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Summary 

A spherical deformable body can swim, at very small Reynolds numbers, by performing 
small oscillations of shape. However, the mean velocity of translation is a t  most of the order 
of the square of the amplitude of the deformations. Three examples of swimming motions, in 
&h of which the mapimum surface strain is 1/3, are illustrated in Figures 1, 2 and 3. Even 
in the moat efficient of the three (Fig. 2), the mean power required to obtaii a given mean 
velocity is twenty times that given by Stokes' formula for the uniform motion of a rigid sphere 
under an external force. This ratio varies as the inverse square of the maximum surface strain. 

With a view to adding to the data on which discussions of the mechanisms 
of propulsion of minute organisms can be based, we will investigate mathe- 
matically the problem of whether (and, if so, to what extent) a spherical de- 
formable body, by performing small oscillations of shape, can progress through 
a liquid (in the absence of external forces) if all Reynolds numbers, based on 
the diameter of the body, the density and viscosity of the liquid, and on either 
the velocities or accelerations of deformation, are so small that all inertial forces 
are negligible compared with forces due to the distributions of pressure and 
viscous stress. 

Then, if v is the velocity vector, p the pressure and p the viscosity, the 
equations of motion are 

(1) div v = 0, grad p = p V'v. 

These do not involve the time explicitly. This is connected with the fact that 
any new position and velocity of the boundary are taken up so slowly that they 
may be considered as redetermining the flow field with negligible lag. 

We will discuss only motions with axial symmetry, so that the velocity 
field depends only on the two spherical polar coordinates (T, 0) and has only 
two components, say (u, v) in the directions T,  e increasing respectively. The 
fundamental solutions of (1) with axial symmetry are derived most easily from 
two immediately resulting equations, namely 

(2) 
a a - (r'u sin e) + - (~*v sin e) = 0, ar T a8 

~*(ru) = 0. 
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Retaining only solutions which represent motions with a finite total energy, a 
complete list is easily deduced: 

u = Por-2, 2, = 0; 

v = +V,r-3; 

v = (in - l)V,,r-,, 

u = Plr-', 

u = P,,r-", n 1 2 ;  
u = P,T-"-', = +nV,,r-n-2 n 2 2 .  

Here P, (cos e) is the ordinary Legendre polynomial, and V,  is defined by 
equation 

(3) 

For n 2 1, V,, is an odd function of 0 vanishing at 8 = ?r as well as at 0 = 0. 
We shall need the following explicit expressions: 

V ,  = sin e, V ,  = sin e cos 8, V ,  = t sin e (5 cos2 e - 1). 

In practice it is convenient to use a moving origin for the spherical polar 
coordinates (T ,  O), which remains roughly at the center of the body in any trans- 
lation it may undergo, moving only along the axis of symmetry. This motion 
of the origin makes no difference to the equations of motion (1) , since the inertial 
force associated with it is clearly equally negligible with those already neglected. 
The system of solutions (3) is therefore unchanged, but it is now necessary that, 
for any combination of them to have finite total energy, the solution 

(5) 
be added to it, where U is the velocity of the origin. 

The velocities u and v must, in axisymmetrical flow, be respectively even 
and odd functions of 0. It follows that their values on a sphere T = a can be 

u = - U cos e, v = U sin 0 

expanded in the forms 
rn 

(In fact, by (4), B, is the wth Legendre coefficient of + csce d[(v),,, sin 8]/dO.) 
It is easily seen that the only combination of solutions (3) and (5) satisfying 
the boundary conditions (6) is given by 

a2 as U = A O ~ P , + # ( A , + B J ~ P ' -  r UCOSO 

aa 
v = 5 ( A ,  + B,) V ,  + usin e 
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where the velocity U of the origin is constrained to have the value 

(8) u = f(2B, - A').  

The reason for this fundamental fact, that the boundary values of u and v on 
a sphere determine the velocity of transIation of the origin, is that the second 
of the solutions of the type (3) in which u is proportional to P,  and v to V ,  , 
namely u = P'T-', v = -$Vl~-', has inhitme energy, and so is absent from (3). 
This solution arises in the Stokes uniform translation of a Tisid sphere through 
8 fluid, but this latter motion can be built up only by continued applicat,ion of 
an external force. Motions generated simply by squirming must, on the contrary, 
have a finite total energy. 

To describe the motion of a nearly spherical deformable body, we will 
suppose that the particle on its surface, which in the natural spherical shape has 
coordinates (a, e), has the coordinates 

at time t. The coefficients a&), P.(t) will be taken as oscillatory functions; each 
is, at any instant, equal in magnitude to the maximum surface strain' associat,ed 
with its particular mode of deformation of the surface. This is easily shown 
since both I dV,,/d@ I and I V,, cot 6 1, as well as I P ,  1, have the maximum value 
1 (attained, in all three cases, at i3 = 0 and T). Further, the origin will always 
be taken to move in such a way that a, = 0, i.e. so that there is no component 
of translation of the body relative to the origin. What is left in (9) is then pure 
deformation, and the transIation arising from it (which is to be determined) has 
the velocity U of the moving origin. 

Now the velocity components at the point (R, 0) of the surface must be 
OD 

u(R, 0) = R = a c &Pa,  
0 

(10) 

v(R, 0) = R0 = a(1 + 2 an..) 5 bnVn . 
If, as a first approximation, the squares of deformations are neglected, the 
boundary conditions (10) take the simpler form (6), with A,, = oh,, , B, = a& . 
The velocity field is therefore (7), with these substitutions made therein, and 
the velocity W of the origin is constrained to have the value 

2 .  u = - UP1 . 3 
Thus the only mode of deformation which, to this first approximation, pro- 

'Note that the principal surface strains are @/a) - 1 + ( N / M )  - 1 meridionally, and 
@/a) - 1 + (0 - e) cot e azimuthally. 
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duces translation, is given by R = a, 8 = 8 + ,& sin 8, which is a purely tan- 
gential motion of the boundary without change of shape. The resulting velocity 
of the sphere is two thirds of the maximum tangential velocity of the boundary. 

Also since, to this first approximation, the velocity of translation is pro- 
portional to the rate of deformation in this mode, it follows by integration that 
at any stage the total distance travelled is proportional to the total deformation 
in this mode. Hence, to this approximation, the distance travelled is con- 
strained to remain very small. 

Therefore, if the body does progress through the liquid as a result of suitable 
small oscillations in shape, its rate of progress must be at most of the order of 
the squares of the deformations. One is encouraged to carry the work on to 
this further stage, in which only the cubes of deformations are neglected, by 
Taylor’s discovery (private communication) of a similar result for the motion 
produced by deformation of a progressive wave type to a plane boundary. (In 
work of this kind there is of course no inconsistency in continuing to use the 
fully linearised equation of motion, since the Reynolds number is small inde- 
pendently of the size of the disturbances.) 

Expressing the values of u and v at the point (R, e), by Taylor’s theorem, 
in terms of values on the sphere r = a, and ignoring cubes of deformations, we 
have from (9) and (10) 

Substituting, for the values of u, , ug , v, , vg on the sphere in the quadratic 
terms on the left, the values of these derivatives for the first approximate solu- 
tions (7), wit.h An = a&, , B, = upn , we obtain for the boundary values of u, v 
on the sphere to a second approximation 

It follows that, if the right hand sides of (13) are expanded in the forms (6) ,  
where now A, and Bn will be correct to a second approximation, the velocity 
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field will be given by (7), and the velocity U of translation of the origin by (8). 
It is this latter quantity with which we are principally concerned. To calculate 
it, we need the coefficient of P I  in (u)~=,, , and t,hus in products like P,P, and 
V ,  dP,/dB, and also the coefficient of Vl in (v),,. , and thus in products like 
P,Vn and V ,  dV,,/dB. By expressing each of these four required coefficients as 
an integral, and hence (integrating by parts if necessary) as a Legendre coefficient 
of order m or n of a polynomial of order n + 1 or m + 1 respectively, it is easy 
to verify that each vanishes unless either m = n + 1 or n = m + 1, and to 
calculate it in these two cases. From this work the velocity of translation (8) 
is found to be 

Thus, to this second order in the deformations, U is not the exact time- 
derivative of an oscillatory function. Therefore, by suitable combinations of t,he 
various possible modes of deformation, the body may make gradual progress, on 
balance, as time goes on. In fact, if the a, and pn are periodic functions with 
the same period T ,  then, using the symbol gT to indicate integration over a single 
period, the distance travelled during one period may be written as 

00 - 2(% - 1) 8 
- c (2% + 1)(2n + 3) + F (2n + 1)(2n + 3) 

Note that,, if a: and p are periodic, integrals like gT ad@ may be made positive if 
on the whole a: is larger when p is increasing than when B is decreasing. If a: 
and p execute simple harmonic oscillations with amplitudes XI , X2 then the 
integral is maximized by taking the phase of 01 90" degrees ahead of that of p, 
in which case .f adp = rXJz  . 

To assess which combination of modes is likely to produce translation most 
efficiently, it is now necessary to consider the work done by the body in the 
squirming motion. To a first approximation (which will be sufficient for our 
purposes) the rate a t  which the body does work, against the radial stress p - 
2 p a ~ / a r  and transverse stress p( -av/ar + v / r  - au/ra6) at  the surface, is 
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where u and v are given by (7) with An = a&, , B, = up, , while the pressure p 
is deduced from the second of equations (1) in the form 

Thus the body does work at  a rate 

+ 2 l n ( n  + 1)4,Vn)] d(cos 0) 

To get an idea of the eEciency of the squirming process it is reasonable to 
take the mean value of P over a single period, andsompare this mean power 
exerted by the body, which produces a mean velocityU given by expression (15) 
divided by the period T, with the Stokes value 67r~a(U)* for the power which 
has to be applied externally to maintain a rigid sphere in uniform motion with 
velocity v. Thus the efficiency is 

(19) 7 = &pa(U)'/F. 

It is clear from (15) and (18) that this is of the order of the square of the deforma- 
tions, and so we will consider the problem of maximizing q/", where e is the 
maximum surface strain. 

From the remarks made after (15) it is reasonable, at any rate at first, to 
seek to do this under the restriction that the displacement (10) consists of only 
two modes, simple harmonic and 90" out of phase. Now if the a, and pn corre- 
sponding to the two modes are X1 cos (2at/!l') and A, sin (27rt/T), respectively, 
then the maximum strain is E = (1: + since any I P, 1, I dV,/dO I or 
I V,, cot 0 I has the maximum 1 and achieves it a t  the same places 0 = 0 and T. 

Further, if the coefficient of 

Q $ A, cos (2~ t /T )  d[X2 sin (%t/T)] 
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in (15) is C, and if the coefficients of the two non-vanishing &: and i z  in (18) 
are D ,  and D, respectively, then the efficiency 7 is, by (19)) 

The maximum of the ratio of this expression to the square AT + A: of the maxi- 
mum surface strain c, is reached when (X,/X2)' = D2/Dr , For this case 

The ratio q / e 2  derived from (21) is tabulated in Table 1 for a large selection 
of the pairs of modes for which it is non-zero, indicating each by writing down 
the two coefficients from (10) which do not vanish therein, with the mode whose 
phase has to be ahead by 90" written first. It is seen that the most efficient 
combination is a& , with q / C  = 0.44. 

It does not appear to be possible to obtain significantly higher ratios of 
the efficiency to the square of maximum surface strain by using more than two 
modes. For example one might seek to increase the amplitudes of the optimum 
modes a2 and B3 , without increasing the maximum surface strain, by adding 
small multiples of other modes, 180" out of phase, to each. This would be most 
effective if the latter were modes requiring only small power to maintain them, 
but it appears that such modes are extremely ineffective in increasing the ampli- 
tude of the optimum modes without a corresponding increase in e. Even when 
for example the additional mode B4 is used (180" out of phase with a2) which 
has the special advantage that the combinations a2Ba and PaB4 both make positive 
contributions to the mean velocity, there is so little increase in the amplitude 
of a2 for given e, that what with the slight additional power required the ratio q/ea 
cannot, apparently, be increased above 0.52. One may, alternatively, while 
retaining only two modes, seek increased efficiency by not taking them in simple 
harmonic motion. Actually the optimum shape of an oscillation curve has sharp 
peaks, but its adoption increases the efficiency of the a& mode only to 0.49. 

Hence, as representative examples to be discussed in detail of the more 
efficient kinds of squirming motion, we may choose three from Table 1, namely 
a& , and &Ba . These are illustrated in Figures 1, 2 and 3 mpectively, for 
the case when the maximum surface strain is 1/3. In each case the meridian sec- 
tion of the body is shown at successive intervals of one eighth of the period T. The 
tangential motion of the surface can be followed in these figures by means of 
the eighteen marked particles, which in the unstrained spherical state (not 



116 M. J. LIGHTHILL 

shown) are distributed uniformly round the circumference. In each position the 
resulting instantaneous velocity of translation of the centre (the origin) is indi- 
cated; under each figure is noted the mean velocity 5, the mean power exerted 
F,  and the efficiehcy 7. It may be remarked at  once that the motion illustrated 
in Figure 3 is probably closest to a motion of which a small organism could be 
capable. (As throughout, p denotes the viscosity.) 

In Figure 1, the basic translation-producing motion 0 = b, sin 0 is per- 
formed in the positive sense when the sphere is largest and in the negative sense 
when it is smallest; because, by (ll), the velocity produced at  any instant is 

t O . 8 S Q  0 
FIG. 1. Mode a& with maximum surface strain 1/3. Mean velocity of translation = 
0.11 ( u / T ) .  Mean power exerted = 10 (.uu3/T2). Efficiency = 2.3 percent. Forniula of 
deformation: R = u[l + 0.202 cos (2rt/T)], 8 = 0 + 0.265 sin 0 sin (2d/T). 

proportional to the radius, progress results. In fact the inflated sphere pushes 
more effectively than the deflated sphere pulls, even though the sphere suffers 
no net strain after a complete cycle. However the energy required is rather 
large, because of t,he heavy dissipation of energy (indicated by the coefficient 
8 of &: in (18)) associated with the “source” motion consequent on the volume 
changes. Figure 1 shows that the motion is essentially achieved by a constriction 
at the rear during the first quarter-period, a constriction at the front (completing 
the reduction in volume) during the second, an expansion at the rear during 
the third, and an expansion at  the front during the last. 

The motion of Figure 2, while more than twice as efficient, might be harder 
for a small organism to achieve than t.hat of Figure 1. In it the maximum 
velocity is kept down to within 60% of the mean (thus reducing the power 
required) by eschewing the crude large scale motions associated with the mode 
p, in favor of the mode pa , which involves backward tangential motion of the 
boundary ahead and behind, but forward motion in a central ring. Such motion 
produces forward velocity when the sphere is deformed into a prolate spheroid, 



SQUIRMING MOTION OF BODIES THROUGH LIQUIDS 117 

but the contrary motion produces forward velocity when the sphere is deformed 
into an oblate spheroid. This is perhaps due to the fact that in the former 
shape the urea of surface (before and behind) in which V,  is positive exceeds 
that of the central ring in which it is negative, while in the latter shape this 
state of affairs is reversed. Hence at  all stages of the motion the mean tangential 
movement of the boundary (weighted according to surface area) is backward- 
although again no net strain occurs in a complete cycle. Inspection of Figure 
2 indicates that the motion may be regarded as produced by a constriction in a 

FIG. 2. Mean velocity of translation = 
0.085 (a/T) .  Mean power exerted = 2.8 (jtaa/Tg)). Efficiency = 4.9 percent. Formula of 
deformation: R = all + (0.294 cosz B - 0.098) coa (2r t /T ) ] ,  8 = O + sin O(0.337 cos* 6 - 0.067) 
sin (2xtlT).  

Mode ada with maximum surface strain 1/3. 

disc at the rear, and in an annulus a little behind the front, during the first 
quarter period, followed by a constriction in the other parts of the surface (a 
disc a t  the front and an annulus a little ahead of the rear) in the second. In 
each case a slight expansion is found in the more central parts which are not 
being constricted, and the whole is followed by the reverse process in the same 
order. 

The motion illustrated in Figure 3, on the other hand, involves no change 
of shape at  all, but only tangential movements. Broadly speaking, the rear part 
of the surface is moved forward, followed by the front part; then the rear part 
is retracted, again followed by the front part. This is strongly reminiscent of 
the motion of worms, and it might be expected that if the efficiency could be 
calculated for a similar motion of a highly eccentric prolate spheroid it would 
prove much larger. It is to be observed from the figure that in such a motion 
the area of backward tangential movement a t  a typical instant (e.g. in the first 
position) is less than that of forward tangential movement half a period later, 
again although no net strain occurs in a cycle. It is this which makes progress 
possible. 
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FIG. 3. Mode j3& with maximum surface strain 1/3. Mean velocity of translation = 
0.09 (a/T) .  Mean power exerted = 4.1 (@/!P). Efficiency = 2.3 percent. Formula of 
deformation: R = a, 8 = e + 0.214 sin 8 cos ( 2 d / T )  f 0.127 sin 28 sin ( 2 d l T ) .  (Of the three 
squirming motions illustrated this is the one which a small organism is likely to be able to 
reproduce most closely.) 

It must be reiterated that it is essential for the accuracy of the theory that 
the Reynolds number, which can be written pu2/pT, be small. It is probably 
sufficient in practice that this Reynolds number be less than 1, since difficulties 
such as those noted by Oseen in connection with the Stokes solution will not 
arise in motions like those considered here with finite total energy. In the 
motion illustrated in Figure 2 the Reynolds number could probably be some- 
what higher, since the maximum velocity is considerably less than a / T .  

It is worth remarking in conclusion that all the flows considered in this 
paper have negligible total axial momentum. For, first, the momentum outside 
the sphere T = a is zero, because for any motion of an incompressible fluid the 
axial momentum between two concentric spheres is equal to the difference be- 
tween the coefficients of P, in the values of r3u on each sphere, and actually the 
coe3icient of P ,  in the solutions (3) for u is proportional to  T - ~ .  Hence the 
momentum of the fluid arises only from the regions lying between the true 
body surface and t,he exact sphere r = a, whence it is easily calculated to a first 
approximation as 

2(n 1)(oIn&+1 &%+J 4(bn%z+l - d n + l )  

(2, + 1 > ( 2 n  + 3) (22) Pa' 2 
Forces associated with the rate of change of this momentum (which, like all 
inertial forces, have been neglected in the above) are of order pa4e2/T2; the 
rate at which work is done by them is therefore of order pa5e3/T3. This bears 
to the power P (see (18)) required, at any instant, to  counteract viscous forces, 
a small ratio of order pu2e/pT = Re. In  the particular motions illustrated in 
Figures 1, 2 and 3 the actual maximum value of the said ratio is 0, 0.007R and 
0 respectively. 




