
an average value asDf changes[see the examplesv1,v2d
=sv ,v /2d in Fig. 4]. In every case, for constant speeds, the
torque is greatest when the helices are out of phase byp, and
least when they are in phase.

Our calculations of the moments assume the helices turn
at constant speeds; however, the bacterial rotary motor typi-
cally runs at roughly constant torque[14]. The casesv1
=v2=v and v1=v2=0.9v of Fig. 4 illustrate the general
conclusion that there are many different combinations of
speed and phase difference that lead to the same torque. To
see how the phase difference evolves, invert the resistance
matrix in Eq.(9) and solve fordDf /dt=v2−v1 to find

h,3dDf

dt
=

M2x − M1x

Ā11 − Ā12

. s10d

The phase difference is constant only ifM2x=M1x, in which
case Df=Df0, and the rotation speeds arev1=v2

=M1x/ fh,3sĀ11+Ā12dg, with Ā11 and Ā12 evaluated atDf
=Df0. WhenM2xÞM1x, the phase difference changes con-

tinuously, since there is no value ofDf for which 1/sĀ11

+Ā12d vanishes. SinceuA12u! uA11u, Df increases roughly lin-
early, with small fluctuations due to the hydrodynamic inter-
action. In contrast to pairs of nearby waving cilia[5] or
undulating flagella[15], hydrodynamic interactions do not
cause nearby rotating(rigid) helices to synchronize.

The numerical calculations show that, unlike the mo-
ments, the axial components of the forces depend onboth the
phase and the phase difference:Fmx=h,2omBmnsf1,Dfdvn.
Thus the time dependence of the forces is more complicated
than the time dependence of the moments[Fig. 5(a)]. How-
ever, we can give a simple characterization of the force by
averaging over the phasef1 and the phase differenceDf.
This effectively averages over time for many periods. By
computingkFmxl for v2/v1=1.5 andkFmxl for v2/v1=2, we
found values forkBmnl [solid lines of Fig. 5(b)] which accu-
rately captured the average forces calculated by direct nu-
merical simulation for a range ofv1 and v2 [symbols in
legend of Fig. 5(b)]. Whenv1=v2, h,2omkBmnlvn gives the
force averaged over all phase differences. We findkB11l
=kB22l=0.677, andkB12l=kB21l=−0.281, forh=3b. A left-
handed helix turning withv.0 pushes fluid along thex axis
[Figs. 6(a) and 6(d)], leading to an anchoring force(the force
required to hold the helix, or equivalently, the force the helix
exerts on the fluid) in the positivex direction. ThuskB11l
=kB22l.0. On the other hand, since a nearby left-handed
helix turning with v.0 also pushes fluid along thex axis,
the part of the anchoring force on the helixX1 due to the
flow induced by the helixX2 is in thenegative xdirection:
kB12l=kB21l,0. The magnitude of the axial force on each of
two nearby helices rotating with speedv is less than the
magnitude of the axial force on a single helix turning with
ratev in isolation.

V. FLOWS

Once the forceF is known, Eq.(2) allows us to calculate
the flow field. Figure 6 shows the components of the flow
field in thez=0 [Fig. 6(a)] andx=2p [Fig. 6(b)] planes for
constant phase differenceDf=0, and in thex=2p [Fig. 6(c)]

FIG. 5. (a) Time dependence ofF1x andF2x for v1=1.5v2. (b) Time-averaged axial components of the force.
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and z=0 [Fig. 6(d)] planes for constant phase difference
Df=p. Both helices are left handed and rotate in the same
direction; note that the path lines are right handed. The shear
rate is highest forDf=p in the regions where the helices are
closest[Fig. 6(c)], which explains whyDf=p has the high-
est resistive torque for a given speed.

VI. CONCLUSION

Using numerical slender-body calculations and symmetry
arguments, we have calculated the hydrodynamic forces and

moments on nearby rotating helices at zero Reynolds num-
ber. Our results show that rigid helices driven at constant
torque do not become entrained. We also presented the flow
fields for the two extremes ofDf=0 andDf=p. Although it
is difficult (but not impossible) to measure the flow field
around rotating flagella, all of our results can be tested in a
scale-model experiment such as that described in Ref.[6]. As
mentioned in the Introduction, our results do not directly
apply to swimming bacteria since our helices are prevented
from translating. Instead, our results are relevant for under-
standing interactions between rotating flagella in a situation
like the “carpet” of bacteria studied by the authors of Ref.
[8]. The next challenge is to include the flexibility of the
flagella (see Ref.[16]), since the forces we describe in this
article will cause the flagella to deflect and form a bundle
(for the proper rotation sense) [6]. Another extension of the
results described in this article would be to consider two
rotating rigid helices with noncoplanar axes. The new ele-
ment in this configuration may be a steady attractive(or
repulsive) force between the two helices. We will study this
situation in future publication.
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FIG. 6. Flow fields for two left-handed helices rotating with the
same angular velocityv=vx̂.
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