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Summary

In this paper we study nutrient uptake by a very simple model of a swimming microorganism, a
sphere moving its surface tangentially to itself with constant concentration on the surface. The
effect of its swimming motions on the concentration field and uptake is investigated. We find
the relationship between the Sherwood number (Sh), a measure of the mass transfer across the
surface, and the&let number (Pe), which indicates the relative effect of convection versus
diffusion. Then we compare the results with those for a rigid sphere moving at the same speed
under the action of an external force.

Analytical and computational results prove that there is little difference between the two cases
when the flow field is dominated by diffusion, but substantial differences arise when convection
plays an important role. In particular, for Pe large enough, Sh for a steady squirmer increases as
the square root of Pe, compared with the cube root for a rigid sphere. For intermediate values
of Pe, only numerical results are available, and they are obtained using a Legendre polynomial
method and a separate finite volume method, allowing us to compare the two sets of results and
assess the procedures used to obtain them. In Appendix A we discuss the effect of an alternative
boundary condition on the Sherwood number expansions at small and large Pe.

1. Introduction

Computer models of populations of microscopic marine organisms are widely used in the study
of phenomena such as harmful algal blooms, or the impact of nutrients on planktonic ecosystems
(1). The rate of nutrient uptake by phytoplankton (plant-like microorganisms living in the upper
layers of the ocean) constitutes an important element of such models. The amount of nutrient
absorbed determines how large a microorganism can grow, and whether it can reproduce. When
food is depleted from the water, the microorganisms either die or become cysts and wait again
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for appropriate nutrient conditions. Therefore, studying the mass transfer to microorganisms is
important for plankton ecology. In particular, little is known about how their swimming motion
might affect the nutrient uptake rate: swimming could modify the concentration field near the
surface by stirring the concentration boundary layer and bringing more nutrient-rich fluid near to
the cell surface, thereby increasing the uptake.

In this paper we investigate the effect of swimming on nutrient absorption in the simplest
model problem we can think of. The model microorganism is a sphere which moves its surface
steadily and tangentially to itself. This is called a sphergteddy squirmer; a model of a nearly
spherical squirming organism was introduced by Lighttfl, (and the velocity field calculations
were completed by Blake (3). In this paper we consider the radial velocity at the surface to be zero,
and the tangential velocity to be independent of time; we also assume this time independence for
the mass concentration in the ambient fluid.

Some microorganisms, lik@palina for example, move through the water by the beating of many
little hairs (calledcilia) attached to the surface. The cilia can follow different types of synchronized
movement: when they remain densely packed throughout the motion, the time-dependent, wave-
like squirming of the envelope covering the ends of the cilia can model the motion. Some authors
(4, 5) have agued that this same envelope model could be applied directly to tiny blue—green algae,
also called cyanobacteria, if one assumes that they propel themselves through the water by surface
distortions. In fact, Ehlerat al. (5) used this assumption to find an approximation for the swimming
speed of a microorganism propelling itself by means of small-amplitude, high-frequency sinusoidal
wavestravelling along the outer cell membrane. Skerker and Berg &8¢ frecently made direct
observations of extension and contraction of some elements localized on the surface of certain
cyanobacteria, but only at the tail of the microorganism. These protrusions are believed to be
responsible for imparting the necessary swimming thrust. However, in order to show qualitatively
that swimming motions can dramatically affect nutrient uptake, we will consider the model for self-
propulsion used by Lighthill (2), and we will model the microorganism as a spherical squirmer,
that is, we do not investigate any shape effects or unsteady effects. All these simplifications and
modelling assumptions mean that we cannot claim realism for our simple model. Unsteady spherical
squirmers will be considered in a subsequent paper, and we will modify our model still further in
future work so that the results become realistic.

Our objective is to determine the Sherwood number Sh, a measure of the rate of mass transfer,
as a function of the &let number Pe, which indicates the importance of convection relative to
diffusion, and compare it with that of a rigid sphere moving at the same speed under the action of an
external force. In the microscopic realm, the range of valueséiotePnumber can take is large. For
instance, for a bacterium and a cyanobacterium F(0-3) to O(10-2), but for a ciliate such as
Opalina Pe may be of order40Thus, it is important to see whether swimming is important for any
value of the Rclet number. We use the known velocity field in the convection—diffusion equation
to find the mass concentration, and thereby determine the functional relationship between Sh and
Pe, both analytically for small and largé&détet numbers, and numerically for the whole range of
values.

For small Pe, the procedure followed is the same as that presented by Acrivos and Taylor (7)
for heat transfer from a rigid sphere. For large Pe, the asymptotic behaviour can be deduced from
boundary-layer theory. Finally, we obtain numerical results for all values of Pe. All the calculations
are made under the assumption that the nutrient concentration is constant and uniform at the cell
surface. A different boundary condition, possibly more applicable to nutrient absorption by living
cells, is explored in Appendix A. We check the accuracy of the numerical results by comparing
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with the asymptotic behaviours, pointing out some discrepancies between numerical and analytical
results for large Pe. We also see the extent to which the swimming motions enhance mass transfer
by comparing with the results for a rigid sphere.

2. The flow field

We consider the scalingy = U*/U*, whereU*, the characteristic velocity, is the velocity of
translation of the squirmer in still fluid and in the absence of a body fds&eas the velocity field,
and an asterisk indicates a dimensional variable. As stated above, the radial velocity at the surface
is zero. The Reynolds number Re for the microorganisms we are interested in studying is in the
range 10° (for a bacterium) to 10! (for a ciliate protozoon) (8), which allows us to use the Stokes
equations for the flow field.

All the analysis is in a frame such that the squirmer has zero translational velocity, and there
is a uniform flow of speedJ* coming from the far right (see Fig. 1). The velocity field for
r* > a, relative to axes fixed in the sphere, is obtained by solving the differential equation for
the Stokes stream function, and by applying the appropriate boundary conditions both at the surface
and at infinity, together with the condition of axial symmetry. For the steady squirmer, the velocity
components are (3)

an+2 an

P1 (1 >+Z( —— r*”) Bn Pn (1)

Uf = —U*u

and
an-&-2

1 as n
Up = Ut (1= 7)o+ 25 1(M)+Z [2 - (5-1) ra—} BV (10,

wherer * is the distance from the centre in spherical polar coordinatescosd, P, is the Legendre
polynomial of ordemn, and we define

2 2%/ _
Vn=m(1—ﬂ) Pa(n) = —

1
nin+1) Pa ).

Forthe motion to have finite total energy it is necessary that= 2B;/3 (3). Also, we assume
the characteristic lengthscale to be the radiusf the sphere (as shown in Fig. 1), so that the
dimensionless radial coordinateris= r*/a. Then the velocity field in non-dimensional form is
given by

U 1P 3 ¥ 1 ! BnP, 2.1
r=—u+ 1(M)+EZ POYE R nPn(w) (2.1)

and

1 3 &
Uy = (1-42)° + 55Vat) + oo Z[Zr:+2—(g—1) H BVa().  (22)
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Fig. 1 The model microorganism. The spherical self-propelled body is moving with uniform veldgity
The tangential velocity at the surface is non-zero

Uy(r=1)

-3 ) 1 1 ! ! ! 1 1 1
-1-0 -0-8 006 04 02 00 02 04 06 08 10

u

Fig. 2 Tangential velocity at the surface of the squirmer forqa} 5 (solid line); (b)g = 3 (dashed line);
(c) g = 1 (dashed and dotted line); and @)= 0-1 (dotted line)

While the radial velocity vanishes (by definition of a squirmer), the tangential velocity at the
surface is a function of the polar angle For the purpose of detailed calculation, we tdke= 0
forn > 2, andU andB; are constants. This is a large simplification since we need several harmonics
and time-dependent functions to describe a realistic wave propagating over the surface. However,
these two coefficients are sufficient to illustrate the effects being investigated. In Fig. 2 vig,plot
at the surface for a few positive values of the paramgtevhich is defined ag = By/B;. When
g is negative, the plots are symmetrical to flhe= 0 axis. Now, we know that the characteristic
velocity is proportional td;, and Fig. 2 shows that,, vanishes at a third point of the surface of the
microorganism wherq| > 1. Therefore, whelig| > 1 we &pect a recirculation region to appear
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at the back of the microorganism, which means thaépresents a measure of the stirring of the
water due to the movement of the surface versus the translation of the self-propelled body.

3. The mass transfer equation
The convection—diffusion equation satisfied by the nutrient concentr@tias given by
Ci. 4+ U*. V*C* = DV*°C*, (3.1)

whereD is the diffusivity of nutrients. If the concentration of nutrients is uniform at the surface,
with the valueCg, and at infinityCZ,, then we can consider the classical scaling
_C,-Cr
- Ci—C§
so that the boundary conditions a&e= 1 at the surface an@ — 0 asr tends to infinity. As
we said before, in Appendix A we explore how the results are affected if we take an alternative

condition on the concentration at the boundary which seems more realistic. In the steady case the
non-dimensional form of (3.1) is

Pe(U - VC) = V2C, (3.2)

where Pe=aU /D, the Feclet number, is based on the radius of the squirmer,laiglgiven by
(2.1) and (2.2). Since the diffusivith of all solutes is small compared to the kinematic viscosity
of water, Pe can be large. The non-dimensional uptake rate, the Sherwood number, is given by

1/5C
Sh= _/_1 (a_r)rzld“' (3.3)

Our goal is to find Sh as a function of Pe. We will start by considering small values of the parameter
Pe.

4. Analytical solution for small Péclet numbers

Following Acrivos and Taylor (7) we solve the problem in the limit of small Pe using the method
of matched asymptotic expansions. In the inner region; O(1) and the governing equation is
(3.2); in the outer region, we use the radial varighle- (Pe)r, and the governing equation ceases
to contain Pe explicitly. We le€i, and Cyy; represent the expansions fGrin the two regions
respectively. The two expansions must be equivalent in an intermediate region. For the current
problem, the inner solution is regular up@(P€&), and the final result is

Cin = (Cin)o + Pe(Cin)1 + P& (Cin)2 + - - - ,

with

1
(Cin)o =r—,

PSR PR WY A S S
LT o r 2 a3 a2

sl S\
2 \ord T a2 " 1x3) 2
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and
1 1
(Cin)o = — 2 <1 - —) + Ro(r) — Ro(Lr *
1 1
+ 1 [Z (r - r—2) + Ru(r) — Rl(l)r_2:|
4
+ 3 [Ra®) = Ra@r =™ Paco),
n=2
whereRy, ... ,Rqin (Cjy), are polynomials of. The Sherwood number defined in (3.3) can be

computed from the inner solution alone. Also, in order to determine the coefficient Gf(#Re?)
term of the Sherwood number expansion, we only rnieg@), which is of the form

Ro(r) = 4+ = (3 - 37 _ 1)1
T 6 242 \ 80 64 16 r4

1 392\ 1 g%\ 1 39°
+<aﬁm)r—s‘<3—z 6 " 280

The explicit forms of the function®y, ... ,R4 are given in Appendix B. From the above, the
Sherwood number can be shown to be given by

_ 419
Sh= 2+ Pe+ (—% + ﬁ)) P (4.1)

It is worth remarking that the corresponding expansion for the rigid sphere includes a term of order
P& In (Pe (7). This is absent in our case as a result of the fact that for a self-propelled body there is
no external force, so that the velocity field decays ag hsr — oo, not 1/ as for the rigid sphere.
However, the first two terms are the same in the two cases, reflecting the fact that the differences are
not very important when the mass transfer is diffusion-dominated.

5. Asymptotic solution for large Péclet number

When Pe takes large values, a concentration boundary layer is expected to form near the surface of
the microorganism, in the region whare- 1 « 1. The thickness of this boundary layer can be
estimated by introducing the variable

Y = Pé"(r — 1).

The velocity isO(1) near the surface, and |t follows from the mass transfer equatiomthat?,

that is, the boundary- Iayerlthlckness&{Pe 2) In the rigid sphere casm = ——the boundary-

layer thickness bein@ (Pe™3)—because the velocity field near the surfac@(s —1). Thus there

is a marked difference between the two cases. In fact, the mass transfer is enhanced by squirming,

since the Sherwood number is proportional ta@ peot Pe%, with constant of proportionalitg, say

Sh= cPez. (5.1)
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In order to determine, we need to find a similarity variable so thatC, in the mass transfer
equation

2
g—Yi=—3Y[u+g(3;3—1)]%-2(1-;%) (1+qu)%, (5.2)
depends only om. Equation (5.2) is theoncentration boundary-layer equation for this problem

(9), and when a similarity solutio@ () exsts, this equation can be transformed into an ordinary
differential equation forC, with coefficients which are either a constant or a functiom.ofit is
customary in heat transport processes at laggge®numbers to seekin the formn = Y/g(w), for
some positive functiog(w). HereY is the concentration boundary-layer coordinate normal to the
body surface at each point, agx) represents thg-dependence of the boundary-layer thickness.
Now, if we substitute; and the derivatives of with respect toy required in equation (5.2), we
obtain

3°C (3 ) 2\/ d. - 5] C
a7 {Z<1—M )@+aw (6?) —3[n+562-1]g }E =0. (53
Then, a necessary condition for a similarity solution to exist is that

Z (1 — Mz) (1+qu) (gz)/ -3 I:/L + %(SMZ — 1)] g? = constant. (5.4)

However, this condition is not sufficient for we also need to find a solution of equation (5.3) which
is compatible with the boundary conditions imposednlf, without loss of generality, we take

the constant as-2, equations (5.4) and (5.3) can easily be solved. In fact, the expressiGnigor
given by

C =erfc(y), (5.5)

whereas that fog is of the form
1
g2 T/Q(k — w—au?/2+ /3 + qut/4)?
(1-u?) A+aw) '

From equation (5.6) we deduce thliatnay be singular at the front and rear stagnation points, that
is, atu = 1 andu = —1, respectively. It may be singularat= —1/q also but only whenq| > 1.

In the next two subsections, we explain how to chosm physical considerations, so thais
bounded at the appropriate points: we will allgato be singular at points where we expect the
boundary-layer scaling to break down (for example, near the wake), but we will &djosthatg

is bounded otherwise.

(5.6)

51 q> -1

The point at which we will choosg to be bounded will be a stagnation point at which the flow
impinges on the sphere surface. In the case wipen —1 that point corresponds to the front
stagnation point = 1, and we set the constdn*as% + %q so thatg is bounded there.

From (3.3), the constant of proportionality is given by

2 (1 du
L 5.7
¢ ﬁ/a a0 -7
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Fig. 3 Stream function contours wheaq| < 1. The solid line corresponds ¢p= 0-1, and the dash-dotted
one toq = 1. The flow comes from the right and is unidirectional, so that there are no closed streamlines in
any region. The stream function contours correspond to values of the stream functionXrtum-9 in geps
of 2, and to the value 0

where the lower limitx is equal to—1 if we can apply the above boundary-layer theory over the
whole surface, that is, whesp < 1. However, wherg > 1 the tangential velocity on the surface
vanishes att = —1/q, as we know from Fig. 2, and a recirculation region appears at the back of the
squirmer. Flow streamlines for various valuesjodire plotted in Figs 3 and 4, and they show that
the recirculation region becomes largergisicreases. Only the front part of the sphere is exposed
to streamlines that originate upstream at infinity, bringing fresh nutrient close to the surface.
Mass transfer is likely to be significantly reduced at the rear, so in this case we takel/q.
Comparison with the numerical solution will provide a test for this assumption. From (5.7) we thus

obtain
8
c=c.=,/— whenlg| <1, (5.8)
T
1
/6 (2 (q 1 1 \2

Formula (5.9) is valid for alb larger than 1, because in that range the function under the square
root sign is always positivey positive means that squirming is in the same direction as the uniform
flow. We also remark that is constant whenq| < 1—because then the terms dependingjan

the expression for cancel each other—and thaincreases ag increases wheq > 1. Therefore,
whenq > 1, the largen, the greater the mass transfer, for a given swimming speed.
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Fig. 4 When|q| > 1, the tangential velocity on the surface vanishes at an #ggtecos 1(—1/q). Sofor
6p < 6 < m, there is a recirculation region at the back of the microorganism, in which boundary-layer theory
cannot be applied. Here stream function contours are plotteglfo8 (solid),q = 5 (dashed) and = 10
(dash-dotted). The contours are symmetrical with respect tg-tivds for negativey, but the direction of the
flow is still from right to left

52 q<-1

In the case whenq < —1, boundary-layer theory may be applicable fot < 1 < —1/q. On
physical grounds we expect the boundary layer to be thinngstat-1/q because the flow comes
from the far right. We choosk in (5.6) so thatg is bounded ax = —1/qg, so we require that
k = —1/29 + 1/193. Theng may be written as

1
V2 1 392u? —2qu+1—-692\°
V3 (1-w?) 123 ’

butonly if the polynomial 8212 — 2qu + 1 — 62 is negative for all the values gf, because in
that case the function under the square root is positive. Now, that polynomial is negativeiwhen

1+/182-2 1-.,/182 -2 1+/1842 -2
3q ’ 3q 3q
1- /1892 =2

than—1, and—1/q is less than3— . Therefore, the polynomial is negative wheris

is less

is in the interval|: :| But wheng < —1,

in the range of values for which boundary-layer theory is applicable, that is, betwkeand—1/q,
and we can defing as above.
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From (3.3), we determine the constant of proportionalityith the integral

2 (Y4 d
c= 2 / Sl (5.10)
VTl gw
which can be readily found to be
1
6 qg 2 1 1 )\2
c=Cc_=4/—|—-+=z—-=+-—5) . 5.11
7'[(4+3 2q+12q3> (®.11)
The equation above shows thatlecreases alg|| decreases for aljf < —1, up to the value of
c_. = 1.6 whenq = —1. Therefore, the greatéq|, the greater the mass transfer to the steady

squirmer. Moreover, it is easy to deduce from (5.9) and (5.11) ¢h&t-q) = c,(q), which,
together with (4.1), lead us to the conclusion thatdSh€ Sh(—q) both at small and largeéelet
numbers, despite the fact that the flow is not reversible. This non-intuitive result helps to validate
our analysis, because it is consistent with a theorem, proved by Brenner (10), that the net rate of
heat flow from a particle into an incompressible Stokes flow is independent of direction.

Finally, it is worth noting that ik = —% + %q, g is bounded ap. = —1, the other stagnation
point, but then the function under the square root is negative far dllg < —%, in particular, if
g < —1. Another argument is to see that wreeis less than-1, —1/q is positive and them = 0

is in the range of integration far. Howewer, when is zerog is proportional td<%, and therefore
it is necessary th& > 0, orq > %, which is a contradiction.

6. Numerical methods
6.1 The Legendre polynomial expansion method (LPEM)

It is quite difficult to achieve good accuracy in the numerical solution of equation (3.2), at larger
values of Pe. Therefore we have used two different methods, as a test of each other. In the first,
we follow the analysis of Dennigt al. (11) for the heat transfer to a rigid sphere. We write the
concentratiorC as a Legendre polynomial expansion, so that

C =) Cn(€)Pa(w), (6.1)
n=0

where& = In(r); we take this radial variable so that mesh points near the surface of the squirmer
are more densely packed. Then we need to solve only a system of ordinary differential equations
for Cn(&). In spherical polar coordinates, equation (3.2) is

1
19 (,9 19 2\ @ 3C (1—-p?)?  aC

Z(rr2 )+ —{(1-p®) —tl|lc=ec|luy=-12""Ly,=|, (6.2
|:r28r (r 3r)+r28,u{( “)au” | r ou (6-2)

wheree = Pe. If we substitute the velocity field (2.1), (2.2), introduce the Legendre series
expansion, and multiply both sides by exp (2% left-hand side (LHS) becomes

(0.¢]
LHS =) "[Cfy + C), — n(n + 1)Cn] Pa(1),
n=0
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whereas the right-hand side (RHS) takes the form

RHS= € [exp(—2&) — exp(&)] Y Y " a1(n, K)CL(&) Pa(1)

n=0 k=0

3
e 2 [exp(—35) — exp—6)] 3 3 a2(n, KICKE) Pa(u)

k

[

o0
=0

> Bo.2(n. K)Ck(&) Pa(p)

k=0

2 1 )
—3€ [eXp(E) + 5 expi— S)]

i

3 o0 o0
~ T e =36 Y Araln, CK(E) Pa(io),
n=0 k=0
where
1
o (n, k) = 2”“/ Py PPadlt
-1
and

P — Pj] P¢Padt.

The boundary conditions to be satisfied &g = 1 andC,, = 0, forn > 0, at the surface. If
we choose a suitably large valggax, Which will depend on the range of Pe considered, we can
approximate at that value the boundary condition at infinity, so we@ake O for alln, até = &max.
Another way of approximating that boundary condition is described by Destrds (11), who
proved that as — oo the concentration is exponentially small except in a wake region for which

7—0=0 (r *%). These same authors then proved that the boundary condition at a large boundary
mesh poini = M can be related to the previous mesh poiat M — 1 through the condition

Cn(Mh + h) = exp(—2h)Cn(Mh). (6.3)

This is due to the fact that, at largethe functionsC, (&) are asymptotically equal O, exp(—2¢).
In section 7.3 we will compare some results obtained using equation (6G3)(bth) = 0 as the
conditions at the outer boundary, but in general we consigj¢Mh) = 0 because, as we will
see, the difference between results is very small. Moreover, since it is impossible to consider an
infinite number of function€,,, wetruncate the series (6.1) aftirterms, and increasd until the
predicted value of Sh ceases to change significantly.

The quantitiesy andg; j can be found explicitly by using the recurrence relations for Legendre
polynomials. Their values are given in Appendix C. Thus the mass transfer equation can be written
as

Cn+ fiCn+ fiCn+ fpj Chig + fj Coya + fok Coypp
+fkCns2+ TpnCp_1+ faCno1+ fpgCh_o + fgCh2 =0,
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where the functions in the expression above depend, gnandg. Then we introduce three-point
finite differences to discretize the equation, and together with the boundary conditions, we need
finally to solve a system of the form

M X=B, (6.4)

where the resultant matrid is block quindiagonal, in which each of the blocks is a tridiagonal
matrix. This can be solved quite easily by using block Gaussian elimination. In our problem the
matrix M is too ill-conditioned for an iterative method to work well, so a direct method was selected.
Finally, the Sherwood number was determined by using the interpolatory [r,s] method, described by
Iserles (12). This method states that the first derivative at the origin can be written as a series of the
values at the grid points of the function itself, so that

8Co] 13 .
— = — iCo(ih),
[85 o hga. o(ih)

whereh is the grid size. The; are of the form

.1 (-1t s
w=) T and a=-"— is—n
j=1

We chooses = 5, because the rigid sphere results for larger values axe not accurate when
compared to the ones obtained by Acrivos and Taylor (7), for snédle® number. Then, the
formula to calculate the Sherwood number is

1 137 10 5 1
Sh= -2 (H) [_E +5Co(h) —5Co(2h) + - Co(3h) — 7 Co(4h) + Co(5h)} . (6.5)

6.2 Thefinite volume method (FVM)

The second numerical procedure is based on a type of finite volume discretization. Equation (3.2)
has the identical solution to the steady solution of the following time-dependent equation:

oC 1
/at dV+/u-nCdS Pe/VC-ndS_O, (6.6)
which is in integral form. Time is non-dimensionaliseddjtJ , and the velocity field is divergence
free. We solve equation (6.6) in an orthogonal coordinate sygtem(¢, ), whose components
correspond to the and6 coordinates, respectively, instead of the= (x, y) coordinate system.
The coordinaté is defined by a logarithmic function of and the form of this function depends on
the radius of the outer boundary, on a paramitex, and on the boundary-layer thickness. Then,
equation (6.6) becomes

/gdv-i-/(:(% u, | X v) ds
at € an
-1 -1
_i X 8C’ X aC dS—0. ©6.7)
Pe a& d&  |dn an
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where S is the surface area in physical space and is normd w », andU = (U,V) =
(&xu + &yv, nxu + nyv) is the contravariant velocity. Defining as the average value @f in a
computational cell, we rewrite equation (6.7) as

v +/ EQ) ds— — [ F(C) ds=o, 6.8)
ot S, e S,j

for a cell (i, j) of volumeV. Here,i represents the cell number in tbalirection, andj the cell

number in then direction. The interval between the cells is chosen as unity ir¢theordinate

system.

In the equation above the derivative with respect to time can come out of the integral, for the
volume is independent of time. There are several choices one can make for the numericalEfluxes,
andF, through the cell surface. We adopt the ones equivalent to the second-order central difference
scheme in both the convection and the diffusion terms, that is,

1 — — X
Ei1j=5 (Ui+%,j> (Citj +Cij) %’ (6.9)
— — ax| ™t
Fi+%,j = (Ci+1,j - Ci,j) % (6.10)
Time marching in equation (6.8), which can be written as
— At — 1 At =
AC+ — | E(AC) dS— —— | F(AC) dS
+5 [ E@0) as- 55 [ F a0
At —k 1 At —k
= E(C ) ds+ 5 | F (c ) ds, (6.11)

is dealt with implicitly, so that numerical instabilities caused by the convection term are suppressed.
The superscripht in (6.11) refers to the present time step and

AT = B _ Ek;

(6.11) is a set of algebraic equations fo€; j, whose solution at timke+1 may be obtained directly
through inversion of ariimax x jmax)? matrix. Instead, we use an approximate factorization,
which transforms the differential operator expressed by the original matrix into the product of a
&-dependent operator and grdependent one, and they are both lineat.irin each step, these
matrices are tridiagonal if the fluxes in equations (6.9), (6.10) are employed, and then the tri-

diagonal matrix algorithm is used to solve the equations.
The boundary condition on the squirmer= 1) is set as

% (Coj+Cyj) =1 (6.12)

The cell (1, j) is at the boundary of the squirmer and the dummy @@llj) inside it. For the
condition at infinity, we set

Gi max+1,j = Ci max, j » (6.13)

so that we neglect the effect of the diffusion on the boundary and the concentration is transferred
only by the flow. In the; direction, the boundary condition of axisymmetry is automatically satisfied
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since we consider triangular cells when the cells touchztheis, and therefore the area of the
surface on the axis is zero.
The Sherwood number is calculated from

1 jmax

:EZF

=1

Sh (6.14)

NI

The integral over the surface is replaced by the summation in this equation. The error caused by this
simplification is estimated to be 0-004 per cent by the difference in surface area between the one
given by this computation and the ideal one &% The computations are started impulsively:

CO,j =2, E” =0(@ #0) att=0. (6.15)

Here At is 0-01, and the mesh numbers are fixedrtax = 1000, jmax = 180. The meshes are
clustered near the squirmer in thalirection; the smallest cell size in physical space is chosen as
1-0x 10~2 for small Pe< 1, and 1-0< 103 for large Pe, reflecting the thickness of the concentration
boundary layer. In the direction, the interval is<L

For small Pe, the computational domain extends te- 5000 (very large) in order to minimize
the effect of taking the boundary condition at infinity at a finite value. The calculation is stopped
att = 100, which is before the effect of convection and diffusion reaches the boundary. For large
Péclet number, the outer boundary is set at 50. When the sum of relative error@(AC/(CAt))
overthe computational domain becomes smaller thant40we consider the solution to be steady.
Forlarge Pe, the calculation is stopped at that moment. The relative error in Sh per unit timeé is 10
per cent at most.

7. Results and discussion
71 g> -1

7.1.1 Small Péclet numbers. For small Pe, convergence of the numerical results was attained for
N =5, &max = 9, andh = 2 x 1072 for the LPEM. In preliminary calculations for a rigid sphere,
we found that the LPEM is more accurate than the FVM for this rang&oliePnumbers.

The results are shown in Fig. 5, for various values of the squirming parametdre difference
between the results far = 0-1 andq = 1 is not noticeable at this scale, but as sooq ascomes
larger than 0.5, the Sherwood number increasesiasreases. Moreover, whep= 10 the graph
bends upwards, which is to be expected from our analytical expansion. In fact, this is so for values
of g larger than 6-6626 approximately, so that the other plots, which correspgnd ®andq = 3,
bend downwards. The thick line corresponds to Sh versus Pe for the rigid sphere, indicating that
for any value ofq the mass transfer is enhanced by squirming, even though the difference is not
significant in this range of Pe.

7.1.2 Larger Péclet numbers. As Pe increases, the importance of the swimming motions is
greater as well, as can be seen from Fig. 6; convergence of the results also depgnds tre

case of the LPEM, the numbé&t of terms in (6.1) was varied between 100 and 140, and the outer
boundary condition was applied &hax = 19. As we reach large values of Pe, small valueh of

are required in order to reflect the asymptotic behaviour, otherwise a graph for the numerical results
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28 —
27k i
261
250
241

23+

Sherwood number

22+

21

| | 1 1 1 | | | |
0 005 010 015 020 025 030 0-35 040 045 0.50
Péclet number

2:0

Fig. 5 Sh versus Pe for&let numbers up to 0.5. The thick line corresponds to the rigid sphere (numerical
result). The curves fay = 0-1 andq = 1 are very close together, so we just show here the resultgfol
(+: numerical, solid line: analytical), and are the closest to the rigid sphere. The other plots shown
correspond to (&) = 3 (x: numerical, dotted line: analytical); (lo)= 5 (x: nhumerical, dashed line:
analytical); andy = 10 (o: numerical, dash-dotted line: analytical)

30

25

20

15

Sherwood number

(4] 1 1 L 1 1 ] 1
0 20 40 60 80 100 120 140 160

Péclet number

Fig. 6 Plots for intermediate and larg&€&let numbers showing results for the rigid sphere (thick line) and the
squirmer wherg = 0-1 (solid: LPEM, +: FVM);q = 3 (dashed: LPEMx: FVM); andq = 5 (dash-dotted:
LPEM, x: FVM). Again, we do not plot the curve correspondingjte- 1 because the results fgr< 1 are

comparable for all Pe
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Fig. 7 g = 0-1: In(Sh) versus In(Pe) for Pe large, with +: LPEM, o: FVM, dashed: boundary-layer theory

such as the ones shown in Figs 7 or 8 would start to bend upwards, instead of slowly converging to
the dashed line.

Since the uptake occurs at the surface, we refined the grid in the vicinity of the squirmer by taking
h = 102 up to a certairfg, which was modified according to the valueepbeing studied. In the
case of the FVM, we took = 4 x 10~3 everywhere.

Forqg < 1, we found that both the powérand the proportionality constaatare well reproduced
by the numerical schemes. This can be seen from Fig. 7 and Table 1. The relative error (RE) for the
numerical and the theoreticais small, although the FVM agrees better.

Whenq > 1, we still find the power%, as is shown in Fig. 8 (wherg = 3), but the
discrepancy between theoretical and numerical results increases| \(§d¢e Table 1). However,
the two numerical results are comparable, despite the fact that the results of LPEM are restricted to
Pe < 160 due to the memory availability of the computer. Therefore the difference with the theory
for g > 1 comes from another source.

The concentration contours plotted in Fig. 9 for Re10 and Pe= 100, forq = 5, indicate
that as Pe increases the concentration distribution in the recirculation region becomes more uniform
and the wake narrower, creating another boundary layer near this part of the surface, so that in the
limit of very large Feclet numbers boundary-layer theory might also be applicable at the back of
the microorganism, that is, from = —1 to u = —1/g. In this regionk—in equation (5.6)—is
—% + %q so thatg is bounded att = —1, and then its contribution to the constant of proportionality

1
|6 2 1 1 )2 .
IS/~ <_§ + % + 2 1—2q3> , which means that

1 1
_/8l(2, a9, 1 1N\ (2 g 1 1\
C+_\/;{(3+4+2q 12q3> +< 3tat o 12q3> } (7.1)
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Fig. 8 g = 3: In(Sh) versus In(Pe) for Pe large, with o: FVM, dashed: boundary-layer theory excluding the
recirculation region, dotted: boundary-layer theory applied everywhere

Table 1 Proportionality constard. Comparison of theoretical, LPEM and FVM results

g cfrom(.8)and(5.9) cLPEM cFVM RELPEM REFVM c; from(7.1)

01 1.5957 1.6928 1.6433 6-1% 3.0%
1 1.5957 1.6928 1.6461 6-1% 32%
3 1.7366 1.9276  1.8920 11.0% 9.0% 2.424
5 1.9516 2.3787  2.3244 21-9% 19.1% 3.1042

when we apply boundary-layer theory to the whole surface. The constamibtained following

this procedure is shown in Table 1 fgr= 3 andg = 5, and the results with this;, whenq = 3,

are plotted in Fig. 8 (dotted line.) We can conclude that, when 1, there is a contribution to

the mass transfer from the recirculation region behind the squirmer, but not as much as indicated
by equation (7.1). For values of Pe between 12-18 and 148-41, the Sherwood number lies
between the predictions of the two versions of boundary-layer theory. Rather surprisingly, however,
the numerical results become closer to the simple boundary-layer theory (that is, neglecting the
recirculating wake region) as Pe increases, despite the appearance of a thin rear boundary layer.
The resolution of this apparent paradox is presumably that the approximately constant ¥aine of

the recirculation region is not the value at infinity, zero, but is intermediate between 0 and 1. There
appears to be no way of estimating this value at large Pe, other than from the numerical results.
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Fig. 9 Concentration contours|(= 5). The upper half corresponds to 2€10, and the lower half to
Pe= 100; the step between contours is 0-1

Finally, Fig. 6 proves that swimming has a large effect on the nutrient uptake for any value of
d, but such effect is enhanceddf > 1. For instance, when Pe 100 andg = 5, the Sherwood
number is four times larger in the case of the self-propelled body than for the rigid sphere, and if
g = 0-1, the Sherwood number is only 2ignes larger.

72 q<-1

We chose Pe= 400 in order to determine the numerical valuesoffor ¢ = —3 andq = -5,

which we compared with the ones fay shown in Table 1 fog = 3 andq = 5, respectively. The
relative error is smaller than 0-05 per cent in both cases, so we conclude that the symmetry of Sh
with respect to negative and positive valuesg @ confirmed. However, Fig. 10 shows how different

the concentration distribution is according to whethés positive or negative. Whemis negative

the wake is much narrower, and the concentration seems to vary smoothly across the recirculation
region. The numerical results for intermediate values of Pe showed that Sh is symmetric with
respect tay for any value of Pe, a result which was not expected, for wjen—1 the swimming
mechanism seems unphysical.

7.3 Alternative boundary condition at large &

To conclude this section, we now see whether taking the alternative boundary condition given by
equation (6.3) at large affects the results. We will only show results for the case whea 1,
since one reaches the same conclusions for any valge Also, for the purposes of this study we
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25 T T T T T T

Fig. 10 Concentration contours (Pe 400). The upper half correspondsge= 3, and the lower half to
g = —3; the step between contours is 0-1

need only to take the value of the outer boundar§qak = 3—which is the value taken by Dennis

et al. (11)—since our objective is just to compare the results obtained with the two alternative
boundary conditions. Then, if the boundary conditiorCis= 0, in the discretization we replace
Cn(émax + h) by 0; if, instead, we exploit the fact that at largehe concentration distribution
behaves as a function proportional to exp(—2hen we take&,, (émax+ h) as exp(—8) Cn(émax)-

For intermediate values of theéBlet number, one observes that the RE between the two sets of
data is less than 18 per cent, which is insignificant. For small and for large values of Pe, shown
in Figs 11a and 11b, respectively, the RE becomes larger but remains in a range where we can
conclude that the two alternative codes give very similar results, except in the limits of very small
or very large Pe.

However, we also know, from the discussion at the beginning of this section, that when Pe is
small we can take a quite smghax and apply the boundary condition there since the results vary
little if we increasetmay further. This suggests that the type of boundary condition will not affect
the result in this range. We can therefore conclude that the type of boundary condition we choose
may affect the results but only for values of Pe which are larger that those considered here.

8. Summary and conclusions

In this study we found qualitative and quantitative differences between the steady squirmer and the
rigid sphere. We saw that for small Pe the expansion is regular @Qu®&?), because there is no
external force when the microorganism is self-propelled. We also found that, although the mass
transfer is enhanced, the difference is not very significant when diffusion dominates the behaviour.
However, as convection becomes more important, the Sherwood number is greater as well, and
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Fig. 11 This figure shows the relative error (RE) versus Pe, when (a) Pe is small and when (b) Pe is large,
between the two alternative boundary conditions at large

when Pe is large enough Sh becomes asymptotically proportiona%tor&ther than Peas for the
rigid sphere. This is as predicted by the boundary-layer theory.

Another parameter affecting the behavioumgiswhich measures the effect of stirring. When
lql < 1, the effect of stirring is almost independent @f Howewer, the numerical results
show that the mass transfer is enhancedcgsincreases for values dfj| larger than 1, and
this enhancement is evident for any value of Pe. Also, the Sherwood number is symmetric in
g — Shq) = Sh(—q), which is to be expected from the theorem by Brenner (1Q)i& quite
surprising since the swimming mode whgn< —1 does not seem, intuitively, very effective;
however, the concentration distribution of the nutrients is not symmetrjc in

Finally, when comparing the results for largédret numbers, we found that the power%of
of the asymptotic behaviour is well reproduced by the numerics. When the stirring parameter
g is less than or equal to one, we obtained good quantitative agreement between numerical and
theoretical behaviour. Moreover, for > 1 plots of concentration contours induced us to think
that boundary-layer theory may also be applied in the recirculation region that appears behind
the squirmer, because as thecket number increases a thin concentration boundary layer appears,
outside which the concentration distribution is approximately uniform. Then, the numerical values
of the Sherwood number lie between the two theoretical ones, obtained by assuming either one
boundary layer, over the front part of the squirmer only, or two, over the rear as well; in both cases
the concentration outside the layers is assumed to be the same as at infinity. We conclude that the
recirculation region does contribute to mass transfer, but that the uniform concentration within it is
not equal to that at infinity.
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APPENDIX A
Alternative boundary condition on the surface

A.1 Small Pe

One may ask whether a constant concentration distribution is a realistic boundary condition for living
organisms. In this Appendix we will see how the results are affected by this simplification. To do so, we
suppose that the nutrient is consumed uniformly within the sphere, which requires that we determine the

nutrient concentratioﬁ:é‘e” inside the sphere; the concentration at the sphere surface is unknown in advance,
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and might not be uniform around the surface. We therefore@kgto be the solution of the equation

ac’

cell _ DceIIV*ZC*

2
ot* cell — k°C¢,

cell’

where D¢ is the internal diffusivity, assumed uniform. The first term on the right-hand side describes
diffusion, whereas the second corresponds to the consumption of nutrients. If we considen, agaifya

to be the non-dimensional distance to the centre of the spherical squirmer, but newC*/CJ%, as the
non-dimensional concentration, then the steady version of the equation above can be rewritten as

V2Ceell — k*Ceell = 0, (A1)

wherex = ak/+/Dcell-

At the surface of the squirmer the transport of nutrients across the membrane is dominated by diffusion.
The rate at which the nutrient is flowing to and from the cell is determined by a resistance of the membrane
to the passage of nutrients, and at equilibrium the diffusive fluxes from the fluid and into the cell are equal.
Therefore, the two boundary conditions we need at1 are

9Cin 9Ccell
D =D
ar cell ar
and
9Ccell
B [Cin - Ccell] = Dcell B(r:e ,

whereC;j, is the solution of the mass concentration equation outside the cell, but close to the surfggé and
the permeability of the cell membrane. We gét= /D andD’ = D¢ej/ D, sothe equations above reduce to

9Cin Y 9Ccell

ar ar = /3/ (Cin — Ceell) - (A.2)

Now, we know thatCj, is the regular solution of the mass transfer equation and is of the form

o0
Cin=Y_ fa(€) (Cin)n (. ).
n=0

Then, in order folC¢g to satisfy the boundary conditions (A.2) at the surface, it needs to be of the same form,
that is,

o0
Ceell = Y, fn(€) (Ceeln (I, 1),
n=0
and each of the function&Ccg))),, is the solution of an equation of the type (A.1), because that equation is
independent of the&let number.
If we set(Ceel)p = Zﬁzo Rm(r)Pm(cosf) and introduce this expansion into equation (A.1), then the
radial functionsRy, are solutions of the modified spherical Bessel equation (13), of which two particular

solutions are the modified Bessel functions of the first kiv@ Im+;(xr), and of the third kind,
K 2

7 Kyt (P Since the functionKer; diverge at the origin, the function€g|)),, are all given by
2 2

2«r

o0
T
=> Em/>—| P :
(Ceeln 2 Emy o m 3 (KT) Pm(cos?)
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In the fluid surrounding the cell, we still have the same steady advection—diffusion equation except that now
(Cin)o, the zero Pe limit, is no longer a constant on the surface. We still assume that the ambient concentration
is constant, which means théi,)g — 1 asr — oo. Moreover,(Cjy)q corresponds to the solution near the
surface of the organism which is not affected by advection (because it is independent é€létenBmber).
Therefore, it cannot have any angular dependence. 8Cjg®, solves Laplace’s equation, the above boundary
conditions lead us to conclude that

A
i =1+ = (A3)

whereA is constant.
Now, because of the conditions (A.2), it follows thi@%e)) g is independent of the angular direction as well,
and it can then be written as

sinh(«r)

(CceII)O =Ep r > (A.4)

with Eqg an arbitrary constant (13). The constaitsin equation (A.3), ancEg, in equation (A.4), will be
determined using the boundary conditions (A.2), which can be written as

A + D’ [cosh(x)— sinh(k)/K] Eg = 0
and
—« (14 B') A+ B’ sinh(k)Eg = B/,

when we use expressions (A.3) and (A.4), together with their derivatives. Then, from the above we can deduce
the explicit values oy and A and introduce them into equations (A.4) and (A.3), so that
KA sinh(xr)

(Ceeo = « cosh(i)— sinh(k)  «f (A-5)

and

A
(Cin)o = T 1, (A.6)

respectively, where

- B'D’ [« cosh(x)— sinh(x)]
" (I+ p)D'k cosh(k)+ (B — D’ — p'D’) sinh(x)

(A7)

We note that\ is positive for all (positive) values of the constartss’, D’, as it must be for the concentration
at the sphere surface to be less than it is far away. From the small Pe expansion of section 4 above, the leading
term corresponds to taking= 1 — C§/C%, in (A.6).

We now need a new definition of the Sherwood number. In analogy to (14), the instantaneous rate of mass
transfer into the cell is given by

1 * 1
9C aC
Q=D [ n.V*C*dA = 27a2D dp = 27aDC? i dp,
ar* o0 3
A -1 r r*=a -1 rJr=1

with u = cosé, dnce the cell is a sphere of radias If Qg is the instantaneous rate of mass transfer due to
diffusion alone, and if we define the Sherwood number as=SB/Qq, sothat Sk = 1, then from the above

we deduce that
1 1 /ac,
Sh= — du. A.8
2)»/—1( ar >r:l a (A8)
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Let us consider the new variab®' = C — 1. Then,

A

(Cino=—+ (A.9)

and
Ao e
(Couo =~ exp[ 5 (—u—1]. (A.10)

We now want to find the first-order terfC{} ) ;, which is a solution of the equation

1 1 I & 1 1
2 n _
Ve (Cin)y = —* (r_z - r—5> TN nZ_2<rm - rm) BnPn (o).

It is straightforward to deduce that the general solution of the equation above is

m 1 3 1 1
CM), =2 (1+ = )+ — Bn P
(Cin)1 =5 ( +2r3)+231r§2[2(n+1)rn+2+2nrn] nPn()

o0
+ 3 [Bar™ + Ear =] P, (A12)
n=0
We next proceed to matcfC1 ), with (Cg ). The matching requirement is that
AL N >, .
“— + Do+ Diru+ Y Dnr"Pa(w).
2 n=2

(Cin)1 ~

Then, we deduce thzﬁi@l =0, and I50 = %A as opposed t&% when assuming that the concentration is
constant at the boundary. With our new boundary conditiﬁmﬁ.l,)1 and(Ccg)4 Satisfy equations of the form
(A.2) whenr = 1, that is,

—EoPo(i) + ... = D'Eq (cosh(x)— sinh(x) /k) Po(i) + . .. (A.12)
and
—EoPo(t) + ... = B’ (%A +Ep— Eosinh(x)/x) Poit) + - - - , (A.13)

and so the two constani, and Eo are Iinkgd by the conditions at the cell’s surface. Solving the system of
equations (A.12) and (A.13), we deduce thgt= —%AZ, and since

Shl:_ifl a(Ch), dM:@Z_ﬁ
v )\ o ) ) A 2’

we conclude that the Sherwood number tern®©gé) is reduced with these new boundary conditions, because
it is equal to—%x, which is negative, and nc% as in the case with constant nutrient concentration at the
surface.

Further modifications to the results would be observed if we continued the analysis to higher orders of the
Péclet number expansion, but the study carried out so far has already demonstrated that the results are affected
when we consider other types of boundary conditions which may be closer to reality. However, in the example
considered here, the form of the expansion of Sh remains the same, and the variations are seen in the coefficients

of the expansion, which now depend on the membrane permeatfilityd the nutrient consumption facter
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A.2 Large Pe

When the Bclet number is large, certain similarities with the case studied previously arise naturally. For
instance, boundary-layer theory should still be applicable for the concentration distribution outside the sphere,
but now it is possible that no similarity solution is available. In that case the Sherwood number would not be
proportional to the square root of théd¥et number, but to another power of Pe, or a more intricate function of
Pe instead. To check this, we need to explore in more detail the implication of having a variable concentration
at the surface of the microorganism.

In order for convection and diffusion to be of similar order in the boundary layer, the change of variable

Y = Pe% (r — 1) remains valid, and equation (5.2) still holds fBgxt, the nutrient concentration distribution
in the vicinity of the membrane and external to the cell. The local variébilepresents a Cartesian coordinate
perpendicular to the microorganism’s surface. We consider again the change of variabM/g(1), by
analogy with the analysis in section 5, but keep in mind that nolmes not correspond to a similarity variable,
sinceCext might depend not only on but onu as well. Then,

82Cext 3Cext
+2f =
an? i on

0,

with f(u) = %gz [M +QP2(M)] — %(1— MZ) A1+qu) <92)/. Remember that the non-dimensional

concentration is defined &ext = Cgy/ Coxp SO thatCext — 1 whenr, or », tends to infinity. The solution of
the equation above, together with the boundary condition we have just discussed, may be written as

o
Cext=1+ A/ EXp[— f (u)tz] dt,
n

. aC
which leads t@Cexi(n = 0) = 1+ | —— A, and =

(n = 0) = —A, on the surface of the cell.

n
The inner solution is still dependent orand i but, if A should turn out to be very small as Pe oo, the
leading-order term of the solution of equation (A.1) will again be spherically symmetric and given by (A.4).
Then, the boundary conditions take the form

—vA=D'Eg [Cosh(;c)— Si”h(")] _p [1+\/7_”A_ Eosinh(:«)]’
Kk 2f (n) K

withv = Pe%/g(u) > 1. Now, assuming that’, D’ andk are allO(1), the first equality implies thdg > A,

and since
/ B b sinh() [, / 7 =g
EO{D cosh(x)<l+ 7\/7(10)+ P [’3 -b (1+7 2f(M))]}_ﬂ’

we deduce thaEg is of order 1 as well, and thag { D’ cosh(x)+ (8’ — D’) sinh(x)/«} ~ g’. Therefore,
A= O(Pe_:‘zl) is very small and we may assume that Lext = O(Pe_%) < 1,s0 thal[aCext/an]n:O =

O(Pe_%) and[dCext/dr];—1 = O (1). Hence the Sherwood number, as defined in (A.8), is given fopPe
as

ﬂ/
Sh~r —, (A.14)
A
wherex is given by (A.7). This is greater than 1 but certai@yl), sothe reduction in Sh seen from the small
Pe expansion is even more marked at large Pe. It is interesting to note that the quantity defined by (A.14) is
independent of the nature or speed of the sphere’s squirming, at leading order. This is quite unlike the case
with a constant concentration at the boundary. However, the squirming is essential, because it is that which
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causes the concentration boundary layer on the sphere’s surface to be so thin that the internal concentration
is spherically symmetric, and the external concentration to be only infinitesimally reduced below its value at
infinity. Further investigation of this problem, at intermediate values of @wd®?number, would be of interest.

APPENDIX B
Functions Ry, -+, Rg in (Cip)»

The functionsRy, -+, Ry in the second-order term of the sma&dPet number asymptotic expansion for the
concentration field are of the form

_ 1 (3ay1 (119 1)1
R ="y <40>r+<40 8>r3
3q) 1 119\ 1 239\ 1
+<m)r—4‘(%>r—s+<%>r—6’
1 5 3q) 1 992\ In(r)
R2<”—1—2—w(ﬂ‘1—s>rz+<ﬁ)r—s

15q2\ 1 5 392\ 1
+9_i N N N et
8 168 ' 784) (5

o

8192\ 1 8192\ 1
1960) r3

N 992\ Incr) {992 L. 992\ 1
140/ 5 112/ r6 385) r7’

APPENDIX C
Values of the constants o and g j

In this Appendix we give the values of the constant&indg; j which appear in section 6.
Fori = 1, we have that

n+1
ar(n,n+1) = T
n
O(l(n, n— 1) = m,
and fori = 2, 3
nin—1)
-2 = -~ 7
a2(h.n—2) 2@2n—1)(2n—3)’
1
apnn) = nin+1)

2n—-1)(2n+3)’

3 (N+1)(n+2)

(N, N+2) 2(2n+3)2n+5)
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The values fog » are

Bo.2(n,n+1)= gw

2n+3
_ 3nin—-1)
ﬁO,Z(nvn - 1)_ _5 2n—1 ’
whereas foB; 3 we get
B 5 nin—1)(n-2)
Prsnn-2) = —3 @n—1)2n—3)
_5_nen
PLsnm = 5 G hent 3
5+ 1)(n+2)(n+3)
Prsn+2) = S =55 en3)
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