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Synchronization and wave formation in one-dimensional ciliary arrays are studied analytically and
numerically. We develop a simple model for ciliary motion that is complex enough to describe well
the behavior of beating cilia but simple enough to study collective effects analytically. Beating cilia
are described as phase oscillators moving on circular trajectories with a variable radius. This radial
degree of freedom turns out to be essential for the occurrence of hydrodynamically induced syn-
chronization of ciliary beating between neighboring cilia. The transitions to the synchronized and
phase-locked state of two cilia and the formation of metachronal waves in ciliary chains with
different boundary conditions are discussed. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2956984�

Many microorganisms use cilia, little hairlike projections
on their surfaces, for swimming and feeding. Cilia have a
characteristic pattern of motion by which they can put
fluid into motion at low Reynolds numbers. They often
occur in arrays and show highly coordinated motion,
where neighboring cilia beat cooperatively in a synchro-
nized fashion or maintain a constant phase difference as
in the case of metachronal waves. We focus here on the
case of monocilia, where the appendages execute a circu-
lar motion, and develop a simple phase oscillator model
for the synchronization phenomena. Neighboring cilia in-
fluence each other via the velocity fields induced in the
surrounding fluid. The hydrodynamic interactions are
shown to result in collective effects, provided the cilia
possess some flexibility in their motion, as is the case for
the slightly varying radius of their trajectory as discussed
here. The model derived here is simpler than previous
models, allows for an analytic analysis, and highlights the
significance of some flexibility in ciliary motion. By cou-
pling several cilia in a linear chain, we obtain a phase
oscillator model for metachronal waves.

I. INTRODUCTION

Cyclical processes are ubiquitous in living matter.1 Im-
portant examples include the movement of body parts for
locomotion, the beating of a heart, or metabolic processes.
Many of these biological cycles need adequate timing. In
principle, this timing could be organized in a passive way
from a central unit via, e.g., neuronal or biochemical path-
ways. But in many cases, there is no such central control
unit, the units are timed individually and independently, and
timing arises from synchronization by suitable couplings.2

Prominent examples for such synchronization processes
in nature are the adjustment of the glowing rhythms of huge
colonies of fireflies,3 the synchronized firing of pacemaker
neurons,4 or coordinated calcium oscillations in neighboring
muscle cells.5 The human circadian clock is externally syn-
chronized, namely by the perpetual change of daylight.6 The

stepping of people on flexible bridges can be synchronized
by a coupling between human stepping and the response of
the bridge.7,8

The qualitative understanding of “synchronization” as an
adaption of the rhythms of self-sustained oscillators has been
quantified and formalized in many ways.9,10 For the phase
oscillators �i�t� discussed here, we will use the definitions
given in Ref. 11. In a synchronized state all N oscillators
have identical phases, i.e., �i�t�=� j�t� for i , j=1, . . . ,N. A
phase-locked state has identical phase velocities, i.e., �̇i�t�
= �̇ j�t�. And finally, an entrained state has identical mean
phase velocities: �̃i= �̃ j, where �̃i� limt→���i�t�−��0�� / t.51

The case of a phase-locked state with constant phase differ-
ences between the oscillators and a nonvanishing mean ve-
locity, which in dynamical systems terms corresponds to a
traveling wave, is known in the biological literature on cilia12

as a metachronal wave: �i+1�t�=�i+� �and of course �̇i�0�.
In this paper, we discuss the occurrence of synchroniza-

tion phenomena in ciliary systems. Cilia are hairlike projec-
tions covering many small organisms. They are used to pro-
duce fluid flow in the surrounding environment for transport
or cellular motion. Cilia also play an important role in the
human body by creating air currents for transport out of the
human lungs. There is also experimental evidence that dur-
ing development, cilia-generated flow contributes to the
placement of our organs.13,14

Most cilia are built out of nine sets of microtubule dou-
blets surrounding a pair of single microtubules in the
center.15 Dynein motors cause bending deformations, giving
rise to characteristic beating patterns typically consisting of a
power and a recovery stroke.12 Other cilia �monocilia that
lack the central pair of microtubules13,16� perform a rapid
rotational motion17 and very often are tilted, giving rise to
nonsymmetrical velocity fields.

In many cases, cilia are uniformly aligned in rows18 and
beat in a coordinated fashion in either complete synchrony or
by maintaining a constant phase difference between oscilla-
tors, thus creating a metachronal wave.19 Metachronal waves
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can propagate in the direction of the effective stroke �sym-
plectic metachronal waves�, in the opposite direction �anti-
plectic�, perpendicular direction �laeoplectic or dexioplecit�,
or oblique direction.20

Small animals, such as Paramecium, use this collective
ciliary motion to swim. Typically, the cilia beat with a trav-
eling helical wave, where the direction of the ciliary effective
stroke is oblique to the long axis of the body.19 Thus, a
Paramecium swims in a spiral course, rotating around its
longitudinal axis. By changing the axis of the helix, a Para-
mecium can steer and reverse its direction of motion.21 This
swimming is extremely efficient: The �100 �m long Para-
mecium can swim with a velocity of the order of �1 mm /s.

The causes for this cooperative behavior in ciliary arrays
are unclear. Of course, motion could be triggered
biochemically22 but there are also experimental indications
that hydrodynamic interactions couple the beating pattern of
neighboring cilia.23 We show here analytically that hydrody-
namic interactions can indeed lead to collective ciliary mo-
tion, in particular to synchronization of beating and to
metachronal wave formation. We build on a previous
model24 that also introduced a phase oscillator description in
the spirit of the “discrete cilia models” introduced by
Blake.25,26 Each cilium is treated separately, and the total
velocity field in the system is given by the superposition of
the velocity fields induced by each cilium, as discussed in
Sec. II. The new model introduced here is complex enough
to capture the essential properties of the flow a beating ci-
lium induces in the surrounding fluid and to show synchro-
nization and phase locking between neighboring cilia and
metachronal wave formation. At the same time, it is simple
enough to make the phenomena analytically accessible.

The phase oscillator model introduced in Ref. 24 did not
show synchronization. The important generalization intro-
duced here is the inclusion of an additional degree of free-
dom in ciliary motion that allows for some variability in the
trajectory. As we show here, this additional degree of flex-
ibility is sufficient to lead to the mentioned collective effects.
Thus, the model introduced here bridges the gap between
simple models not showing collective effects �such as the
one introduced in Ref. 24� and more complex numerical
simulations where these phenomena have been observed;
see, e.g., Refs. 27–29. In particular, for two interacting cilia
our model shows the same synchronization properties as a
more complicated model of interacting helices.30

Our equations of motion for a chain of hydrodynami-
cally coupled cilia are reminiscent of the Kuramoto
model.11,31,32 However, our equations differ in two features
from Kuramoto’s model: �i� The oscillators are only coupled
to their nearest neighbors, and �ii� the coupling function is
not sinusoidal. Both modifications have been considered be-
fore. In Refs. 33–35, the interactions are restricted to nearest
neighbors, and it was shown that only finite chains or subsets
can phase-lock. More general coupling functions were con-
sidered in Refs. 36 and 37, and the combined effect in Refs.
38 and 39. As we will see below, the specific interactions
induced by the hydrodynamic coupling have different prop-
erties, so that the results from these studies are not immedi-
ately applicable.

The outline of this paper is as follows: First, the theoret-
ical description of a beating single cilium is introduced �Sec.
II�. The description of hydrodynamic interactions for two
interacting cilia and the derivation of the fundamental model
are discussed in Sec. III. The transition to a phase-locked or
synchronized state is discussed in Sec. IV. In Sec. V, we
analyze these phenomena �and metachronal wave formation�
in ciliary arrays. We conclude with a summary and an out-
look in Sec. VI.

II. BEATING OF A SINGLE CILIUM

To study collective effects in ciliary arrays, we first have
to analyze the forces a beating cilium exerts on the surround-
ing fluid. Lengths and beating frequencies of cilia are very
different for different organisms. Here, we focus on mono-
cilia performing a rotational motion.40 Because their length
L�2–3 �m �Ref. 41� is much larger than their thickness
�radius a�0.1 �m �Ref. 42��, one can describe the motion
of the cilium as being created by a set of forces localized at
the centerline of the cilium. The beating frequencies are of
the order f =� /2��10 s−1.12,41 The ciliary beating is thus
characterized by a low Reynolds number, Re�10−4, and the
motion of the cilium is completely overdamped. For suffi-
ciently small systems �typical extensions of a few 100 �m�,
momentum injection is instantaneous and the velocity field
in the surrounding fluid induced by the beating cilium is a
solution of the Stokes equation,

��2v = �p + F��r − rt� . �1�

Here, v=v�r� is the velocity in the fluid at position r, p
= p�r� is the distribution of pressure, � is the viscosity of the
surrounding fluid �i.e., water�, and F is the force acting on
the cilium moving on the trajectory rt.

In our approach, the forces driving the ciliary motion are
prescribed and not calculated from the bending deformations
of the ciliary filament as in, e.g., Refs. 28 and 43. In the case
of a single monocilium, these forces result in an essentially
circular trajectory. To obtain the velocity fields, we follow
the “discrete cilia model” and reduce the rotating monoci-
lium to a spherical bead of radius a that follows a closed
trajectory at a height h above the lipid membrane; see Fig. 1.
In Ref. 24, this trajectory was enforced to be exactly circular
by a holonomic constraint. We relax this constraint here and
allow for some radial flexibility by introducing a radial re-

FIG. 1. Cilia are modeled as Stokeslets moving along �nearly� circular tra-
jectories perpendicular to the membrane the cilia are attached to. Neighbor-
ing cilia interact via their induced velocity fields. For sufficiently low ciliary
densities, the hydrodynamic interactions are weak and only lead to small
variations in the radius of the trajectory.
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storing force. The position of the bead is then best described
by polar coordinates, the radius R, and the phase angle �.

The restoring force Fr is assumed to be harmonic,
Fr ·eR=Fr=−	�R−R0�, where eR denotes the unit vector in
radial direction. The equilibrium radius R0 is in the range of
the length of the cilium.40 The “spring constant” 	 is deter-
mined by the bending rigidity 
 and length L of the cilium:
	=
 /L3. In Ref. 43, the bending rigidity was estimated for
monocilia, based on their structure, 
�4�10−22 N m2. This
results in a large 	�10−5–10−4 N /m, which assures that the
radius of the trajectory will deviate only slightly from the
equilibrium value R0, as shown below.

The effect of the dynein motors44 is represented by an
internal driving force Fin on the bead. We presume that this
force has a constant absolute value and only acts in angular
direction, Fin ·e�=Fin=const, where e� is the angular unit
vector. The driving force Fin of course sets the beating
frequency.

Because the motion of cilia is completely overdamped,
the equation of motion of the bead is given by the balance of
forces acting on it, namely drag, driving, and restoring force,

Fd + Fin + Fr = 0 . �2�

The drag force exerted on spherical objects at very low Rey-
nolds numbers is given by Stokes’ law,

Fd = − 6��au = − �u , �3�

where u denotes the relative velocity of the bead with respect
to the surrounding fluid, and �=6��a is the friction coeffi-
cient. In polar coordinates, the complete equations of motion
then read

�R�̇ = Fin, �4�

�Ṙ = − 	�R − R0� . �5�

Because a�0.1 �m, one has ��2�10−9 N s /m and
	 /���5�103�– �5�104� s−1. Hence, the radial dynamics is
much faster than the angular one �determined by ��2�
�10 s−1� and one can indeed conclude that the single cilium
moves with a constant phase velocity � on a circular trajec-
tory,

�̇ = Fin/��R0� = � , �6�

R = R0. �7�

Then, the relation between driving force and rotation fre-
quency is simply Fin=�R0�. We show now that this simple
representation of a cilium is complex enough to lead to syn-
chronization of motion with its neighbors.

III. HYDRODYNAMIC INTERACTIONS
BETWEEN TWO CILIA

Typically, cilia belong to an array and are thus influ-
enced by the fluid motion produced by their neighbors. To
illustrate the effects on their motion, we consider two neigh-
boring cilia with intrinsic frequencies �1 and �2. The nonin-

teracting cilia are described by Eqs. �4� and �5�. The velocity
field induced by cilium 2 modifies the equation of motion of
cilium 1 according to45,46

��R1�̇1 − e�1
· v12� = Fin = �R0�1, �8�

��Ṙ1 − eR1
· v12� = − 	�R1 − R0� . �9�

Here, v12 denotes the fluid velocity field induced by cilium 2
at the position of cilium 1. Furthermore, eRi

and e�i
are the

unit vectors in the radial and angular directions, respectively,
given in polar coordinates Ri and �i for cilium i by

eRi
�t� = �− sin �i�t�,cos �i�t�,0� , �10�

e�i
�t� = �− cos �i�t�,− sin �i�t�,0� . �11�

Then, the position of cilium i=1 or 2 is given by �see Fig. 1�

ri�t� = ��i − 1�l,0,h� + Ri�t�eRi
�t� �12�

=�− Ri�t�sin �i�t� + �i − 1�l,Ri�t�cos �i�t�,h� , �13�

where l is the distance between the centers of the two trajec-
tories.

If the no-slip boundary condition at the wall is not taken
into account, then v12 is given by47

v12 =
s + n12�s · n12�

�r12�
+ O��a/r12�3s� , �14�

where s is the strength of a Stokeslet, n12�r12 / �r12�, and r12

is the vector pointing from bead 2 to 1. The strength of the
Stokeslet is given by the velocity of cilium 2,

s =
3a

4
ṙ2 =

3a

4
R2�̇2e�2

+
3a

4
Ṙ2eR2

=
3a

4
R2�̇2e�2

+ O�R0�1a2/l� , �15�

where we have used that the velocity field of cilium 1 in-
duces a maximal radial disturbance R2−R0

��3 /2�R1�1�� /	�a / l. Then, Eq. �9� implies that R2 decays

faster than the solution of Ṙ2�2�	 /���R2−R0��3R0�1a / l.
If the no-slip boundary condition on the wall is taken

into account, the velocity field becomes28

v12 = 12h2n12�s · n12�
�r12�3

+ O�a3h2s/r12
5 � . �16�

Note that in the derivation of the last equation, h /r12
1 has
been used, and therefore Eq. �16� does not reduce to Eq. �14�
as h approaches �.

As shown in Appendix A, the equations of motion
�8�–�16� can be explicitly solved for �̇i and Ri in the limit
R
 l, yielding

�̇1 = �R0/R1��1 − �R2/R1��J��1,�2��̇2, �17�

R1 = R0 + ��R2K��1,�2��̇2, �18�

�̇2 = �R0/R2��2 − �R1/R2��J��2,�1��̇1, �19�

037128-3 Synchronization in ciliary chains Chaos 18, 037128 �2008�

Downloaded 23 Sep 2008 to 171.67.20.40. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



R2 = R0 + ��R1K��2,�1��̇1, �20�

where we have rescaled time by �̄, and �1 and �2 are mea-
sured in units of �̄. Here, �̄ represent a typical frequency,

e.g., �̄�max	�1 ,�2
 or �̄���1�2. Furthermore, the inter-
actions are given in leading order by

J��i,� j� � − � cos��i − � j� − cos��i + � j� , �21�

K��i,� j� � � sin��i − � j� + sin��i + � j� . �22�

The equations of motion also depend on the “ciliary density”
� �i.e., the number of cilia per unit of length�, and on the time
scale of the radial motion � given by

� �
1

2l

3a

4
��12h/l��, �23�

� � �̄�/	 . �24�

The two parameters � and � are introduced so that the cases
with and without a wall can be treated in parallel. In particu-
lar, the functional forms for the interactions �21� and �22� are
the same, only their strengths change, as determined by
�� ,��= �3,0� and �� ,��= �1,2� for the case without and with
no-slip boundary conditions on the membrane, respectively.

The equation of motion for cilium 2 can be directly ob-
tained from that for cilium 1 by interchanging indices 1 and
2. This is a direct consequence of our assumption that the
cilia are far from each other, R
 l, and thus n12=−ex

+O�R / l�; see Appendix A.
Because terms of order R / l have already been neglected

in the interaction terms, the equations of motion are given in
leading order by

�̇1 = �1 − ��2J��1,�2� − ���1�2K��1,�2� , �25�

�̇2 = �2 − ��1J��2,�1� − ���1�2K��2,�1� . �26�

For constant radii Ri=R0 corresponding to �=0, the
equations of motion reduce to those of Ref. 24. As shown
there, in this case neither synchronization nor phase locking
occurs. However, as we show now, the flexibility in the ra-
dial motion introduced here �corresponding to ��0� is suf-
ficient to lead to synchronized motion of two cilia.

IV. PHASE LOCKING AND SYNCHRONIZATION
OF TWO CILIA

In this section, we analyze the conditions under which
the motion of the two cilia becomes synchronized ��1=�2�
or phase locked ��̇1= �̇2�. To do so, it is useful to consider
the phase difference ���1−�2 between the two neighboring
cilia. According to Eqs. �25� and �26�, it obeys

�̇ = ��1 − �2��1 + �J��1,�2�� − � sin � , �27�

where ��2����1�2�0. As will become clear during the
following analysis, � sets the time scale for synchronization.
To analyze Eq. �27�, it is useful to distinguish between the
cases �1=�2 and �1��2.

A. Same intrinsic frequency: �1=�2

We first consider the case in which both cilia beat with
the same intrinsic frequency �1=�2. In this case, Eq. �27�
has two fixed points, an unstable one at �u=� and a stable
one at �s=0.

This can also be seen from the explicit solution

��t� = 2 arctan�tan��0/2� · e−�t� , �28�

showing that for any initial condition eventually �s=0 is
reached. Thus, the two cilia synchronize on a time scale that
is inversely proportional to �.

As the cilia synchronize, their angular velocity increases.
This is a direct consequence of our assumption that the driv-
ing force is constant, since friction is minimal for vanishing
phase difference. To see this more formally, consider the sum
of phases �=�1+�2 and its equation of motion

�̇ = 2� + 2���� cos � + cos �� − ��/��sin � . �29�

At this point, it is convenient to neglect small velocity varia-
tions by averaging over a revolution of the phases implying

��̇
�t� = 2� + 2� cos ��t� , �30�

where �����. This shows that as ��t� decreases monotoni-
cally from �0 to zero, the mean velocity increases toward
2�+2�; see Fig. 2. Thus, � measures the increase in veloc-
ity. It should be noted that during synchronization, cilia with
a phase difference ��t��� /2 slow each other down, while
for ��t��� /2 the beating velocity increases. This can be
made clear geometrically; see Fig. 3.

FIG. 2. Time dependence of �=�1−�2 and �̇= �̇1+ �̇2 for a pair of cilia.
Data are for �1=�2, �=3, �=0.005, �=0.1�̄, and initial conditions �0

=�0= 3
4�. Shown are �i� the phase difference ��t� /� obtained from Eq. �28�

�gray bold line�, �ii� the mean total velocity ��̇
�t�, given by Eq. �30� �black

bold line�, and �iii� total velocity �̇�t� �thin gray line� obtained by numeri-
cally integrating Eq. �29�. In the synchronized state, the total velocity oscil-
lates with a frequency ��2�+2� �shown in the inset�; see Eq. �29� and
Fig. 3.
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B. Different intrinsic frequencies: �1Å�2

As a next step, we consider two cilia that are driven by
�slightly� different internal forces giving rise to �slightly� dif-
ferent intrinsic frequencies �1��2. Equation �27� then
becomes �in first order of the small quantities � and ��
��1−�2�

�̇ = �� − � sin � . �31�

Thus, stationary solutions exist only for

���� � � , �32�

and a minimal synchronization strength �c= ���� is required
for phase locking of ciliary motion. Here, the stable fixed
point is given by

�s = arcsin
��

�
. �33�

Thus, for �1��2 the system becomes phase locked, but not
synchronized, and the phases evolve with a constant, but
nonvanishing phase shift, �1�t�=�2�t�+�s. The time needed
for phase locking increases with decreasing � and diverges at
the critical point �c.

As �1 approaches �2, one has �c→0, implying that even
very weak interactions can already lead to synchronization.
However, then the time scale on which synchronization oc-
curs will become large.

As can be seen from the equations of motion �Eq. �27� or
Eq. �31��, � couples to the term sin �, which is, due to its
asymmetry, typically responsible for the synchronization and
phase locking of coupled phase oscillators.11 One should
note that because ����, and � comes from the radial dy-
namics, it is crucial that the trajectories are allowed to have a
variable radius.

The term cos � in Eq. �29� is responsible for the speed of
the two cilia for both the synchronized and the nonsynchro-
nized state. It is independent of � and thus also occurs for
rigid trajectories.

At this point, it is worth noting that the results of our
simple monocilia model agree very well with the numerical
investigations of a more complicated model of rotating heli-
ces, introduced in Ref. 30. Details are given in Appendix B.
Here, we want to emphasize that synchronization of rotating
helices only occurs if the attachment of the helix to the cell
wall is flexible.30 This is similar to our finding that synchro-
nization only occurs for finite � �in fact �−1 corresponds to
the trap strength introduced in Ref. 30; see Appendix B for
details�. In this light, our model should be seen as a minimal
model having all the relevant mechanisms responsible for
synchronization of ciliary beating and �as shown below�
metachronal wave formation.

V. CHAIN OF CILIA

As a next step, we consider a one-dimensional array of N
cilia. If the no-slip boundary condition of the wall is taken
into account, the hydrodynamic interactions between the
beating cilia decay as l−3 with interciliary distance l; see Eq.
�23�. Here, we focus on l�R. Then, in good approximation
only nearest neighbors interact in the array.

Furthermore, in this limit the equations of motion be-
come particularly simple: The flow field felt by cilium i at
position �i induced by a moving cilium j at position � j does
not depend on whether cilium j is to the right or to the left of
cilium i. Consequently, the equations of motion read

�̇i = �i − � �
j��i


� jJ��i,� j� − ���i �
j��i


� jK��i,� j� , �34�

where �i
 denotes the nearest neighbors of cilium i. The cilia
have intrinsic frequencies �i �again measured in units of an
appropriately chosen �̄�. For nonperiodic boundary condi-
tions, the first and last cilium in the chain have only one
neighbor to interact with.

As discussed in the last section, the terms cos��i+� j�
and sin��i+� j� in Eqs. �34�, �21�, and �22� only describe
fluctuations around the mean velocity and thus are only im-
portant for the short-term behavior of the system. Upon av-
eraging over one period these terms drop out, and we obtain
the effective equation of motion,

�̇i = �i + �� �
j��i


� j cos��i − � j�

− ����i �
j��i


� j sin��i − � j� . �35�

However, the omitted terms prevent the system from becom-
ing properly phase locked: A state with �̇i= �̇ j for i , j
=1, . . . ,N cannot be reached since the velocity variations are
also phase-shifted. Instead, only the mean velocities �̃i

=limt→���i�t�−�i�0�� / t will adapt, resulting in an entrained
state �̃i= �̃ j.

A. Identical intrinsic frequencies and periodic
boundary conditions

First, we consider the case of identical intrinsic frequen-
cies �i=� and periodic boundary conditions �where the first
and the last cilium in the chain are neighbors resulting in a
ringlike chain�. In this case, as we show now, phase-locked

FIG. 3. Synchronization mechanism for two cilia with identical intrinsic
frequencies � and large interciliary distance R
 l. �i� Nonsynchronized cilia
�hollow circles�: Cilium 2 exerts a force on cilium 1 �shown as solid arrow�
given by F12=�v12�s+n12�s ·n12��e�2

−cos �2ex; see Eq. �14�. The dashed
arrows shows the angular and radial component of this force. For trajecto-
ries with fixed radii, only the tangential contribution influences the dynamics
leading only to a symmetric change in the speed of the two cilia �but no
change of their relative phase�. However, if the radius is allowed to vary,
then in the depicted situation R1 decreases, and R2 increases leading to an
increase in angular velocity of cilium 1, and a decrease in angular velocity
of cilium 2. �ii� Synchronized cilia �filled circles�: Both cilia have the same
velocity, which oscillates around its mean value with a frequency �. The
origin of this oscillation is that the drag between two beads moving behind
each other �gray circles� is twice as large as for parallel motion �black
circles�.
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states with a constant phase difference between neighboring
cilia are stable if the phase difference is below a critical
threshold. These stable states correspond to traveling waves
with a constant wavelength and are called metachronal
waves in the biological literature.12 Upon introducing the
phase differences

�i � �i+1 − �i, �36�

where i=1, . . . ,N �mod N�, and the global phase

� �
1

N
�
j=1

N

� j , �37�

Eq. �35� separates into equations for the �i,

�̇i = ��cos �i+1 − cos �i−1�

+
�

2
�sin �i+1 − 2 sin �i + sin �i−1� , �38�

and one equation for the mean velocity,

�̇ = � +
2�

N
�
j=1

N

cos � j . �39�

Again, �=��� and �=2����2. Out of the N variables en-
tering Eq. �38�, only N−1 are independent, since the phase
difference between the first and the last cilium is given by

�N = − �
j=1

N−1

� j . �40�

Metachronal waves with a constant phase difference �i

=� are stationary solutions of Eq. �38� if � ·N=2� ·M, where
the integer M =0, . . . ,N−1. Not all of these waves are stable:
In order to determine their stability, we transform to a coor-
dinate system comoving with the cilia. The mean velocity is
given by

�̇ = � + 2� cos � � �̃ . �41�

As for a pair of cilia, in the case of ����� /2 this phase
speed is higher than for noninteracting cilia; the increase is
twice as high as for a pair of cilia �see Eq. �29�� because each
cilium interacts with two neighbors. The equations of motion

for the relative phase �i��i−�̃t then become

�̇i = ��cos��i+1 − �i� + cos��i − �i−1� − 2 cos ��

+
�

2
�sin��i+1 − �i� − sin��i − �i−1�� . �42�

The metachronal wave then has � j+1=� j +�, and is a fixed
point of Eq. �42�. Its stability is determined by the eigenval-
ues of the linearization of this equation. The resulting matrix
belongs to the class of circulant matrices, where the spectrum
can be calculated explicitly �see Ref. 48 and Appendix C�.
One finds that the eigenvalues are given by

max
m

Re�	m� = � 0 for ��� � �/2
− 2� cos � � 0 for ��� � �/2� . �43�

Thus, waves with ����� /2 �including the synchronized
state �=0� are in linear order only marginally stable, while

all waves with phase differences ����� /2 are unstable. The
eigenvector to the marginally stable eigenvalue 0 is constant
in all the �i and hence reflects the invariance under a shift of
the total phase. Note that the stability properties hold for all
��0 and ��0.

In numerical simulations, the formation of metachronal
waves �see Figs. 4 and 5� is observed if � exceeds a critical
threshold, i.e., if the cilia are assumed to be flexible enough.
The decay of a metachronal wave with ����� /2 is shown in
Fig. 6.

B. Identical intrinsic frequencies and free boundaries

We now analyze chains with free boundaries. Again, the
cilia are assumed to have identical intrinsic frequencies �i

=�. If cilium 1 has the leftmost and cilium N the rightmost
position in the chain, then the equations for the phase differ-
ences �38� are unchanged for i=2, . . . ,N−2. The phase dif-
ferences involving the cilia at the ends are given by

�̇1 = � cos �2 +
�

2
�sin �2 − 2 sin �1� , �44�

�̇N−1 = − � cos �N−2 +
�

2
�− 2 sin �N−1 + sin �N−2� . �45�

Evidently, a metachronal wave with a constant phase shift
�i=� is not a solution of these equations. However, in this
geometry a different kind of wave is observed when the cilia
are sufficiently flexible, i.e., � is large enough. Figure 7
shows a numerical example. Here, the wave emanates from

FIG. 4. �Color� Early stages of the formation of a metachronal wave for 50
identical cilia with periodic boundary conditions, as observed numerically
starting from a random distribution of initial phases �i,0. �a� Color code plot
of sin �i�t� as a function of time �where i is drawn on the y axis�. �b� Phase
differences �i�t� between neighboring cilia as a function of time. We have
chosen to color code ��i�t�−�� /� �where �i�t�−� is taken mod 2��.
�c� �̇i�t� as a function of time. As one can see by direct inspection, the
metachronal wave forms by merging of different regions where cilia have
spontaneously built up a constant phase difference. The metachronal wave
formation occurs simultaneously with the increase in �̇i. The time required
to form the metachronal wave depends on �. Ultimately, all phase differ-
ences �i=2��3 /50� �see Fig. 5� corresponding to a wavelength Nl /3. Data
are for parameter values �=3, �=0.0524, �=0.01�̄.
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the center and spreads toward the ends. The phase differ-
ences are nearly constant on each side of the chain, but re-
flection symmetric with respect to the center, i.e., one has

�i � �, for i = 1, . . . ,N/2 − 1, �46�

�N/2 � 0, �47�

�i � − �, for i = N/2 + 1, . . . ,N/2 �48�

�where for simplicity it has been assumed that N is even�.
These waves are not the only steady-state solutions of

the phase difference equation. For smaller �, we numerically
find also waves that travel from one side of the chain to the
other; see Fig. 8. They are not exactly metachronal, but have
small oscillations in the wavelength.

Again, the investigation of an oscillator chain with
nearest-neighbor interactions and uniform frequency distri-
bution is motivated by biological systems. In the context of
synchronization, such systems have only rarely been studied.
Reference 49 is an example. But there it is assumed that the
interaction vanishes in the synchronized state. For our inter-
actions �given by Eqs. �21� and �22�� this is not the case.

FIG. 5. Long-time behavior of the standard deviation of the phase differ-
ences ���i�t��=��1 /N��i��i�t�− �̄�t��2 �black line� and the mean of the

phase velocities �̇�t� �gray line� calculated from the same numerical data as
in Fig. 4. The inset, showing the first 20 periods, demonstrates that even
though most of the rearrangements to locally form metachronal waves occur
within the first few periods �see Fig. 4�, the standard deviation ��t� is still
large, due to the different wave numbers of these waves. Eventually, the
state given by �n=�0+n�, where �= �3 /25��, is approached exponentially
�indicating its stability�. The resulting mean velocity can be calculated from
Eq. �41� and also yields an increase of 29%, in agreement with the numeri-
cal data shown in the inset.

FIG. 6. �Color� Unstable metachronal wave. As in Fig. 4, we show �a�
sin �i�t�, �b� ���i�t�−��mod 2�� /�, and �c� �̇i�t�. The parameters are the
same as in Fig. 4, but the initial condition is chosen to be a metachronal
wave with constant phase difference �= �3 /5��. This wave is unstable and
eventually evolves toward a metachronal wave with �=−�4 /50��. Note that
the phase velocities �̇i are initially identical, but smaller than the intrinsic
frequencies �i, since the neighboring cilia slow each other down if ���
�� /2.

FIG. 7. �Color� Collective beating in a ciliary chain with free ends. In this
geometry, metachronal waves are not stable. However, the cilia beat in a
wavelike fashion. The cilia left of the center have nearly identical phase
shift and the cilia right of the center also have nearly the same phase shift
but with opposite sign. Formation of the collective beating emanates from
the boundaries. Once, the cilia beat cooperatively, the wave moves from the
middle to the boundaries. �Data shown are for the same set of parameters as
in Figs. 4 and 6, again �a� sin �i�t�, �b� ��i�t� /�−1�mod 2, and �c� �̇i�t�.�

FIG. 8. Steady-state values of the phase differences �i
s for the ciliary chain

with free ends. All parameters with the exception of � are taken from the
previous numerical runs. Shown are ��i

s−�� /� �where �i
s−� is taken

mod 2�� for �i� �=0.002�̄ �light gray�, �ii� �=0.01�̄ �dark gray�, and �iii�
�=0.05�̄ �black�.
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We conclude this section by showing results from a nu-
merical simulation for a chain where the frequencies of the
individual cilia are not identical. If the relative variations
between frequencies are small, ��i−� j�
�̄, the product of
the small quantities � and �� j =� j − �̄ can be neglected and
in leading order Eq. �35� reduces to

�̇i = �i + ���̄ �
j��i


�cos��i − � j� − ��̄ sin��i − � j�� . �49�

Preliminary numerical calculations indicate that this
model indeed can lead to phase locking provided that the
variations in the intrinsic frequencies are sufficiently small,
the cilia are not too rigid, and the hydrodynamical interac-
tions are strong enough. The �unphysical� case where the
antisymmetric part of the coupling dominates, i.e., ��1, can
be studied analytically.

These results are in agreement with observations on
models with localized interactions and various frequencies,
such as the ones studied in Refs. 38 and 39. However, as for
Ref. 49, the results of Ref. 38 do not cover our case since the
coupling function lacks the required symmetry. In this sense,
our model is closer to the ones studied by Sakaguchi et al.,39

where various general entrained states but no metachronal
waves are discussed.

VI. CONCLUSION AND OUTLOOK

We have developed a model for hydrodynamically inter-
acting monocilia that is both simple enough to be analyti-
cally tractable but complex enough to describe the synchro-
nization properties of the cilia. It thus bridges the gap
between idealized but well understood models for phase syn-
chronization �such as those studied in Refs. 11 and 31–39�,
and realistic ones, which are derived from first principles, but
are too complicated to be understood analytically �see, e.g.,
Refs. 27–29 and 50�. In our model, the �circular� trajectory
of a cilium is not exactly prescribed since we allow some
flexibility in the radius. It turns out that this additional degree
of freedom breaks the symmetry in the interactions and in-
troduces the coupling that leads to synchronization and co-
operative ciliary motion.

The synchronization process is particularly simple to
analyze in a system with two interacting cilia. Their motion
always phase-locks, provided that the ciliary density � ex-
ceeds a critical threshold set by the difference of the intrinsic
frequencies. For cilia with identical intrinsic frequencies, the
synchronized state is always reached. In both cases, the cilia
speed up as their phase difference decreases and the hydro-
dynamical drag is reduced. These results are very similar to
those obtained numerically for a much more complicated
model for hydrodynamically interacting helices.30 This sup-
ports our claim that we have developed a minimal model for
the theoretical description of the synchronization properties
of rotating entities that interact via a Stokes fluid.

In a next step, we have considered chains of cilia. For
periodic boundary conditions and identical intrinsic frequen-
cies, metachronal waves are stable if their wavelength ex-
ceeds a critical threshold given by four times the interciliary
distance. This agrees well with the experimentally observed
wavelength of metachronal waves.19 The waves also form

spontaneously, if the filaments are not too rigid. For free
ends, metachronal waves are not even a solution of the equa-
tions of motion for the coupled beating. But different phase-
locked states form, again, provided that the filaments are not
too rigid. For sufficiently high flexibility, these states repre-
sent waves traveling from the middle to the edges of the
array. We also have shown analytically that this collective
motion goes hand in hand with an increase in ciliary speed,
increasing the efficiency of the associated fluid transport or
locomotion. This effect is due to the symmetric part in the
coupling function, whereas synchronization and metachronal
wave formation are based on the �weaker� asymmetric part.

The monocilia model developed seems to have all ingre-
dients required to describe collective effects in ciliary chains
and it should provide a good basis for the development of
models for more complicated beating patterns. For this pur-
pose, it will be necessary to analyze in detail the bending
deformations a cilium undergoes. In particular, the single
phase approximation developed in Ref. 24 will have to be
generalized to motions with variable amplitudes. With such a
description, it should be possible to analytically describe the
beating of many cilia, and not only �rotating� monocilia.
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APPENDIX A: CALCULATION OF THE EQUATIONS
OF MOTION FOR TWO CILIA

Here, we derive Eqs. �17� and �18� for �̇1 and R1 of
cilium 1. In doing so, we assume R
 l �thus also a
 l� and
neglect terms of order aR / l2.

By inserting Eqs. �11�–�15� into Eq. �8�, one has �with ex

denoting the unit vector pointing in the x direction�

e�1
· s =

3a

4
R2�̇2 cos��1 − �2� , �A1�

r12 � r1 − r2 = − lex + O�R� , �A2�

�r12�−1 = l−1�1 + O�R/l�� , �A3�

n12 = − ex + O�R/l� , �A4�

e�1
· n12 = cos �1 + O�R/l� , �A5�

s · n12 =
3a

4
R2�̇2�cos �2 + O�R/l�� , �A6�

implying

e�1
· v12 =

3a

8l
R2�̇2 � �3 cos��1 − �2� + cos��1 + �2�

+ O�R/l�� , �A7�

which finally leads to Eq. �17�. Equation �18� follows from
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eR1
· s =

3a

4
R2�̇2 sin��1 − �2� , �A8�

eR1
· n12 = sin �1 + O�R/l� , �A9�

yielding

eR1
· v12 =

3a

8l
R2�̇2 � �3 sin��1 − �2� + sin��1 + �2�

+ O�R/l�� . �A10�

The results for the case with the no-slip wall can be derived
in a similar way.

APPENDIX B: COMPARISON WITH NUMERICAL
RESULTS FOR ROTATING HELICES

Here, we compare the results of our simple model for
two interacting cilia with the numerical findings for two ro-
tating helices derived in Ref. 30. There, a single helix is
modeled as a collection of rigidly connected beads forming a
helical shape. The two helices are driven by a constant
torque and interact via the surrounding �Stokes� fluid. Their
position in space is fixed with their end points anchored in
harmonic traps. This system was studied numerically by us-
ing the method of mobility tensors.

To directly compare our results with those of Ref. 30, we
rescale time by ���t− t�/2�� ·2 /�, where t�/2 denotes the
time at which �=� /2, given by t�/2=�−1 log�tan��0 /2��.
Note that initial phase differences smaller than � /2 have
negative t�/2. Upon rescaling Eq. �28�, one finds

���� = 2 arctan�e−��/2� . �B1�

This equation describes well the numerical data shown in
Fig. 4 of Ref. 30.

Upon rescaling time, one finds

��t�
��� = 2� + 2��� cos ���� = 2� + 2��� tanh��

2
�� ,

�B2�

which is also in agreement with the increase in speed found
in Ref. 30.

Reichert and Stark also find that the synchronization
speed �d� /dt� scales as tanh�cK−1� as a function of the trap
strength K and a fitting parameter c. For strong traps, this
agrees with our model, where the synchronization speed is
proportional to � and thus to the parameter � quantifying the
radial flexibility. Finally, the torques acting on the helices
were assumed to be �slightly� different giving rise to a torque
difference �D. This �D corresponds to our ��. Precisely
like in our treatment in Sec. IV B, phase-locking only occurs
if the torque difference �D is below a critical threshold �Dc.
As anticipated, the resulting phase lag is zero for vanishing
torque difference and � /2 for the maximum torque differ-
ence. The phase lag as a function of �D /�Dc �shown in Fig.
8 in Ref. 30� is well described by �=arcsin��D /�Dc� �data
not shown�, as predicted by Eq. �33�.

APPENDIX C: EIGENVALUE CALCULATION

In this appendix, we calculate the eigenvalues of the
Jacobian for a chain of cilia and determine the eigenvalue
with the largest real part. The Jacobian at � j = j� is given by

Di,j � � ��̇i

�� j

�
�j=j�

= ���i−1,j − �i+1,j�sin �

+
�

2
��i−1,j − 2�i,j + �i+1,j�cos � . �C1�

To this end, we utilize the fact that �Di,j� is a “circulant”
matrix, i.e., its successive rows are obtained by cyclic right-
shifts of the first row.48 An explicit formula for the eigenval-
ues is given in Ref. 48,

	m = D1,1 + D1,2 m + D2,1 �N−1�m, �C2�

where  =exp�2�i /N� and m runs from 0 to N−1. Inserting
the matrix elements yields

	m = − � cos � + ��

2
cos � − � sin �� m

+ ��

2
cos � + � sin �� �N−1�m. �C3�

Because of the relations

 �N−1�m +  m =  −m +  m = 2 cos�2�m/N� , �C4�

 �N−1�m −  m =  −m −  m = − 2i sin�2�m/N� , �C5�

the real parts of the eigenvalues are given by

Re�	m� = � cos ��− 1 + cos�2�m/N�� . �C6�

Without loss of generality, −�����. Now, for ����� /2
one has cos �!0 and 	0 is the eigenvalue with the largest
real part: Re�	0�=0. For ����� /2, all the eigenvalues have
a positive real part except for 	0. Furthermore, the largest
value is reached when cos�2�m /N� is minimal, i.e., for m
=N /2 �N even� and m= �N−1� /2 �N odd�. Thus, one has
maxm Re�	m�=−2� cos � for N even and maxm Re�	m�
�−2� cos � for N odd and large.
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