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Hydrodynamic interactions between rotating helices
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Escherichia colbacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia,
and there are significant hydrodynamic interactions between nearby helices. These interactions cause the
flagella to bundle during the “runs” of bacterial chemotaxis. Here we use slender-body theory to solve for the
flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces
and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not
synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to
show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or
repulsive force between the helices.
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[. INTRODUCTION for simplicity, we ignore the effect on the flow of the no-slip
) ) ) ~ boundary condition at the wall; in our calculation, its only
In hydrodynamics at the micron scale, viscous dampingole is to provide external forces and torques on the helices.

determines the characteristics of the flow, and inertia is irrelajithough the neglect of flexibility and the no-slip condition
evant[1]. Consequently, microorganisms cannot swim byat the wall are drastic simplifications, our calculations shed
imparting momentum to the fluid. Instead, their propulsionlight on the hydrodynamic interactions between rotating he-
mechanisms are based on designs which are fundamentaliges in the simplest possible situation. Furthermore, our cal-
different from schemes exploited by macroscopic organismsulations are the first step towards developing a framework
For example, bacteria such Escherichia coliswim by ro-  to treat more complicated situations, such as the “bacterial
tating thin helical propeller§2] which would be hopelessly carpet” of Ref[8] in which the flagella from a dense layer of
inefficient at the macroscopic scale. The thrust generated b§erratia maracensacteria adsorbed to a substrate induce
a bacterial flagellum arises from viscous drag. A secondomplex flows that can lead to enhanced mixing.
striking feature of fluid mechanics in the viscously domi- In this paper, we begin with a brief review of related
nated regime, or equivalently, at low Reynolds number, is th&V0rk. After describing the model and its parameters, we
long range of hydrodynamic interactions. For example, th?"€Sént symmetry arguments for the time-averaged forces on
Stokeslet, or flow field induced by a point force, falls off the helices. In the next section, we describe the numerical

inversely with distancé3]. This effect has been argued to be results in terms of resistance matrices, and argue that, despite
important for the patterns of feeding currents in Cho_the hydrodynamic interaction, nearby hel_lces driven at con-
anoflagellate§4], the metachronal waves of ciliary beat pat- stant torque do not entrain each other. Finally, the flows are

. . : ; presented for in-phase and out-of-phase rotation.
;eerlrlls[gParamecmm[S], and the bundling of bacterial fla- For a swimming bacterium, the Reynolds number, Re

=pvL/ 7, i 10°, wh =10° kg/m’is th ity of
In this paper we study the role of hydrodynamic interac- puL/7, is about 10°, wherep=10" kg/m" is the density o

. h X . water,v =10 um/s is the swimming speetl,=1 um is the
tions in a toy model for the flagella of bacteria suctEasoli ; K g sph H

. size of the cell body, angy=10"2 N s/n¥ is the viscosity of
and Salmonellasee Ref[2] for a review. These cells have qior \We can therefore model the flow as zero Reynolds

four o ten flagellg per c.eI.I. Each flagellum consists of &humber flow, or Stokes flow. The Stokes flow generated by a
rotary motor; a universal joint about 50 nm long, known asgjn e rotating and translating helix was calculated by Light-
Whill in the slender-body approximatiof®]. There is no net

10 um long. The motor rotates the filament at roughly orce on a swimmin : : :
. ! g body. Thus, Lighthill considered an
100 Hz. In the wild type, the filaments have the Ieft'h"mdeqfnfinite rotating and translating helix subject to zero net

“normal” form in the absence of external stress, with a pitChrorce In more recent work, Ramt al. computed the flows

of a_1bout2.28/urn_ and a helical dlam_eter of0.3/m [7]. The 4 ceqd by two nearby model swimming microorganisms,
helices are flexible enough that viscous stresses can ca ich each consisted of a sphere propelled by a rotating
them to wrap around each other and also cause polymorphig. iy 110} For a swimming microorganism, the flow in the

transformations during chemotaxg]. Here for simplicity ¢, fieiq falls off inversely with the square of distance, since
we disregard flexibility, and focus on hydrodynamic interac-y,q requirement of zero net force eliminates the Stokeslet

t'r?n‘; bIY conS|d((ajr|.ng tv;o rota_tlnggld helices. We ﬁuppﬁse om the multipole expansion. However, if an external force
the helices are driven by stationary motors, as when the ceyyq\onts the microorganisms from swimming, then the far-

body is stuck to a wall such as a microscope slide. Howeve ield flow decays inversely with distance. Here, we consider

two rotating helices which are prevented from translating by
an external force. We give a precise, quantitative assessment
*Email: mjkim@brown.edu,Thomas_Powers@brown.edu of the role of hydrodynamic interactions in this key geom-
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FIG. 2. Line segment approximation of a helix. Only two turns

FIG. 1. Two identical rotating helices. are shown.
etry. Our results are complementary to those of Raghial., 0i(X) = E f S azf!E ds,, )
since the hydrodynamic interactions between our helices are ‘8 7, Dy 167y

stronger. Our work is also related to that of Higdon, who

studied the feeding currents generated by single rotating havherei andj run overx, y, andz, andu runs over 1 and 2.

lix attached to a wal[4]. In EqQ. (2), the integration runs over the arc length of both
helices;f,=f,(X(s)) is the force per unit length exertexh
the fluid by theuth helix, f,, is the transverse part df,

nl
Il. MODEL (fur-0X,13s=0),
Figure 1 defines the parameters of our model. Two iden- X) = i . (X = X)X = X)) 3
tical helices with amplitudé, pitch p, and rod radius: rotate Sj(x.X) = Ix - X| X=X (3)

with speedsw; andw,. Thex axis coincides with the axis of
the first helix; both axes lie in they plane. The helices have Is the Stokeslet tensor, and

four turns; only two are shown. Since the helices are rigid, 5. (% = X) (% = X))
their axes are parallel with constant separatioin this pa- Dj(x,X) == U 3 L 15 ]
per we study helices with the dimensions of the normal wave x-X| x =X

form, given in the Introduction. We focus on nearby helices
with h=3b. The centerlines of the helices are parametrize

(4)

'is the doublet tensor. In principle there should be another
b erm in Eq.(2) consisting of a superposition of rotlets, cor-
y responding to the viscous resistance to rotation of each fila-
X1(s,t) = (as,b cogks+ ¢y),b sin(ks+ ¢)) ment element about its local axi$2]. These terms would be
the only terms present for a rigid straight rod rotating about
— ; its long axis, but not translating. However, for the helices we
25 = (as,b cosks+ ¢;) +hb sintks+¢y), (1) consider here, the contributions of the rotlets to the torque
where a=plk|/(2m), k=—[b?+p?/(47*)] Y2 ¢i=wit, ¢,  (and flow) are suppressed relative to the terms kept in(2p.
=w,t+Ady, Ady is the initial phase differencs,is arclength, by factors ofa?/b?, and henceforth disregarded.
andt is time. Note thak<O0, since the normal flagella are  To determine the force densifyX), we consider Eq(2)
left-handed. It is convenient to introduce the length uhit for positionsx which lie on the helix surface, such as
=p/2.28, so that =1 um. =X,+an,, wheren, is the unit normal to theuth helix.
At Re=0, the flow is governed by the Stokes equationNote that the nonzero radius of the filamant 0 cuts off the
for incompressible flowy;V2v=Vp, wherev is the velocity  divergences of the singular tensors of E@.and(4). Thus
(V-v=0), p is the pressure, ang is the dynamic viscosity. Eq.(2) becomes an integral equation, since the no-slip con-
The boundary conditions are— 0 far from the helices, and dition determinew at the helix surface. To solve E(®), we
no slip at the surfaces of the helices. Although the Stokeapproximate each helix as a series of straight rods with
equations are linear, the complex geometry of the rotatindgength q and radiusa=¢/100, corresponding t@=10 nm
helices makes it difficult to solve the equations analytically.(see Fig. 2 [11]. Then the integral equatiof2) becomes a
We therefore turn to the slender-body approximafidyil], matrix equation, which we solve numerically. The axis of
in which line distributions of point forceéStokeslets and  each rod is tangent to the centerline of the helix at the middle
source dipolegdoublet3 replace the helices. The density of of the rod. There is a range of optimal choices for the num-
the doublets relative to the Stokeslets is chosen to enforceer N of straight rods, and thug. If the number of straight
the no-slip boundary condition around the circumference ofods is too small, the geometry of the helix will be poorly
the filament at each poirst and the velocity at any poixtis  approximated. If the number of straight rods is too large,
found toO(ka) [3] by linear superposition: then the rods will not be long and th{sincea is fixed). For
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FIG. 3. (8 Reference configurationb) The two helices after L oo
rotation about thez axis by 7= and translation alony by h, but 0 . = n
beforereversing the rotation speeds. A

. _ . FIG. 4. Torque versus phase difference lier3b. The symbols
the normal, four-turn helix we chodé=33, which leads to in the legend correspond to direct numerical calculation. The solid

a/q~1/30. AS. shown I.n Fig. 2.’ this choice closely appr.OXI- flat line is the torque on a single isolated helix turning at speed
mates the helix. To validate this approach and our choice o . h iic f for AF
a/q, we considered a ring falling through a highly viscous:jeescortiggjI Sir?“tf];'rt's; correspond to the analytic forms for A
fluid, where the velocity is perpendicular to the plane of the '
ring. This case is simple enough to solve analytically; we
found excellent agreement between our numerical calcula- ((FuoF1y,F12)) = ((Fox Fay = F2)), (6)
tions and the analytic solution. Om&@() is.determined,. We \here the argument of each component of force in(Byjis
can use Eq(2) to evaluate the fluid velocity at any poirt (b1, A b, @, ).

When the helices rotate at the same speed and have

. SYMMETRY ARGUMENTS =A¢o=0, then a similar argument implies that there is no

. -component of the time-averaged force exerted by each he-
Before we present the numerical results, we use symmetry, potating the helices about theaxis, translating by their

to rela_te the tlmfa-avgraged fqrces qnd moments exerted cf@ngth along the axis, reversing the direction of rotation of
the fluid by two identical rotating helices. The argument r€-aach helix. and averaging ovek with ;= w,=w (with the

lies upon the principle of kinematic reversibility of Stokes : h f vari el
flow, which holds that reversing the direction of motion of appropriate changes of variabjeselds

the boundaries causes the reversal the velocity of every fluid (F1y(¢1,— Adpg, 0,w)) = = (Fay(1,App, 0, 0)),  (7)
i {- . .

ﬁ:gn;ﬁn;r?;:lﬁgizfg]e hydrodynamic forces and torques acor (F1,)=0 for A¢y=0. Similar arguments lead to relations
Also, since in Stokes flow the velocity field depends on3MONg the  moments(relative  to trle centeys M,

the instantaneous position of the boundaries only, the forcd J[Xu(Su:1)~CL1Xf.(s,)ds, [whereC,=(0,0,0 and C,

F, exerted by each helix on the fluid depends on time only:(ovh10) :

through the phase, of the helixX; and the phase difference M- = (Moo = Moo — M

A¢E¢2_¢l: F’u:F’u((ﬁl,A(f),w:]_,wz) (fOI’ f|Xed h), Whel’e <(M1X1Mlyv lZ)> <( 2X1 2y 22)> (8)

=1 or 2. Note that thé&, are periodic in¢; andA¢ with  Also, these symmetry arguments can be used to show that

period 27. We assume that the helices have a whole numbethe tipping torqugM,y)=—(H/2){F,,), whereH is the axial

of turns. If we rotate the helices by about thez axis, then  (not contouy length of each helix. This result can also be

translate along thg axis by h (see Fig. 3, and finally re-  derived immediately by observing that in our approximation,

verse the directions of rotation of both helices, then by kine-all moments on the helices arise from the forées

matic reversibility and the rules for transformation of vectors

under rotations and translations we have IV. RESISTANCE MATRICES
Fidm = ¢, A, 3, 01) = Fou (1, A, w1, 5), We now consider the time dependence of theompo-
nents of the torque and force. By the linearity of the Stokes
Fly(W‘ b2, A, w3, 1) = FZy((bl’AQ—'” w1, wp), equations,
(Mlx> - 3<A11 A12>(w1> 9)
Fim= ¢, A, w3, 01) = = Fo (A, 03, 07).  (5) My 7 Ay A/ \w,)’

The net effect of these transformations is the same as rotatinghere theA,,, are functions ofp;, andA¢ (for fixed separa-
each helix about its axis by— ¢, — ¢,. Furthermore, if both  tion h). The reciprocal theorerfll3] applied to Eq(9) with
helices rotate at the same spaedthenA¢ is constant and the flows induced byw;=w, w,=0) and(w;=0,w,=w) iMm-

the time average of a force over a period is the average of thglies thatA;,(¢;,A¢) =A,1(h1,A¢). Direct computation us-
force over one of the phases(F;)=w/(2m)[F.dt ing the numerical slender-body technique reveals that the
=[F.d¢,/(27). Thus A, depend weakly on phasg; for example, the moments
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FIG. 5. (a) Time dependence df,, andF,, for w,=1.50,. (b) Time-averaged axial components of the force.

vary by less than 1% as the phase is varied for fixed phaseKlz) vanishes. SincfA;, <|A;4|, A¢ increases roughly lin-
difference andw, = w,. Therefore, since the same symmetry garly, with small fluctuations due to the hydrodynamic inter-
arguments  which led to Eq.(5) imply My  action. In contrast to pairs of nearby waving cilis] or

= 2,00, wp, 01) =My (1, A, w1, ), we have  yndulating flagella[15], hydrodynamic interactions do not
M@y, w1) = Mo (wy, wp), Or Ay~ Ay, For each phase dif-  cause nearby rotatingigid) helices to synchronize.
ference, we average the torques over the phaseA;; The numerical calculations show that, unlike the mo-

=[d¢As4/ (27). To an excellent approximatiaisee Fig. 4,  ments, the axial components of the forces dependaththe
our numerical results are captured by the analytic formghase and the phase differenég; = 77€22;€BMV(¢1,A¢)60V3
A =Axp=a,-b; coSA¢P) and Ag,=Ay=a,—b,cogAd), Thus the time dependence of the forces is more complicated
where a;, a,, by, and b, take the values,=0.9181,a,=  than the time dependence of the momdfig. a)]. How-
~0.0113,b,=0.0029, andb,=0.1017 forh=3b. As h in- ever, we can give a simple characterization _of the force by
creasesay, by, andb, approach zero, ana, approaches the 2Veraging over the phasg, and the phase differenck¢.
resistance coefficient for a single isolated hefix=0.8904. 1 NiS €ffectively averages over time for many periods. By
When the rotation speeds are equal, the phase differen@MPUUNG(F o for wa/wy=1.5 and(F ) for wp/ w=2, we
is constant in time and the torque on each helix is approxifound values foxB,,,) [solid lines of Fig. §b)] which accu-
mately constant with a smalk1%) fluctuation. For unequal rately captured the average forces calculated by direct nu-
rotation speedsy; # w,, the phase differencA¢ increases Merical simulation for a range ab; and w, [symbols in
linearly with time, and the moments vary sinusoidally aboutlegend of Fig. 8)]. Whenw;=w,, 7?2 ,(B,,)w, gives the
an average value as¢ changegsee the exampléw;, w,) force averaged over all phase differences. We f{Bg)
=(w,w/2) in Fig. 4]. In every case, for constant speeds, the=(B,2)=0.677, ankB,,)=(B,;)=-0.281, forh=3b. A left-
torque is greatest when the helices are out of phase,land  handed helix turning witlw >0 pushes fluid along theaxis
least when they are in phase. [Figs. §a) and gd)], leading to an anchoring forgéhe force
Our calculations of the moments assume the helices turrequired to hold the helix, or equivalently, the force the helix
at constant speeds; however, the bacterial rotary motor typexerts on the fluigin the positivex direction. Thus(B,y)
cally runs at roughly constant torqué4]. The casesw; =(B,,>0. On the other hand, since a nearby left-handed
=wy,=w and w;=w,=0.90 of Fig. 4 illustrate the general helix turning with w>0 also pushes fluid along theaxis,
conclusion that there are many different combinations ofthe part of the anchoring force on the hekx due to the
speed and phase difference that lead to the same torque. flow induced by the helix, is in the negative xdirection:
see how the phase difference evolves, invert the resistangg,,)=(B,;)<0. The magnitude of the axial force on each of

matrix in Eq.(9) and solve fordA¢/dt=w,-w, to find two nearby helices rotating with speedl is less than the
dAd My —M magnitude of the axial force on a single helix turning with
3 = T (10) ratew in isolation.
a Au-Ap
The phase difference is constant onlyMb, =My, in which V. FLOWS

case A¢=Ady, _and the rotation speeds are;=w, Once the force is known, Eq.(2) allows us to calculate

=My [7C3(Ar+Agp)], with Agy and Ay, evaluated aldd  the flow field. Figure 6 shows the components of the flow
=Ago. WhenMy, # My, the phase difference changes con-field in the z=0 [Fig. 6(a)] andx=2p [Fig. 6(b)] planes for
tinuously, since there is no value df¢ for which 1/(A;;  constant phase differenaep=0, and in thex=2p [Fig. 6c)]
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moments on nearby rotating helices at zero Reynolds num-
ber. Our results show that rigid helices driven at constant
torque do not become entrained. We also presented the flow
fields for the two extremes df¢=0 andA ¢= . Although it

is difficult (but not impossibleto measure the flow field
around rotating flagella, all of our results can be tested in a
scale-model experiment such as that described in[BefAs
mentioned in the Introduction, our results do not directly

x/és_ R G ot Ec) apply to swimming bacteria since our helices are prevented
SRR VA T & DDDDTENNN from translating. Instead, our results are relevant for under-
61 od T standing interactions between rotating flagella in a situation

‘ YL X like the “carpet” of bacteria studied by the authors of Ref.

7t 0.0 ‘ ',/; A7 [8]. The next challenge is to include the flexibility of the

rY N A flagella(see Ref[16]), since the forces we describe in this

\\\\ N NN X article will cause the flagella to deflect and form a bundle

9'_1 o ’ “)5‘ . 0 ) ‘;5 . 1 . (for the proper rotation sengg6]. Another extension of the

j2Z4 - e results described in this article would be to consider two

FIG. 6. Flow fields for two left-handed helices rotating with the
same angular velocity = wX.

rotating rigid helices with noncoplanar axes. The new ele-
ment in this configuration may be a steady attractjoe
repulsive force between the two helices. We will study this
situation in future publication.

and z=0 [Fig. 6d)] planes for constant phase difference
A¢=. Both helices are left handed and rotate in the same
direction; note that the path lines are right handed. The shear

rate is highest foA ¢=r in the regions where the helices are
closest{Fig. 6(c)], which explains whyA ¢=7 has the high-
est resistive torque for a given speed.

VI. CONCLUSION
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