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Motivated by the motion of biopolymers and membranes in solution, this article presents a
formulation of the equations of motion for curves and surfaces in a viscous fluid. The focus is on
geometrical aspects and simple variational methods for calculating internal stresses and forces, and the
full nonlinear equations of motion are derived. In the case of membranes, particular attention is paid
to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism
is illustrated by two simple case studies: �1� the twirling instability of straight elastic rod rotating in a
viscous fluid and �2� the pearling and buckling instabilities of a tubular liposome or polymersome.
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I. INTRODUCTION

By definition, soft matter is easy to deform. Some ma-
terials are soft because they have a high degree of sym-
metry. For example, the absence of long-range transla-
tional order in a liquid means that there is no resistance
to shear in static equilibrium. Other materials, such as
colloidal crystals, have low symmetry but are soft since
the fundamental constituents are large and the interac-
tions between these constituents are of entropic origin,
and therefore weak. For example, to estimate the shear
modulus G of a colloidal crystal, we assume a character-
istic length scale a�1 �m and a characteristic energy
scale of about ten times the thermal energy at room
temperature, and find G�10kBT /a3�4�10−2 Pa. This
estimate is far smaller than the typical elastic modulus
for a molecular crystal, where covalent bonds and mo-
lecular sizes determine the size of the shear modulus.
Finally, many objects are soft since they are thin in one
or two dimensions. It is a matter of common experience
that bending a thin rod or plate is much easier than
stretching. Examples of thin objects at the micrometer
scale abound: bacterial flagella, actin filaments, and cell
membranes readily deform in response to thermal fluc-
tuations or viscous forces arising in fluid flow. The key to
understanding the physics of these systems often hinges
on understanding the dynamics of their shapes. Thus,
the student of soft matter is led directly to the problem
of describing how curves and surfaces deform under ex-
ternal forces. Differential geometry is the natural tool
for this task. In this review, we give a self-contained in-
troduction to differential geometry of curves and sur-
faces that evolve in time. Our intended audience is
someone who wants to use these equations to elucidate
physical phenomena. Therefore, although our main fo-
cus is on mathematics, we give physical interpretations
of the mathematics whenever possible.

It is natural to ask why we need another review of
differential geometry. There are introductory books of a
purely mathematical nature that are good starting points
for students �Coxeter, 1969; Millman and Parker, 1977;
Struik, 1988; Morgan, 1998�. There are useful books with*Thomas_Powers@brown.edu
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a broader mathematical scope, such as that of Nakahara
�2003�. Finally, there are books and reviews that intro-
duce differential geometry in the context of solid me-
chanics �Green and Zerna, 1968�, fluid mechanics �Aris,
1989�, and soft matter �David, 1989; Kamien, 2002; van
Hemmen and Leibold, 2007�. Our review is closest in
spirit to these last four, but it is complementary since it
emphasizes the variational point of view for deriving
forces due to internal stresses acting on a stiff polymer
or membrane. Like the review of Kamien �2002�, we
give a unified treatment of curves and surfaces from the
“extrinsic” point of view, in which distances along curves
and surfaces sitting in three-dimensional space are mea-
sured using the notion of distance in that three-
dimensional space. The alternative “intrinsic” approach
to the differential geometry of surfaces is to work only
with quantities that can be measured by a two-
dimensional being living on the surface. For example,
the curvature K of a surface can be defined by compar-
ing the circumference C of a circle on the surface to the
radius R of the circle, as measured by the inhabitant of
the surface. �See Fig. 1; the formula relating K, C, and R
displayed in the figure can be readily confirmed for the
case of a sphere.� Since polymers and membranes inter-
act and bend in three-dimensional space, it is impossible
to formulate their equations of motions in terms of in-
trinsic quantities only, and we will not hesitate to char-
acterize curves and surfaces with extrinsic quantities
such as length in three dimensions.

In addition to the tension between the extrinsic and
intrinsic points of view, the issue of choosing coordinates
always arises when studying curves and surfaces. Since
geometric quantities such as vector fields and curvatures
exist independently of the choice of coordinates, it is
natural to define these quantities without invoking coor-
dinates at all �Misner et al., 1973�. Although this ap-
proach is elegant, it requires too much mathematical
machinery for our purposes. In the case of curves, the
basic geometrical ideas can be captured with vector cal-
culus. Surfaces are more complicated and therefore re-
quire us to introduce some of the elements of the calcu-

lus of tensors, which we attempt to do with a minimal
amount of formalism.

Another reason not to insist on a coordinate-free ap-
proach is that physical considerations often single out a
coordinate system or a class of coordinate systems as
special. For example, we will see that arclength param-
etrization is natural for inextensible rods, and that con-
vected coordinates—coordinates that are carried along
by material particles—are natural for fluid membranes.
A second point related to choice of coordinates is the
distinction between an interface between two different
phases and the physical surfaces that we study. For ex-
ample, since a solidification front �Langer, 1980� ad-
vances through a substance while the material points of
the substance remain at rest, we are free to use choose
coordinates such that the interface velocity is always
normal to the tangent plane �Brower et al., 1984�. In
contrast, the velocity of a material point in a polymer or
membrane may have a component along the tangential
direction. For motion of a polymer or membrane arising
from deformation, this velocity component has physical
consequences and cannot be removed by a change of
coordinates.

II. CHARACTERISTIC LENGTH AND TIME SCALES

A. Thermal fluctuations and the persistence length

For brevity, we limit the scope of the review by disre-
garding thermal fluctuations. This assumption is a vast
simplification, since the flexibility of polymers and mem-
branes ensures that thermal undulations are always
present. However, there are many shape-evolution prob-
lems in which these effects are small. Furthermore, the
formalism described in this review is also useful even for
problems where thermal effects play an important role,
such as the dynamics of tension in semiflexible polymers
�Hallatschek et al., 2007� and the surface tension of an
undulating fluid membrane �Fournier and Barbetta,
2008�. In this section we delineate the conditions under
which thermal fluctuations are important.

First consider a filament in solution. The filament
could be a semiflexible polymer such as DNA or actin,
or the flagellar filament of a bacterium �Boal, 2002�.
These filaments resist bending, and may be described by
an energy

E =
A

2
� 1

R2ds , �1�

where A is the bending modulus with dimensions of en-
ergy times length, s is the distance measured along the
filament, and R is the local radius of curvature of the
filament. We describe the curvature of a filament in Sec.
III.A; for now one can simply imagine that the thermal
motion of the molecules of the solution causes the fila-
ment to flex back and forth between arcs of constant
curvature. If we imagine lengthening the filament, then
our experience with macroscopic rods tells us that the
filament is easier to bend. That is, for fixed filament stiff-
ness A, the same force applied perpendicular to the end

C ≈ 2πR(1 − KR2/6)

2R

C

FIG. 1. A two-dimensional being �after Burger and Starbird,
2005� considers the relation between the circumference and
radius of a circle in his curved world; K is a number he can
determine by making careful measurements of length.
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of the filament leads to a greater deflection as the fila-
ment increases in length. Thus, the longer the filament,
the more it will bend spontaneously due to thermal fluc-
tuations. We can estimate the length �p of a filament at
which thermal fluctuations become important by equat-
ing thermal energy kBT with the bending energy of a
filament bent into an arc of one radian: kBT�A /�p, or
�p�kBT /A. The length �p is called the persistence
length. At room temperature, the persistence length of
DNA is about 50 nm; �p is of the order of micrometers
for actin, and millimeters for microtubules and bacterial
flagellar filaments �Boal, 2002�. The effects of thermal
fluctuations are small when the length L of a filament is
small compared to �p, L��p.

Unlike interfaces which are simply the boundary be-
tween two phases, membranes are comprised of mol-
ecules that resist bending. Therefore, the shapes of
membranes are also governed by a bending energy. As
we review in Sec. IV.A, there are two radii of curvature
at any point of a surface. Thus, the bending energy of a
fluid membrane is

E =
�

2
� � 1

R1
+

1

R2
�2

dS , �2�

where � is the bending modulus or stiffness, with dimen-
sions of energy, and dS is the element of the surface
area. Just as for filaments we expect that as a membrane
gets larger and larger, the thermal motion of the solvent
is more and more effective at bending the membrane.
However, since the units of � do not contain a length, it
is not immediately obvious how to estimate the persis-
tence length using dimensional analysis. Therefore, we
must use a more detailed approach.

Consider a membrane that is weakly perturbed by
thermal motion and spanning a frame with dimensions
L�L. Since the membrane is almost flat, it can be de-
scribed as the graph of a height function h over the x-y
plane. In Sec. IV.A we will see that the energy in Eq. �2�
may be given as

E �
�

2
� ��2h�2dxdy . �3�

Our strategy for quantifying the effect of thermal fluc-
tuations will be to estimate the scale L at which fluctua-
tions in the normal to the membrane, n̂� ẑ−�h, become
of the order of unity, or in other words large enough to
spoil the assumption that the membrane is almost flat.
First, use the equipartition theorem to assign to each
mode of the quadratic energy function �3� the contribu-
tion kBT /2 toward the average energy. The simplest way
to apply the equipartition theorem is to assume periodic
boundary conditions and write the height as a Fourier
series, h�x ,y�=�q exp	iq · �x ,y�
hq /L2, where the sum is
over all wave vectors q= �2�m /L ,2�n /L� with the inte-
gers m and n less than a maximum value mmax. The
wavelength corresponding to the maximum is the small-
est length at which the continuum theory applies, and is
a molecular scale �mol such as the thickness of the mem-

brane. Thus, the mean-square amplitude of the fluctua-
tions of the height is

�hqhq�� = L2�q+q�,0
kBT

q4 . �4�

Longer wavelength ripples are easier to excite. We can
now calculate the fluctuations in the normal direction n̂.
Since the membrane is almost flat, it is convenient to
calculate the mean-square fluctuations of the deviation
�n= n̂− ẑ�−�h �Chaikin and Lubensky, 1995�

��n̂ · �n̂� = �
qq�

q · q�

L2 �hqhq�� �5�

�� d2q

�2��2

kBT

�q2 . �6�

The integral in Eq. �6� runs over wave vectors ranging
from the short-distance cutoff qmin�2� /�mol to the long-
distance cutoff given by the scale of the frame, qmax
�2� /L. Assuming for simplicity a disk-shaped domain
of integration, we find ��n ·�n���kBT /2���ln�L /�mol�.
The scale at which the thermal fluctuations lead to sig-
nificant deformation of the membrane is the length scale
L=�p for which ��n ·�n��1, or

�p � �mol exp�2��

kBT
� . �7�

For typical values �mol�1 nm and ��10kBT, the persis-
tence length is extremely large. Thus, thermal fluctua-
tions are often disregarded in studies of the shape dy-
namics of vesicles.

B. Time scales for stretching, bending, and twisting of
filaments

To understand the physical mechanisms that govern
the dynamics of filaments, we describe the characteristic
time scales for stretching, bending, and twisting. To get
the orders of magnitude of these time scales, it is suffi-
cient to use scaling arguments and work in the limit of
small deflection from a straight filament. The precise
nonlinear equations of motion require the development
of the geometric tools presented in the later sections of
this review.

We begin by recalling some basic definitions from the
mechanics of rods �Landau and Lifshitz, 1986� and vis-
cous fluids �Landau and Lifshitz, 1987�. Consider a
straight rod of radius a, with long axis aligned along z
and under longitudinal deformation. The stress �zz, or
force per unit area acting through a cross section at z, is
proportional to the strain for small deformations: �zz
=Y�zu, where u is the displacement of the cross section
of the rod originally at z and Y is the Young’s modulus
with units of energy per volume. The net elastic force
per length acting on the element of size dz is therefore
given by �a2Y�z

2udz. Now suppose the rod is allowed to
relax, with the only resistance to the relaxation being the
viscous drag of the solvent.
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To estimate the viscous resistance, we first argue that
at the small scales of polymer and cells the typical vis-
cous forces are much larger than the forces that are re-
quired to change the velocity of the fluid. Viscous
stresses are given by the product of the viscosity � and
the strain rate. Thus, the viscous force on an object of
size � is given by

Fv � ��v/���2 = �v� , �8�

where � is the viscosity and v is a characteristic speed of
the flow. The viscosity of water is ��10−3 N s/m2. The
product of mass and acceleration for an element of size
� of a fluid of density 	 is given by

Fi � �	�3��v2/�� = 	v2�2. �9�

For micrometer-sized objects in water moving at speeds
of the order of micrometers per second, the inertial
force Fi is about a 106 times smaller than the viscous
force Fv. This regime is the regime of “low Reynolds
number,” in which inertia is irrelevant �Happel and
Brenner, 1965; Hinch, 1988; Kim and Karrila, 1991�.
Thus, we may estimate the viscous drag on the element
of the rod of length dz to be of the order of �vdz. �In
Sec. III we address the question of how the length scale
a enters the drag.�

We now have the ingredients required to estimate the
relaxation time for longitudinal extension and compres-
sion of a filament. Assuming that the inertia of the rod
as well as the fluid is negligible, we balance the viscous
drag with the elastic force, identify v with �tu, and drop
numerical factors such as � to find ��tu�a2Y�z

2u. Thus,
the characteristic relaxation time for longitudinal
stretching or compression of a rod of length L in a vis-
cous fluid is


s �
�

Y
�L

a
�2

. �10�

To estimate the relaxation time for bending deforma-
tions, note that the bending modulus A for a thin fila-
ment of radius a is related to the Young’s modulus by
A�Ya4 �Landau and Lifshitz, 1986�. Just as we did for
membranes, we can describe small deflections of a fila-
ment by a height function h�z�, and the elastic energy is
given as E��A /2���z

2h�2dz. By the principle of virtual
work, the elastic force per unit length due to bending is
given by the functional derivative −�E /�h�−A�z

4h.
Once again disregarding numerical factors, we approxi-
mate the resistance to transverse motion as ��thdz, and
balance the elastic and viscous forces to obtain the bend-
ing relaxation time


b �
�L4

A
�
�

Y
�L

a
�4

. �11�

The ratio of the stretch relaxation time to the bend re-
laxation time involves two powers of the aspect ratio,

s /
b��a /L�2. This aspect ratio is typically very small,
ranging from 1/50 for a 50 nm segment of DNA to 10−3

for a typical bacterial flagellum �Boal, 2002�. Therefore,

modulations in the extension relax much faster than
bending deformations for polymer filaments. When the
focus of interest is bending dynamics, thin filaments are
typically assumed to be inextensible.

To estimate the relaxation time for twisting deforma-
tions, suppose the filament is straight but twisted. We
precisely define twist for a filament with arbitrary con-
tour in Sec. III.A, but for a straight filament define the
angle ��z� through which the cross section at z has ro-
tated due to twist. The torque applied through a cross
section is C�z�, and the net elastic torque on an element
of length dz due to internal stresses is C�z

2�dz.
The viscous torque resisting rotation at rate �t� is the

product of the viscous stress ��t�, the surface area of the
element �adz, and the moment arm a. Thus, the twist
degree of freedom obeys the diffusion equation �a2�t�
=C�z

2�, and the twist relaxation time is


t �
�a2L2

C
. �12�

For many materials, C�A �Landau and Lifshitz, 1986�,
and thus


t �
�

Y
�L

a
�2

. �13�

The twist relaxation time is much smaller than the bend
relaxation time. Interestingly, the twist relaxation time is
comparable to the stretch relaxation time. Nevertheless,
it is common to consider the dynamics of inextensible
elastic rods with both bending and twisting degrees of
freedom, since twisting and stretching are usually driven
by different physical processes. A simple example is pro-
vided by an elastic filament, initially straight and twirling
about its long axis �Sec. III.F�. Since the rotation induces
twist but no stretching, it is convenient to treat the fila-
ment as inextensible.

C. Time scales for stretching and bending of membranes

In this section we review the basic mechanics of mem-
branes �Seifert, 1997�. We confine our attention to fluid
membranes, in which there is no long-range order in the
molecules making up the membrane. These membranes
wrap up into closed surfaces known as vesicles—
liposomes in the case of lipid molecules, and polymer-
somes in the case of block copolymers �Yu and Eisen-
berg, 1998; Discher and Ahmed, 2006�. Both the lipids
and the block copolymers are amphiphilic, consisting of
two parts with different affinities for water. The hydro-
phobic effect drives the molecules to form a bilayer, with
the oily chains with the least affinity for water inside the
bilayer.

We now estimate the relaxation time for membrane
stretching. Consistent with the discussion of Sec. II.A,
we suppose the membrane is in the “high-tension”
regime of stretching in which the resistance arises
from elasticity rather than entropic effects �Evans and
Rawicz, 1990�. Disregarding the bilayer structure for the
moment, we may view the membrane as a two-
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dimensional fluid. Unlike the filaments considered in
Sec. II.B, the membrane is a liquid, and to describe the
resistance of the membrane to stretching and compres-
sion we use the density rather than a displacement vari-
able. Let � denote the number of molecules per unit
area, and �0 denote the preferred number density. For
small deformations, the elastic energy of stretching is

Es =
k

2
� � �

�0
− 1�2

dS , �14�

where k is the compression modulus with units of en-
ergy. Since the modulus k is usually large enough that
the density is close to �0, work in terms of ��=�−�0.
From dimensional analysis, we deduce that the two-
dimensional pressure in the membrane, with units of
force per length, is p2D=k�� /�0. Gradients in the two-
dimensional pressure lead to tangential forces in the
membrane, which drive regions of nonuniform density
to relax to constant density. The balance of these tan-
gential forces with dissipative forces determines the
stretch relaxation time. We consider the relaxation of a
density modulation with wave number q.

First we suppose that the dominant dissipative forces
arise from the viscous forces the solvent exerts on the
membrane. For a characteristic flow field v near the
membrane, the stress is ���v��qv. Thus the balance
of the gradient of pressure with the viscous stress leads
to

qk��/�0 � �qv . �15�

Assuming the no-slip boundary condition between the
solvent velocity and the lipid velocity holds, we may use
v to represent the lipid velocity as well. The rate of
change of the density � is related to the lipid flow by the
continuity equation expressing conservation of particles.
In Sec. IV.D we will see how to formulate the continuity
equation on a moving curved surface, but for our scaling
argument it is sufficient to assert that �t�����v�, or

��/
s � q�0v , �16�

where 
s is the stretching relaxation time of the mem-
brane. Combining Eqs. �15� and �16� leads to


s �
�

kq
, �17�

or taking the smallest wave number to be set by the size
L of the vesicle, 
s��L /k.

To estimate the relaxation time for bending deforma-
tions with wave number q, we balance the bending elas-
tic force per unit area with viscous stress or traction
from the solvent. We give the precise form of the elastic
force per area on a deformed membrane in Sec. IV.B.2;
but working in analogy with our expression for the
bending force per unit length on a filament, we have f
���4h��q4h. Again invoking the no-slip condition to
identify �th with the velocity in the solvent near the
membrane, we estimate the viscous traction on the
membrane as �qh /
b, where 
b is the bending relaxation

time scale. Balancing the elastic force per area with the
traction leads to �Brochard and Lennon, 1975�


b �
�

�q3 . �18�

Since the smallest q scales with vesicle size L, we may
also write 
b��L3 /�. A simple scaling estimate for the
magnitude of the bending stiffness is ��k�mol

2 , where
�mol is a molecular scale such as the thickness of the
membrane �Seifert, 1997�. Thus, the ratio of the stretch
relaxation time to the bend relaxation time for mem-
branes scale as 
s /
b���mol/L�2, and just as in the case
of filaments we expect density modulations to relax
much faster than bending modulations. To estimate the
time scales directly from the measured parameters for
the lipid stearoyloleoyl phosphatidylcholine, we use k
�0.2 N/m and ��10−19 J �Dimova et al., 2002� which
yields for a vesicle with L=10 �m a stretch relaxation
time of 
s�10−7 s and a bending relaxation time of 

�10 s.1 Note that the bending relaxation time depends
strongly on length scale; a ripple with a 1 �m wave-
length relaxes 1000 times faster than a ripple with a
10 �m wavelength. Thus, the time scale for bending dy-
namics of lipid membranes can easily be of the order of
seconds.

In addition to the viscous forces from the solvent,
there are two other dissipative forces acting on the
membrane: viscous forces due the surface viscosity of
the membrane itself, and friction forces arising from the
slipping of the two monolayers past each other. The rela-
tive importance of these forces changes with scale, with
bilayer friction and then membrane viscosity becoming
dominant as the length scale decreases �Seifert and
Langer, 1993; Seifert, 1997�. The implications of bilayer
structure, both for dynamics and for morphology, are
described in Seifert �1997� and will not be discussed in
this review. However, we will treat intrinsic membrane
viscosity, since it is even more important than solvent
viscosity in the case of polymersomes.

Surface viscosity relates the viscous force per unit
length fv to the shear rate, fv���v. Thus, the ratio of
surface and bulk viscosity is a length, �SD=� /�, termed
the “Saffman-Delbrück length” �Henle et al., 2008� in
honor of Saffman and Delbrück’s study of the mobility
of particles embedded in a thin liquid film atop a deep
liquid subphase �Saffman and Delbrück, 1975�. Since the
force per unit area acting on an element of membrane is
given by a derivative of the force per length, the surface
viscous force per unit area scales as �q2v compared to
�qv for the traction from the solvent. Therefore, surface
viscosity effects become dominant when �SDq1. Sur-
face viscosities for lipid membranes are of the order of

1In principle, the relaxation dynamics of the compression
modes could be so fast that inertial effects become relevant,
invalidating our estimates for viscous friction. This applies to
both filaments and membranes, but does not change the con-
clusion that the compression modes relax much faster than
bending modes �Seifert and Langer, 1993�.
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10−9 N s/m �Dimova et al., 1999, 2000, 2006�, whereas
the surface viscosity of diblock copolymer vesicles can
be about 500 times higher �Dimova et al., 2002�. The
Saffman-Delbrück length is �SD�1 �m for liposomes
and �SD�1 mm for polymersomes. Therefore, surface
viscosity effects dominate the dynamics of polymer-
somes. However, we will see in Sec. IV.D that solvent
viscosity cannot be neglected in the dynamics of almost
flat membranes. Nevertheless, the bending relaxation
time for a polymersome may be obtained by the same
argument that led to Eq. �18� with �q replacing �, lead-
ing to


b �
�

�q2 , �19�

or 
b��L2 /� for a vesicle of size L. Since surface vis-
cous stresses will resist the relaxation of both compres-
sion and bending modes, the relation 
s�
b still holds
for polymersomes.

III. FILAMENTS

In this section we derive the equations of motion for
flexible filaments in a viscous liquid �Doi and Edwards,
1986�. We begin with kinematics and review how to com-
pactly describe bending and twisting using a body-fixed
frame of directors. Then we use variational arguments to
derive the elastic forces per unit length acting on an
element of a rod in an arbitrary configuration. After a
discussion of compatibility relations for rod strain and
angular velocity, we conclude the section with an over-
view of the viscous forces acting on slender rods in the
overdamped regime of Stokes flow.

A. Rod kinematics

The centerline of a rod is given by r���, the position of
the point with coordinate �. Since � is fixed for a given
material point, we call � a material coordinate. Alterna-
tively, � is sometimes called a convected coordinate since
the label � is carried along with the material point as the
body deforms. As mentioned, it is much easier to bend a
rod than it is to stretch it. Thus, we consider inextensible
rods. Note that � is a material or convected coordinate;
it is a label for material points of the centerline of the
rod. It is convenient to take the parameter � to run from
0 to 1 from one end of the rod to the other. The distance
ds between two nearby points on the rod centerline is
given by the Pythagorean theorem and the chain rule,

ds2 = dr2 =
�r
��

·
�r
��

d�2. �20�

The vector ��r=�r /�� is tangent to the centerline; nor-
malizing this vector leads to the unit tangent vector r�
��sr.

Our characterization of the configuration of a rod is
completed by specifying the orientation of the rod cross

section at each s. Let d̂1 and d̂2 lie along the principal
directions of the rod cross section �see Fig. 2�. Then de-

fine d̂3= d̂1� d̂2. For simplicity, we consider unshearable
rods, for which the cross section always remains perpen-

dicular to the rod centerline, or d̂3=r� �Antman, 1995�.
Note that if the cross section is circular, then we must

arbitrarily choose a direction d̂1 at each point s. For the
case of a rod which is straight in the absence of external

forces, a sensible choice is to make d̂1�s� constant.
Let the subscripts a ,b , . . . =1, 2, or 3 label the mem-

bers of orthonormal frames. The configuration of the
rod is given by the orientation of the frame for all s.
Instead of specifying the orientation of the frame, it is
much more convenient to describe the configuration of
the rod in terms of how fast the orthonormal frame ro-
tates as s increases. The frames for any two nearby
points differ by a small rotation,

d̂a� = �� d̂a, �21�

where in the body-fixed frame of directors, �=�1d̂1

+�2d̂2+�3d̂3. For brevity we use the Einstein conven-

tion of summing repeating indices �=�ad̂a. The infini-
tesimal rotations �a are uniquely defined once the direc-

tors are chosen, since �1= d̂2� · d̂3, and �2 and �3 are
determined by cyclically permuting the indices. The
quantities �1 and �2 are the components of the curva-
ture of the centerline, and �3 is the rate at which the

cross section twists around d̂3 as s increases. For com-
parison, it is useful to recall the Serret-Frenet frame

curve of a space curve, �T̂ ,N̂ , B̂�, where T̂=r� is the unit

tangent vector, and the normal N̂ and the binormal B̂
are defined by

N̂� = 
B̂ − �T̂ , �22�

B̂� = − 
N̂ , �23�

T̂� = �N̂ . �24�

The curvature � is the rate of rotation of T̂ about B̂, and

the torsion 
 is the rate of rotation of N̂ about T̂. It is

d̂1

d̂1

d̂2

d̂2

d̂3

d̂3

FIG. 2. �Color online� The directors for a rod are chosen along
the principal axes of the cross section of the rod.
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conventional to take ��0 to make N̂ point to the center
of curvature. Comparison of Eqs. �21�–�24� reveals that
�2=�1

2+�2
2 and �3=��+
, where � is the angle between

N̂ and d̂, d̂2 ·N̂=cos � �Fig. 3�. Note that the directions of
the normal and binormal become ambiguous when the
rod is straight, �=0. This ambiguity can be avoided using
the so-called natural frame, which is well defined even at
points where �=0 �Bishop, 1975; Goldstein et al., 1998;
Wolgemuth et al., 2004�. However, there is no ambiguity

about d̂1 and d̂2 when the rod is straight; note further
that �1 and �2 can have either sign. In this review, we
consider rods which are straight in absence of external
forces. Thus, �a may be interpreted as strains associated
with bending and twisting. Note that a rod with �

=�0d̂2 is an arc of a circle, and a rod with �=�0d̂2

+
0d̂3 is a helix. Also note that all three variables �a
must be given to specify the shape of a rod; specifying
only the curvature and twist does not determine the
shape. For example,

�circle =
1

R
cos�s/R�d̂1 +

1

R
sin�s/R�d̂2 +

1

R
d̂3 �25�

describes a rod bent into a circle with curvature 1/R and
twist 1 /R, whereas

�helix =
1

R
d̂2 +

1

R
d̂3 �26�

describes a helix that also has curvature 1/R and twist
1 /R �see Fig. 4�.

B. Energies, forces, and moments

Our next task is to find the force fds exerted on an
element of the rod of length ds by the rest of the rod.
This force equals the force the element exerts on the
surrounding medium. It is useful to first consider a
simple but classic question: What is the force per unit
length that a curve in the plane exerts on its surround-
ings when its energy function is E=�ds? Suppose also
that the curve encloses a fixed area. Thus our problem
models a two-dimensional droplet of incompressible
fluid. To find the force for an arbitrary configuration r�s�
of the curve, we impose an external force per unit length
equal and opposite to f�s� to put the instantaneous con-
figuration in mechanical equilibrium. Thus, f is given by
the principle of virtual work, or the condition �Etot=0,
where

�Etot = �E +� f�s� · �r�s�ds − p�A , �27�

and p is the Lagrange multiplier enforcing the constraint
of fixed enclosed area A. To calculate �Etot, we must find
how the length ds changes under a variation of the curve
�Fig. 5�

�ds = �	r� + ��r��
2ds − ds = r� · ��r��ds , �28�

where the second line of Eq. �28� is accurate to first

order in �r. Note that r�= d̂3 is the unit tangent vector.
Our formula correctly shows that the length element is
invariant under rigid motions, such as the translations
�r=a and the rotations �r=��r, where a and � are con-
stant vectors. Using �ds to calculate �Etot yields

�Etot = �� r� · ��r��ds +� �f − pN̂� · �rds

=� �− �r� + f − pN̂� · �rds , �29�

where we integrated by parts and used the fact that
�r�L�=�r�0� for a closed curve. Since �r is an arbitrary
variation, the force is given by

f = ��� + p�N̂ . �30�

Note that the curve can only support normal forces per
unit length. In equilibrium, f=0, and we recover the
Young-Laplace law, with the Lagrange multiplier p iden-
tified as the difference in the pressure outside the curve
and inside the curve. Since p is constant, � is constant,
and the length-minimizing curve is a circle.

d̂1

d̂2

Ω2d̂1

N̂

B̂
ψ

κN̂−Ω1d̂2

FIG. 3. The basis vectors of the material and Serret-Frenet
frames in the plane of the rod cross section.

FIG. 4. Two rods with the same curvature � and the same twist
�3. For each rod, the black line traces the path of the tip of d̂1.
Note that the fact that one rod is closed and one is open is
immaterial for determining the twist.

r(s1)
r(s2)

r(s2) + δr(s2)
r(s1) + δr(s1)

FIG. 5. The variation of a curve stretches the curve.
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We now apply this approach to inextensible rods that
resist bending �Hallatschek et al., 2007� and twist. Unlike
the previous example of a one-dimensional interface in
the plane, an elastic rod has internal structure with its
state defined by the strains �a. Suppose the elastic en-
ergy of the rod is given by

E =� E��1,�2,�3�ds . �31�

For example, the energy density

E =
A

2
��1

2 +�2
2� +

C

2
�3

2 =
A

2
�2 +

C

2
�3

2 �32�

describes a rod with bend modulus A, twist modulus C,
and a straight shape in the unstressed configuration. Our
formalism is easily generalized to handle models in
which E depends on derivatives of the �a �Kan and
Wolgemuth, 2007�, such as models for polymorphic
phase transformations in bacterial flagella �Goldstein et
al., 2000; Coombs et al., 2002; Srigiriraju and Powers,
2005, 2006�. However, we disregard such “strain-
gradient” terms for simplicity.

It is natural to suppose that the ends of the rod are
subject to external forces Fext�0� and Fext�L�, and mo-
ments Mext�0� and Mext�L�. To hold an arbitrary configu-
ration in equilibrium with these boundary conditions, we
must apply an external force per unit length −f�s�. Since

the rod can twist about the tangent d̂3, we must also

apply an external moment per unit length −m�s�d̂3. As in

the closed curve example, f�s� and m�s�d̂3 are the forces
and torques per unit length that the rod exerts on the
medium for a given configuration. These are again given
by the condition �Etot=0, where �Etot includes the work
done by all external forces. Note that we are not consid-
ering the most general form of the external torque per
unit length. A torque per unit length parallel to the cen-
terline of the rod arises naturally when considering ro-
tation of a filament in a viscous liquid �see Sec. III.F�,
but our formalism can be easily modified to handle ex-
ternal torques per unit length that are perpendicular to
the centerline.

Since the rod is inextensible, care must be taken when
performing the variation, since most variations �r�s�
stretch the rod �Fig. 5�. The three components of �r are
not independent for a variation that conserves the dis-
tance between material points on the rod. It is conve-
nient to introduce a Lagrange multiplier function en-
forcing r� ·r�=1 and then vary the energy with respect to
the three components of �r independently �Goldstein
and Langer, 1995�. Instead we follow the less common
procedure of dispensing with the Lagrange multiplier
function and constraining the variation �Hallatschek et
al., 2007�. Since the constrained variation does not
stretch the rod, arclength is conserved,

�ds = 0. �33�

Therefore, the order of applying the variation � and de-
rivatives with respect to s is immaterial,

��s = �s� . �34�

We may drop the distinction between ��r�� and ��r��,
and simply write �r�.

Since the energy depends on the �a only, the configu-
ration of the rod is completely determined by the orien-

tation of the directors in space, d̂a. Thus, we may vary
the configuration without stretching the rod by subject-
ing the orthonormal frame of directors at each point s to

an infinitesimal rotation, �d̂a=�� d̂a, where ����ad̂a.
The infinitesimal angles ��a are related to the directors
via

��1 = �d̂2 · d̂3, �35�

with ��2 and ��3 determined by cyclically permuting the
indices in Eq. �35�. Thus, under a variation, the ortho-

normal frame vectors d̂2 and d̂3 rotate about d̂1 through
the angle ��1 �Fig. 6�. The two angles ��1 and ��2 cor-
respond to the two degrees of freedom of �r under the
constraint r� ·r�=1,

��1 = − d̂2 · ��r��, �36�

��2 = d̂1 · ��r��. �37�

In general, there are no globally defined angles �a whose
variations correspond to the infinitesimal angles ��a.
The exceptions are cases when one of the directors is

constant for the whole rod. For example, we may take d̂1
to be normal to the plane containing a planar curve;
then �1 may be defined as the angle between the local
tangent vector and a fixed direction in the plane, and �1�

is the curvature. Likewise, the director d̂3 has a constant
direction for a straight, twisted rod, with �3 the cumula-

tive angle through which d̂1 has rotated, and �3� the twist
�3.

The variation in the strain is found by varying Eq.

�21�, using Eq. �34�, �d̂a=�� d̂a, and ����ad̂a, and fi-

nally noting that V� d̂a=0 for all a implies V=0,

d̂1

d̂2

δχ1

d̂2 + δd̂2

d̂3 + δd̂3
d̂3

δχ1

FIG. 6. Rotation of directors under a variation with ��1�0,
��2=��3=0.
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�� = �� + ��� . �38�

It is also useful to write the variation in the following
component form:

��1 = ��1� +�2��3 −�3��2, �39�

��2 = ��2� +�3��1 −�1��3, �40�

��3 = ��3� +�1��2 −�2��1. �41�

The components of ��� and not ��� appear on the
right-hand sides of Eqs. �39�–�41�, since the basis vectors

d̂a in �� and � must be varied and differentiated, re-
spectively. To interpret these formulas, note that a varia-

tion with �=��3�s�d̂3 changes the twist �3 and the prin-
cipal curvatures �1 and �2, but not �=��1

2+�2
2. A

deformation of the centerline �=��1�s�d̂1+��2�s�d̂2
changes the twist if the rod is curved. This fact underlies
the coupling of twist and writhe �Celugereanu, 1959;
White, 1969; Fuller, 1971; Goldstein et al., 1998; Kamien,
1998; Dennis and Hannay, 2005�.

We now have all the necessary ingredients to find the
force per unit length f. We demand �Etot=0, where

�Etot = �E +� �f · �r + m��3�ds − Fext�L� · �r�L�

− Fext�0� · �r�0� − Mext�L� · ��L�

− Mext�0� · ��0� . �42�

Since arclength is conserved �33� and the energy is a
function of �a only, we have

�E =� Ma��ads , �43�

where Ma��E /��a. The formulas for the variation of
the strain, Eqs. �39�–�41�, imply that

Ma��a = Ma��a� + M · �� � �44�

=�Ma��a�� − Ma���a − � · ��M �45�

=�Ma��a�� − M� · � . �46�

Likewise, if we introduce the force F�s� acting on the
cross section of the rod at s by F�= f, we have

f · �r = F� · �r �47�

=�F · �r�� − F · �r� �48�

=�F · �r�� − � · d̂3� F . �49�

Combining Eqs. �46�, �49�, and �42�, and demanding
�Etot=0 for arbitrary �inextensible� �r yields
F�L�=Fext�L�, F�0�=−Fext�0�, M�L�=Mext�L�, M�0�
=−Mext�0�, and

md̂3 = M� + d̂3� F . �50�

The boundary conditions on M lead us to identify M�s�
as the moment exerted through the cross section at s by
the part of the rod with arclength greater than s on the
part with arclength less than s. Note that when m=0, Eq.
�50� is the equilibrium moment balance equation for a
rod �Landau and Lifshitz, 1986�.

For the rod energy density �32�, the relation Ma

=�E /��a yields M=A��1d̂1+�2d̂2�+C�3d̂3, or

M = Ad̂3� d̂3� + C�3d̂3. �51�

The transverse part of Eq. �50� yields

F = − Ar� + C�3r�� r� + �r�. �52�

Our variational procedure does not determine the func-
tion �. The value of � is chosen to enforce the con-
straint r� ·r�=1, but from Eq. �52� we can see that it may
be interpreted as a tension 	see Deutsch �1988� or Gold-
stein and Langer �1995�, for example
. Note that −Ar�
has a tangential part.

To summarize this section, we have used the principle
of virtual work to derive the moment M and force F
acting through any given cross section of a rod with en-
ergy density �32�. The constitutive relation Ma=�E /��a
arises naturally from the variation. Likewise, the condi-
tions of force balance F�=0 and moment balance M�

+ d̂3�F=0 in equilibrium, when f=0 and m=0, are not
imposed but are implied by the principle of virtual work.
These statements can be generalized to arbitrary energy
densities along a curve �Starostin and van der Heijden,
2007, 2009�.

C. Compatibility relations for rods

The variational formula �38� leads to important rela-
tions between the angular velocity and strain. The local
angular velocity vector � is given by �=� /�t as �t→0,
where the variation is interpreted as the change of the

rod shape over a time interval �t. Thus �d̂a=�� d̂a im-
plies

�d̂a

�t
= �� d̂a. �53�

Likewise, since we may similarly define �� /�t=�� /�t as
�t→0, Eq. �38� implies

��

�t
= �� + ��� . �54�

These compatibility relations are also conveniently de-
rived using the rotation matrices that act on the director
frames �Wolgemuth et al., 2004�. A third way of deriving
the compatibility relations is to recognize that since s
and t are independent variables, the order of taking de-
rivatives does not matter, and thus we must have

�2d̂a /�t�s=�2d̂a /�s�t. We will see below that the third
component of Eq. �54�,
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��3

�t
=

��3

�s
+�1�2 −�2�1, �55�

is required to obtain the evolution equation for twist.
Once again, it is useful to note that �� contains deriva-
tives of �a and derivatives of the directors when compar-
ing Eqs. �55� and �54�; compare with the discussion after
Eqs. �39�–�41�.

We may use Eqs. �21� and �53� and the fact that de-
rivatives with respect to arclength and time commute to
recast Eq. �55� in terms of the shape of the filament r,

�t�3 = �s�3 + r�� r� · ��tr��. �56�

This relation may be viewed as a conservation law for
twist density �3, with �3 the twist current, and the sec-
ond term on the right-hand side acting as a source for
twist �Klapper and Tabor, 1994; Goldstein et al., 1998;
Kamien, 1998�. The first term may be understood by
observing that the only way the twist in a straight rod
can change is if the rate of rotation �3 is not uniform
along the rod. The second term reflects the fact that
motions of the backbone that do not involve a rotational
velocity �3 can also change the twist. Such motions re-
quire a change in the writhe, where the writhe of a
closed curve is computed by counting the number of
self-crossing of the curve in a planar projection, and
then averaging over all projections 	see Dennis and
Hannay �2005�, and references therein
. Although
writhe is defined for a closed curve, its variation has a
local form and can be considered for an open curve
�Klapper and Tabor, 1994; Goldstein et al., 1998; Ka-
mien, 1998�.

D. Viscous forces: Slender-body theory and resistive-force
theory

In this section we describe how to approximately cal-
culate the forces acting on a slender body immersed in a
viscous fluid, and give a slightly more quantitative dis-
cussion of viscous fluid dynamics than presented in Sec.
II.B; see Lauga and Powers �2009�, and references
therein for a more detailed treatment. The stress in an
incompressible viscous fluid is related to the strain rate
by �ij=−p�ij+���iuj+�jui�, where p is the pressure, � is
the viscosity, and u is the flow velocity �Landau and Lif-
shitz, 1987�. Note that we use the indices i , j , . . . for the
Cartesian coordinates. As argued in Sec. II.B, viscous
forces dominate at the small scales of polymer and cells.
Thus we are permitted to disregard inertia. In this limit,
the flow is governed by the Stokes equations

��2u − �p = 0 , �57�

� · u = 0. �58�

Note that the pressure p plays the same role as � did in
our discussion of inextensible polymers, Eq. �52�: the
value of p is determined to enforce the constraint of
incompressibility, � ·u=0. The boundary conditions for
the Stokes equations are that the velocity of the fluid at

a solid boundary must match the velocity of the bound-
ary.

Ideally, we want to calculate the viscous forces acting
on a moving and deforming filament. Since no time de-
rivatives appear in the Stokes equations �57� and �58�,
the flow u and thus the forces acting on the filament at a
given instant depend only on the geometry of the
filament—its velocity and shape at that instant. How-
ever, it is generally impossible to find analytical expres-
sions for the forces for anything but the simplest shapes.
The problem can be simplified by developing an ap-
proximation scheme that exploits the smallness of the
ratio of the rod diameter to its length; this approach is
known as slender-body theory �Lighthill, 1976�. Slender-
body theory relies on the linearity of the Stokes equa-
tions to construct solutions for the flow around a moving
or deforming filament by superposition of singular solu-
tions. These singular solutions are the flows induced by a
point force or a dipole source, and are analogous to the
solutions used in the method of images in electrostatics.
The end result is that slender-body theory provides a
method, typically numerical, for computing the hydrody-
namic forces distributed along a filament. Representa-
tive examples include work by Shelley and Ueda �2000�
and Cortez �2001�.

In the limit of an asymptotically thin filament, slender-
body theory simplifies to a local theory known as
resistive-force theory �Gray and Hancock, 1955; Chwang
and Wu, 1971; Lighthill, 1976�. Resistive-force theory is
local in the sense that it describes the hydrodynamic
force per unit length acting at a point on a filament in
terms of the velocity of the filament at that point, in
contrast with slender-body theory, which accounts for
the fact that the motion of every point along the fila-
ment induces a flow that affects the hydrodynamic
forces at any given point on the filament. Thus, it is
often stated that resistive-force theory does not properly
account for hydrodynamic interactions. Nevertheless,
since resistive-force theory is much simpler to imple-
ment that slender-body theory, and because it can give
accurate results, we use resistive-force theory to formu-
late the equations of motion of filaments.

In resistive-force theory, the fluid is treated as a pas-
sive background material that does not respond to the
motion of the slender object. The viscous force per unit
length acting on the rod is anisotropic, and given by

fv = − ��	v − �d̂3 · v�d̂3
 − ���d̂3 · v�d̂3, �59�

where v is the velocity of the rod relative to the local
velocity of the fluid. In the limit of small a /�, the friction
coefficients in Eq. �59� are defined by

�� � 4��/ln��/a� , �60�

�� � 2��/ln��/a� , �61�

where a is the filament diameter and � is a cutoff repre-
senting either the rod length or the characteristic radius
of curvature of the rod �Keller and Rubinow, 1976�.
Note that replacing � by 2� in Eqs. �60� and �61� merely
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leads to subdominant additive terms in the denominator.
Equation �59� becomes accurate when a becomes much
smaller than the rod’s length or typical radius of curva-
ture � �Keller and Rubinow, 1976�. Macroscopic scale
experiments show that resistive-force theory does sur-
prisingly well in describing the shape of driven elastic
filaments in highly viscous fluid �Koehler and Powers,
2000; Yu et al., 2006; Qian et al., 2008�. Numerical calcu-
lations show that resistive-force theory is inaccurate for
tightly coiled helices in flow, where hydrodynamic inter-
actions are expected to be more important �Kim and
Powers, 2005�. Even in a quiescent fluid, resistive-force
theory can give qualitatively wrong predictions for the
sense of rotation of a towed superhelix �Jung et al.,
2007�. Thus, resistive-force theory is usually justified in a
first approach to a new problem, but its predictions must
always be viewed with a critical eye.

In some situations, such as the rotation of a nearly
straight rod about its axis �Wolgemuth et al., 2000�, it is
necessary to include the viscous moment per unit length

for rotation about the local tangent vector d̂3. The ap-
propriate local approximation for this moment is the vis-
cous torque per unit length on a rotating cylinder,

mv = − �r�d̂3 · ��d̂3, �62�

where �r=4��a2 is the rotational drag coefficient �Lan-
dau and Lifshitz, 1987�. In other situations, such as the
rotation of helix, the contribution to the torque due to
the rigid-body motion of the centerline dominates the
contributions from Eq. �62�.

E. Equations of motion for curves

We are ready to combine all the parts we have intro-
duced and arrive at the coupled equations for the evo-
lution of a rod. Since we work in the highly overdamped
regime, all forces must sum to zero,

F� + fv = 0 . �63�

Suppose that there is no imposed flow in the fluid; thus
the velocity of the rod relative to the fluid is v=�tr. Us-
ing the elastic force on a cross section �52� and the vis-
cous force per unit length �59�, we find

����tr�� + ����tr�� = − Ar� + C��3r�� r��� + ��r���,

�64�

where ��tr��=�tr− 	d̂3 · ��tr�
d̂3 and ��tr�� = 	d̂3 · ��tr�
d̂3. To
determine �, write v in terms of the mobilities ��

–1 and
��

–1 and the internal force per unit length f=F�,

v =
f�

��

+
f�

��

, �65�

and use 0=�t�r� ·r��=2�t�r�� ·r�=2�s�v� ·r� to find

�sf · d̂3 + �1 −
��

��

�f · �sd̂3 = 0. �66�

Using Eq. �52� to calculate f=F� yields the desired dif-
ferential equation for �.

The elastic and viscous moments must also sum to
zero,

M� + d̂3� F + mv = 0 . �67�

The only nontrivial terms in Eq. �67� are the tangential
components, which simplify to

C�3� = �r�3. �68�

To find the evolution equation for twist, combine Eqs.
�68� and �56� to find

�r�t�3 = C�3� + �rr�� r� · ��tr��, �69�

where �tr must be deduced from Eq. �64�.
We close this section by recalling the characteristic

time scales for the motion of filaments in a viscous fluid
described in Sec. II.B. Examination of Eq. �64� for a
nearly straight filament with no twist reveals that bend-
ing modes have a characteristic relaxation time 
b
���L4 /A. Likewise, Eq. �69� applied to a straight but
twisted rod implies that twist deformations have a char-
acteristic relaxation time 
t=�rL

2 /C.

F. Illustrative example: Twirling and whirling of elastic
filaments

To illustrate the use of the equations of motion, we
consider a fundamental problem: the whirling instability
of a rotating elastic rod in a viscous fluid �Wolgemuth et
al., 2000; Lim and Peskin, 2004; Wada and Netz, 2006�.
A motor at s=0 rotates the rod about its long axis with
angular speed �0 �Fig. 7�. Initially, the rod is straight.
Viscous forces cause twist to build up. For sufficiently
high rotation speed, the straight state is unstable, and
the rod writhes. Study of this problem will provide us
with intuition that will help us understand more compli-
cated phenomena in rotating filaments, such as the
propagation of polymorphic instabilities in bacterial fla-
gella �Hotani, 1982; Coombs et al., 2002� or the chiral
dynamics of beating cilia in embryonic development
�Nonaka et al., 1998; Hilfinger and Jülicher, 2008�.

As mentioned, in this review we disregard the effects
of thermal fluctuations. We consider a rod with length
much smaller than the bend persistence length and twist
persistence length. We also suppose the length is much
smaller than the twist persistence length kBT /C, which is
defined by an argument similar to the one in Sec. II.A.

ω0

x

y

η

z

FIG. 7. An elastic filament immersed in a liquid with viscosity
�, and twirled about the z axis with angular speed �0. The
straight state is unstable above a critical angular speed.
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See Wada and Netz �2006� for a study of the whirling
instability for rods so long that thermal effects are im-
portant.

Since we assume the rod is thin, it is natural to use the
local drag formulas �59� and �62� to describe the viscous
forces and moments acting on the rod. Dropping the
subscript 3 to save space, the balance of torques about
the tangential direction �68� becomes C��=�r�. In the
base state, the rod is straight with r=zẑ, the tension �
vanishes, and the rod undergoes rigid-body rotation
about the z axis with speed �=�0, leading to a constant
gradient in twist. At the free end, s=L, the torque van-
ishes: C�=0. Thus,

� = �r�0�s − L�/C . �70�

To estimate when the distributed viscous drag causes the
rod to twist so much that the straight state becomes un-
stable, we may consider the related problem of a rod
twisted by external moments acting at either end, in the
absence of viscous forces. In this simpler problem, the
straight state of the rod becomes unstable when the twist
moment is roughly equal to the characteristic bending
moment of a rod of length L: C�crit�A /L �Landau and
Lifshitz, 1986�. Since C�A for ordinary materials �Lan-
dau and Lifshitz, 1986�, the rod writhes into a nonplanar
shape once it is twisted by about one turn. In our prob-
lem with distributed external moments, the speed at
which the typical twist torque balances the characteristic
bending torque is given by �r�critL�A /L, or

�crit � A/�rL
2. �71�

Since C�A, the critical rotation rate is the same order
of magnitude as the relaxation rate for twist.

To find the precise value of the critical speed, linearize
the equation of motion about the base state, Eq. �64�,

���tr� = − Ar�
� + Cẑ� ��r�� ��, �72�

where r�= �x ,y ,0� and the twist is given by Eq. �70�. To
leading order, the deflection of the rod is perpendicular
to the z axis. We therefore expect that the tension � is
second order in x and y, which may be confirmed by
expanding Eq. �66� in powers of x and y.

Perturbations to the twist are governed by the diffu-
sion equation with diffusion constant C /�r. Thus, pertur-
bations in shape and twist may be studied independently.
Since perturbations to twist are not destabilizing, we fo-
cus on Eq. �72�, which governs the shape of the filament.
As in the static twist instability, this equation is most
conveniently analyzed using complex notation �=x+ iy
�Landau and Lifshitz, 1986�. In these variables, Eq. �72�
becomes

���t� = − A�� + i�r�0	�s − L���
�. �73�

For boundary conditions, we assume the end at z=0 is
held fixed, ��0, t�=0, and clamped, ���0, t�=0. At the far
end the conditions are vanishing force, ���L , t�=0, and
vanishing bending moment ���L , t�=0. The solutions to
Eq. �73� are proportional to exp�i�t�. When the imagi-
nary part of � is negative, the base state is unstable; the

real part of � is the rate of rigid-body rotation of the
filament about the z axis. Equation �73� has nontrivial
solutions only for special values of �0; to determine the
value for which the straight state first becomes unstable,
we assume ��s , t�=exp�i�t�, where � is real, and use the
boundary conditions to determine the critical �0. This
procedure is best done numerically. Wolgemuth et al.
�2000� found

�crit � 8.9
A

�rL
2 , �74�

in agreement with our rough estimate Eq. �71�. The mo-
tion of the filament can be described in terms of two
different rotations. One is the rapid local rotation of
each element of the rod about the local tangent vector;
this rotation has rate �0. But the centerline of the fila-
ment undergoes rigid-body motion at a different, much
smaller rate �, which at �=�crit takes the value2

�� 22.9
A

��L4 . �75�

The rigid-body rotation rate � is of the same order of
magnitude as the relaxation time for bending. The ratio
of �crit to � is of order L2 /a2 since the ratio of the cor-
responding resistance coefficients �� /�r is of order 1/a2.

Numerical methods applied to the full equations of
motion are required to find the whirling state for �0
�crit. Wolgemuth et al. �2000� attempted a weakly non-
linear analysis by applying a numerical pseudospectral
analysis �Goldstein, Muraki, and Petrich, 1996� to the
equations of motion truncated at second order in dis-
placement, and found a small-amplitude steady-state
whirling state for � just above �crit. However, subse-
quent work using the immersed boundary method �Lim
and Peskin, 2004�, as well as simulations that include the
full coupling of thermal, elastic, and hydrodynamic
forces �Wada and Netz, 2006�, showed that there is no
small-amplitude whirling state, and that the weakly non-
linear analysis yields incorrect results. Wada and Netz
�2006� found the same value for the critical frequency
that we quote here; Wolgemuth �2009� also found this
value as well as the large-amplitude whirling state using
the pseudospectral methods employed in Wolgemuth et
al. �2000�. Lim and Peskin �2004� found a much lower
value for the critical frequency. The reasons for the dis-
crepancy remain unclear.

IV. MEMBRANES

In this section we follow the same format as our dis-
cussion of curve dynamics, but we consider fluid mem-
branes �Boal, 2002�. We begin with the geometry of a
fixed surface in space. This material is standard, but we
include it for completeness. Then we turn to the calcu-
lation of membrane forces per unit area as a function of

2Wolgemuth �2009� provided a more accurate value than the
one stated in Wolgemuth et al. �2000�.
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membrane shape. Since traditional approaches to this
calculation are somewhat tedious, we review a recent
idea of Guven that embodies economy of effort �Guven,
2004�. We then revisit the basic geometric concepts for a
moving surface, taking care to distinguish between time
dependence arising from flow or surface deformation
and time dependence arising from time-dependent coor-
dinates. Finally we conclude with the equations of mo-
tion for an incompressible fluid membrane and apply
them to the instability of a cylindrical membrane tube
under pressure.

A. Geometry of a stationary surface

The intrinsic geometry of a space curve is Euclidean: a
one-dimensional being confined to a space curve cannot
tell if the curve bends and twists in the ambient three-
dimensional space. This fact is why we can always
choose arclength coordinates for a curve. In contrast,
curved surfaces are non-Euclidean. Anyone who has at-
tempted to flatten an orange peel onto a tabletop knows
that it is impossible to construct a Cartesian coordinate
system on a sphere. Thus we are forced to use curvilin-
ear coordinates when a surface has curvature, and the
description of the geometry of surfaces is necessarily
more complicated than for curves. A key theme is that
geometrical �and physical� concepts do not depend on
the choice of coordinate system. Thus, we will gradually
be led to the basic ideas of tensor calculus, which will
allow us to construct geometrical quantities such as cur-
vature in terms of any curvilinear coordinate system.

An additional complication arises for fluid surfaces
that was not present for solid rods: even for a stationary
shape, there may be a complex flow pattern on the sur-
face. We return to this complication later; first we con-
sider stationary surfaces with no flow and review the
geometry necessary to calculate the force per unit area
due to internal stresses as a function of membrane
shape.

Denote the coordinates of a stationary surface as
��1 ,�2�. Greek letters � ,� , . . . refer to the two-
dimensional coordinates, such as ��, and latin letters
i , j , . . . continue to refer to Cartesian three-dimensional
coordinates. Thus the position of a point in space on the
surface is given by r��1 ,�2�. The distance between two
points on the surface is given by the Pythagorean theo-
rem

ds2 = dr2 =
�r
���

·
�r
���

d��d��. �76�

The right-hand side of Eq. �76� is known as the first
fundamental form. The quantity

g�� = ��r · ��r �77�

is known as the metric tensor, because it converts dis-
tances �d�1 ,d�2� measured in coordinate space to dis-
tance measured in real, three-dimensional space. Since
distances can be measured by a being on a two-

dimensional surface, the metric tensor is an intrinsic
quantity.

A surface has two independent tangent vectors at any
point, which may be taken to be t����r along the direc-
tion of increasing ��, for �=1,2. In general, the basis
�t1 , t2� is not an orthonormal basis. The tangent vectors
t� are not geometric objects, since they depend on the
choice of coordinates, but a tangent vector field W
=W�t� is a geometric object independent of the choice
of coordinates. The unit normal to the surface is given
by the cross product of the two coordinate tangent vec-
tors, suitably normalized,

n̂ =
t1� t2

�t1� t2�
. �78�

Note that there are two unit normal vectors at every
point, n̂ and −n̂. Unless there is an asymmetry such as
different fluids on either side of the membrane, there is
no reason to prefer n̂ over −n̂. The element of area on a
surface is given by the parallelogram formed by the in-
finitesimal vectors t1d�1 and t2d�2, which has area

dS = n̂ · �t1d�1� t2d�2� = �gd�1d�2, �79�

where g=g11g22−g12g21 is the determinant of the metric
tensor.

The curvature of a space curve is the tangential com-
ponent of the rate of change of the normal to the curve
	Eq. �22�
. Since a surface has two tangential directions,
curvature of a surface is described by a bilinear form
known as the second fundamental form,

dn̂ · dr = − K��d�
�d��, �80�

where

K�� = − ��n̂ · t�. �81�

Note that since n̂ · t�=0, we have

��n̂ · t� = − n̂ · ��t� = − n̂ · ��t� = ��n̂ · t�, �82�

and therefore conclude that the second fundamental
form is symmetric: K��=K��.

To make a stronger connection between our discus-
sion of curves and the second fundamental form, con-
sider a curve on a surface, parametrized by arclength,
x�s�=r„�1�s� ,�2�s�…, and define the normal curvature �n

by �n= n̂ ·�N̂= n̂ ·dT̂ /ds, or

�n = n̂ ·
d��

ds

�

���
�d��

ds
t�� �83�

=K��

d��

ds

d��

ds
. �84�

The normal curvature is the ratio of the second and first
fundamental forms �Struik, 1988�,

�n =
K��d�

�d��

g��d�
�d��

. �85�

Equation �85� implies that at a given point all curves
with the same direction d�2 /d�1 and parametrized by
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arclength have the same normal curvature.
It is useful to characterize the curvature of a surface

by the maximum and minimum values of the normal
curvature at a point. If v=v�t� is a unit vector, then the
extreme values of �n are given by the critical points of

f = v�K��v
� − ��v�g��v� − 1� , �86�

where � is a Lagrange multiplier. Demanding that
�f /�v�=0 yields

K��v
� − �g��v

� = 0. �87�

Note that multiplying Eq. �87� by v� and summing over
�, together with the definition of normal curvature �85�,
implies that �=�n. Since v��0, the condition for Eq.
�87� to have a solution is det�K��−�ng���=0. If we use
g�� to represent the inverse of the metric tensor,

g��g�� = ��
�, �88�

then what we have shown is that the maximum and
minimum values of the normal curvature are given by
the eigenvalues of the matrix

K�
� � g��K��. �89�

These extreme values are known as the principal curva-
tures of the surface. Note that since K�� and g�� are
symmetric, the principal directions v� corresponding to
the two principal curvatures are orthogonal. Also note
that Eq. �81� may be written in terms of K�

� to yield the
Weingarten equations,

��n̂ = − K�
�t̂�. �90�

As an aside, we emphasize the importance of whether or
not an index is raised or lowered. The convention is to
use the metric tensor to lower indices, and the inverse of
the metric tensor to raise indices. Quantities with upper
and lower indices transform oppositely from one an-
other under coordinate changes; for example, W� and t�
transform under coordinate changes in such as way that
the vector field W=W�t� remains invariant. These trans-
formation rules are reviewed in Appendix A.

Returning now to the discussion of curvature, we note
that it is common to describe the curvature of a surface
in terms of the mean curvature, H=K�

� /2, and the
Gaussian curvature, K=det K�

�. The mean curvature H
is the average of the sum of the two principal curvatures
of a surface. It is a measure of how a surface bends in
three-dimensional space; H is analogous to the curva-
ture � of a space curve. A plane has vanishing mean
curvature, a cylinder has mean curvature equal to half
the inverse of its radius, and a sphere has mean curva-
ture equal to the inverse of its radius. The Gauss curva-
ture K is the product of the two principal curvatures of a
surface. It is an intrinsic quantity; K can be determined
by two-dimensional beings making local measurements
of length on the surface. For example, by choosing ap-
propriate coordinates, one can show that the relation
between the circumference C and radius R of a small
circle on a surface involves K only �do Carmo, 1976�:

C�2�R�1−KR2 /6� �Fig. 1�. Below we use direct calcu-
lation to see that K is an intrinsic quantity. Note that a
plane and a cylinder both have vanishing Gauss curva-
ture, which is consistent with the fact that local measure-
ments confined to the surface cannot distinguish a plane
from a cylinder.

In our study of curves we found it useful to express
the derivative of directors in terms of the directors.
Likewise, it is useful to examine the derivative of the
coordinate tangent vector fields t� in terms of t� and n̂.
Since the coordinate tangent vectors on a surface need
not have unit length, the derivative of a tangent vector
has both tangential and normal components,

��t� = K��n̂ + ���
� t�, �91�

where the normal components have been identified us-
ing the Weingarten equations �90� and n̂ · t�=0, and the
as yet unknown quantities ���

� are called the Christoffel
symbols. Note that ���

� =���
� since ����r=����r and K��

=K��. The formula K��= n̂ ·����r also suggests another
interpretation of the second fundamental form. Choose
a point p on the surface and introduce Cartesian coordi-
nates �x ,y ,z� in three-dimensional space such that z is
parallel to n̂. Near p, we may choose coordinates
��1 ,�2���x ,y�. The height of the surface over the tan-
gent plane is given by the second fundamental form �Fig.
8�.

To see how the Christoffel symbols are related to the
shape, observe that

��g�� = ���t� · t�� = ���
� g�� + ���

� g��. �92�

By cyclically permuting �, �, and � in Eq. �92� and then
adding and subtracting appropriately, we can solve for
the Christoffel symbols to find

���
� = g������ =

g��

2
���g�� + ��g�� − ��g��� . �93�

Since the Christoffel symbols depend only on the metric
and its derivatives, they are intrinsic quantities.

Equations �91� are sometimes called the Gauss equa-
tions or the partial differential equations of surfaces

y

x

z

h

∆x

∆y

FIG. 8. �Color online� The height near the origin given by the
second fundamental form: h�K��������, where ��1=�x and
��2=�y.
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�Struik, 1988�. These equations are indispensable for for-
mulating the equations of motion for fluids on a deform-
ing surface. In particular, we need to take derivatives of
the velocity field, which has tangential and normal com-
ponents. However, we limit this section to a simplified
discussion in which we consider the derivative of a
purely tangential vector field, W=W�t�,

��W = ���W��t� + W����
� t� + W�K��n̂ . �94�

Once the direction t� of the derivative is chosen, the
tangential and normal components of ��W are uniquely
defined, independent of the choice of coordinates. These
quantities contain all the information about how W
changes along the direction t�. In contrast, the quantities
��W

� do not contain complete information about the
change in W. For example, we can imagine a vector field
on small region of a curved surface in which the compo-
nents W� are constants. Then ��W

�=0, but W is not
constant, since the surface is curved. Therefore, we are
led to define the covariant derivative of the vector field
W� as the tangential components of ��W,

���W�� = ��W
� + ���

� W�. �95�

The covariant derivative of a tangent vector field is an
intrinsic quantity since the Christoffel symbols are in-
trinsic.

The covariant derivative is readily generalized to
other quantities defined on a surface. For scalar func-
tions, ��f=��f. Since each Cartesian component of a
vector field may be considered a scalar function, we may
also write ��W=��W. The Leibnitz rule is used to define
the covariant derivative of higher-order tensors. For ex-
ample, we may write the dot product of two vector fields
U and W as U ·W=U�W

�, where U�=g��U
�. The Leib-

nitz rule then implies

���U�W
�� = ���U��W� + U����W��. �96�

Since U�W
� is a scalar function, ���U�W

��=���U�W
��

and solving Eq. �96� for ���W�� yields

���W�� = ��W� − ���
� W�. �97�

Since the Cartesian coordinates of a vector are scalar
functions, we may write

��t� = ��t� − ���
� t� = K��n̂ . �98�

At first sight this relation may seem confusing since we
defined the covariant derivative of W� by removing the
normal part from ��W, and here we have normal com-
ponents in the covariant derivative of t�. The key point
is that the two-dimensional indices determine the nature
of the covariant derivative. The rule �98� ensures that
the Leibnitz rule holds for the components and basis
vectors of a vector: ��W=��W= ���W��t�+W���t�.

The general rule is that the covariant derivative of a
tensor has a term with a Christoffel symbol added for
every upper index, and a term with a Christoffel symbol
subtracted for every lower index. For example,

��K�
� = ��K�

� + ���
� K�

� − ���
� K�

�. �99�

Since the metric tensor g�� is derived from the Euclid-
ean metric of the ambient three-dimensional space, the
covariant derivative of the metric tensor vanishes,

��g�� = ��g�� − ���
� g�� − ���

� g�� = 0. �100�

This fact may be deduced by writing Eq. �96� in terms of
U�, W�, and g��. The metric tensor and its inverse is free
to pass through the covariant derivative.

To formulate the generalization of the Stokes equa-
tions �57� and �58� for membrane flow on a curved sur-
face we need to consider multiple covariant derivatives
acting on the velocity field. Special care must be taken
since covariant derivatives do not commute when acting
on a vector field. The Gauss-Codazzi equations, which
we now derive, determine the relation between
������W� and ������W�. Since the tangent vector field
W is three scalar functions on the surface, covariant de-
rivatives commute when acting on W,

����� − �����W = 0. �101�

Resolving this formula into tangential and normal com-
ponents yields the Gauss-Codazzi equations,

����� − �����W� = �K�
�K�� − K�

�K���W�, �102�

��K�� = ��K��. �103�

The right-hand side of Eq. �102� can be simplified by
noting that K�

�K�
� −K�

�K�
� is asymmetric in �� ,�� and

�� ,��, and therefore proportional to the determinant of
K�
�. The only independent component is �=1, �=2, and

we may write

��1�2 − �2�1�W1 = KW2, �104�

��1�2 − �2�1�W2 = − KW1. �105�

The Gaussian curvature, originally defined in terms of
the extrinsic quantity K��= n̂ ·����r, is intrinsic. The fact
that K may be determined by a two-dimensional being
living on a surface is known as Gauss’s Theorema
Egregium �Morgan, 1998�.

We close this section with a discussion of the covariant
form of Green’s theorem for a two-dimensional surface.
This relation will be required when we derive the stress
tensor for a membrane. First note that Eq. �93� implies
that the covariant divergence of a two-dimensional vec-
tor field has a simple form

���V�� =
1
�g

����gV�� . �106�

This formula is useful when integrating by parts, since
the area element dS=�gd2� depends on ��,

� V���fdS = −� ���V��fdS +� ���V�f�dS . �107�

In Appendix B we show that the second term of Eq.
�107� can be written as an integral over the boundary of
the surface
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�
D

��B
�dS = �

�D
B�p�ds , �108�

where p̂=�r /�s� n̂ is the unit tangent vector perpen-
dicular to the boundary �D.

B. Energies and forces

In this section we find the force exerted on a patch of
a membrane by the rest of the membrane, or, equiva-
lently, the force the patch exerts on the surrounding me-
dium. We follow the geometric approach of Guven
�2004�; see also Capovilla and Guven �2002, 2004�. For
concreteness, we focus on fluid membranes; however,
the approach may also be applied to membranes with
internal degrees of freedom such as tilt order �Müller et
al., 2005�. The elastic energy for a fluid membrane takes
the form

E =� ��
2

�2H�2 + �̄K�dS , �109�

where � and �̄ are moduli with units of energy �Canham,
1970; Helfrich, 1973�. For a closed vesicle, the Gauss-
Bonnet theorem implies that the integral of the Gauss-
ian curvature K over the surface is a topological invari-
ant �Kamien, 2002�, and therefore does not change
under a variation of the shape. Henceforth we drop this
term.

To find the force fdS on a patch for an arbitrary shape,
we invoke the principle of virtual work as we did with
filaments. We suppose the shape is held in equilibrium
by an external force per area −f��1 ,�2� and examine the
condition �Etot=0, where

�Etot = �E +� f · �rdS . �110�

Finding the variation of E for surfaces is harder then it is
for curves. Since E=E�g�� ,K���dS, we must find �g��
and �K�� in terms of �r. This direct approach is straight-
forward but tedious �Zhong-can and Helfrich, 1989�.
Guven �2004� suggested introducing Lagrange multiplier
functions which allow the variations r, g��, and K�� to be
taken independently,

�W = �E +� f · �rdS + ��� F� · ���r − t��dS

+� 	��
� t� · n̂ + �n�n̂2 − 1�
dS

+� 	����K�� + t� · ��n̂�

− �T��/2��g�� − t� · t��
dS� . �111�

The energy density E is now regarded not as function of
r but instead as a function of g�� and K��. The condition
of equilibrium is that �W=0 for the variations �r, �t�,
�n̂, �K��, and �g��. Since the variables appear quadrati-

cally in the constraints, the variations are easy to com-
pute. For example, the variation with respect to r implies
that

��F
� = f . �112�

Thus the Lagrange multiplier function F� is the two-
dimensional stress tensor. To see why the stress is of
mixed character, it is useful to apply Green’s theorem
�108�,

�
D

��F
�dS = �

�D
F�p�ds . �113�

The force per unit length acting through a contour in the
surface is a three-dimensional vector, and the normal p̂
to the contour lies in the local tangent plane and is
therefore a two-dimensional vector.

It is convenient to define the functional derivative
�W /�h�, where h� is a generic mixed tensor, as

�W =� �W
�h�

· �h�dS . �114�

The condition �W /�t�=0 yields the stress in terms of
Lagrange multipliers,

F� = �T�� − ���K�
��t� + ��

� n̂ . �115�

Likewise, the condition �W /�n̂=0 along with Eq. �98�
gives ��

� and �n in terms of ���,

��
� = ���

��, �116�

2�n = K���
��. �117�

Finally, �W /�K��=0 implies

��� = − E��, �118�

where E��=�E /�K��.
We need a few identities to help us find the variation

of E with respect to the metric tensor. For example, to
find the variation of the determinant of the metric ten-
sor, we use the identity

exp�ln det g��� = exp�tr ln g��� , �119�

which yields

�g = gg���g��. �120�

Thus �dS=g���g��dS /2. Note also that Eq. �A5� implies

�g�� = − g���g��g
��. �121�

With these formulas we see that �W /�g��=0 implies

T�� = g��E + 2
�E

�g��
. �122�

The two-dimensional stress tensor may also be written
as
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T�� =
2
�g

�

�g��
��gE� . �123�

Note that the contributions from varying dS in the con-
straint terms vanish since the constraints are invoked
after taking the variation. To summarize, we have found
a general formula for the stress tensor of a membrane in
terms of E��=�E /�K��, the curvature tensor K��, and
the two-dimensional stress T�� �Guven, 2004�,

F� = �T�� + E��K�
��t� − ���E���n̂ . �124�

The variational approach with auxiliary variables can
also be used to find the moments per length acting
across any infinitesimal line segment in the membrane
�Capovilla and Guven, 2002; Müller et al., 2007�. The
following two examples help illustrate this formalism.

1. Soap film

The energy of a soap film is given by the interfacial
tension � times the area. Thus, the energy density E=�,
and E��=0. The stress depends only on the two-
dimensional tensor T��=�g�� and

Ffilm
� = �g��t�. �125�

Ffilm
� is in the tangent direction as expected. The force

per unit area acting on the film is ffilm=��Ffilm
� or

ffilm = 2�Hn̂ + �����g��t�. �126�

The tangential component of Eq. �126� corresponds to a
Marangoni stress and arises when surfactant concentra-
tion varies over the film. For soap film on a frame in
equilibrium, � is uniform and f=0 is the minimal surface
equation H=0. If the film forms a closed surface with
fixed enclosed volume, we introduce another Lagrange
multiplier as in Eq. �27� and find that the mean curva-
ture must be constant.

2. Fluid membrane

Consider the fluid membrane energy �109� with �̄=0.
The energy density is E= �� /2��g��K���2. To find T��, we
must differentiate E with respect to g�� while holding
K�� fixed. Note that Eq. �121� implies

�g��

�g��
= −

1
2

g��g�� −
1
2

g��g��, �127�

where we have used the symmetry g��=g��. A short cal-
culation reveals that the bending stress in a fluid mem-
brane is

Fbend
� = 2�	�g��H2 − HK���t� − ���H�n̂
 . �128�

The force per unit area acting on the membrane due to
internal bending stresses is given by the divergence of
the stress tensor Fbend

� ,

fbend = − 2���2H + 2H3 − 2HK�n̂ . �129�

We used Eq. �103� to show that the tangential compo-
nents of fbend vanish for constant �. There is no tangen-

tial component of the force per unit area because the
bending energy is invariant under changes in coordi-
nates, and a small change in coordinates corresponds to
a deformation of the surface along tangent directions at
every point,

r��� + ��� � r���� + ��t�. �130�

Equation �129� for fbend may be derived directly from f
=−�E /�r with considerably more effort �Zhong-can and
Helfrich, 1989�.

Although we argued that membranes in the tense re-
gime are approximately incompressible, it is instructive
to examine the stress and force per unit area arising
from the stretching energy, Es=EsdS, where Es
= �k /2��� /�0−1�2. First we work by analogy with a two-
dimensional liquid and identify the two-dimensional
pressure p2D by considering a situation with uniform
density � �Cai and Lubensky, 1995�. In that case, the
two-dimensional pressure is p2D=−�Es /�A, where A is
the area and the derivative is taken at fixed number �A.
Carrying out the differentiation leads to p2D=−�Es

−�Es��, where Es is regarded as a function of �.
To apply the principle of virtual work to find the stress

and elastic force, we must keep the identity of the par-
ticles fixed under the variation. This constraint arises be-
cause the principle of virtual work is derived by assum-
ing mechanical equilibrium of a fixed set of particles.
Therefore, the variation satisfies ���g��=0, which im-
plies ��=−�1/2�g���g��� and

�Es = −� 1
2

g���g��p2DdS . �131�

From Eqs. �111� and �131�, the corresponding two-
dimensional stress tensor is Ts

��=−p2Dg�� and we see
that the two-dimensional pressure acts like a negative
interfacial tension 	compare with Eq. �125�
. Thus, Fs

�

=−p2Dg��t� and fs=−2p2DHn̂− ���p2D�g��t�.
We can make a further simplification by observing

that the large modulus k implies that the density will be
close to its preferred value: �=�0+�1, where �1��0.
Working to first order in �1 leads to p2D=k�1 /�0. The
stress arising from stretching is therefore

Fs
� = − �k�1/�0�g��t� = + �g��t�, �132�

where �=−p2D. In general, the stress Fs
� cannot be dis-

regarded in a membrane, since the smallness of the
stretch �1 is offset by the largeness of the modulus k.
Note that in the absence of flow the tangential stresses
acting on the membrane vanish, and therefore p2D and
�1 are uniform. Often membrane shapes are studied un-
der the assumption of incompressibility, k→�, in which
case �=−p2D is treated as a constant Lagrange multi-
plier, and ��Fs

� is the associated force per area enforcing
the constraint. For dynamics, the Lagrange multiplier
may have spatial dependence if there are tangential
stresses.

The formulas for the stress tensors Fbend
� 	Eq. �128�


and Fs
� 	Eq. �132�
 give insight into the mechanics of
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membranes. Consider a tubule pulled out of a vesicle
with a point force �Fig. 9� �Evans and Yeung, 1994; Fy-
genson et al., 1997�. It is common to regard the spherical
part of the vesicle in the right-most frame of Fig. 9 as a
reservoir of lipid, and to suppose there is an interfacial
tension � that remains constant during the deformation.
Equivalently, we may regard the membrane as under
tension, with �=−p2D0 and constant. Since the spheri-
cal part of the vesicle is much bigger than the tubule, we
suppose that p2D is independent of tubule length once
the tubule is formed. Thus, E=�+ �� /2��2H�2. The cylin-
drical part of the vesicle is easy to analyze, since K=0
and H=−1/ �2R�, where R is the tubule radius. We may
disregard the pressure jump across the membrane since
the large radius of the spherical part of the vesicle en-
sures that the pressure jump is small. The total force on
an infinitesimal patch of the cylinder therefore vanishes,
f= ffilm+ fbend=0, or

− �/R + �/�2R3� = 0. �133�

In equilibrium, R=�� / �2��.
Closer inspection of the equilibrium configuration

may seem to reveal a paradox �Waugh and Hochmuth,
1987; Powers et al., 2002; Fournier, 2007�. With the usual
cylindrical coordinates ��1 ,�2�= �� ,z�, we expect that the
interfacial tension � will lead to a force per unit length
RF�=��̂ along the edge AB of Fig. 10, with a force per
unit length of equal magnitude along the other edge,
CD. But since there is no pressure jump across the sur-
face, there are no other forces to balance these forces.
To resolve this apparent paradox, examine the stress
F�=Ffilm

� +Fbend
� . In cylindrical coordinates, the first fun-

damental form is ds2=R2d�2+dz2, and the second fun-
damental form is K��d�

�d��=−Rd�2. Along a circular
contour of constant z, Fz=2�ẑ. Thus, the force required

to hold the tether in equilibrium is 4��ẑ; twice what it
would be for a cylinder with no bending stiffness. How-
ever, along a line of longitude, constant � F�= 	� /R
−� / �2R3�
�̂=0; the contributions to the stress from the
bending energy cancel the contributions from the inter-
facial energy, as they must since there is no pressure
difference.

C. Moving surfaces: Kinematics

1. Coordinates on deforming surfaces with flow

The description of a moving surface which may have
internal flows requires careful thought. Curves are much
simpler. We saw that we can always use arclength for the
spatial coordinate, and in the case of an inextensible fila-
ment, the arclength coordinate of a material point does
not change. There is no analog of arclength parametri-
zation for surfaces, and instead we must choose coordi-
nates that are most appropriate for the situation. There
are several common choices, including convective or
material coordinates, surface-fixed coordinates, and gen-
eral coordinates. Material and surface-fixed coordinates
are useful for formulating equations of motion �Aris,
1989�, while general coordinates are useful when one
must solve for the evolution of a shape. In this section
we describe important aspects of each class of coordi-
nates.

To define material or convective coordinates, param-
etrize the surface at time t=0 with coordinates u�

= �uI ,uII�. We will use roman numerals or upper-case
greek letters for material coordinates. Since we disre-
gard thermal effects such as Brownian motion of the
molecules making up the membrane, the motion of the
material points defines a smooth flow velocity. The co-
ordinates u� are labels that stay with the material par-
ticles as time evolves, with the trajectory of the material
point �uI ,uII� given by r�uI ,uII , t�. The velocity of a ma-
terial point is given by

V =� �r
�t
�

uI,uII
= V�t� + Vnn̂ . �134�

As mentioned, convected coordinates are useful for for-
mulating the equations of motion. For example, we will
see in Sec. IV.D that the Reynolds transport theorem for
conservation of particles is conveniently derived using
convective coordinates �Aris, 1989�. However, since the
motion of a surface is typically something to be solved
for, r�uI ,uII , t� is usually unknown at the outset of any
problem.

An alternate approach is to attempt to define a coor-
dinate system that is fixed to the surface, independent of
the flows of the molecules making up the surface. Such a
choice is easy enough for a surface that does not change
shape, but is impossible for a deforming surface. The
best we can do is to choose coordinates ��1 ,�2� such that
the velocity of a point with fixed coordinate—not neces-
sarily a material point—is purely normal to the surface,

10
m
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ro

n
s

FIG. 9. Equilibrium shapes of a vesicle subject deformed with
an optical tweezer. The magnitude of the force increases from
left to right. From Fygenson et al., 1997.
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FIG. 10. �Color online� A section of a tubule, showing the
forces per unit length Fz and RF�.
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�t� ·
�r
�t
�
�1,�2

= 0. �135�

Thus,

V =�dr
dt
�

uI,uII
= t�V

� + Vnn̂ , �136�

where V�=d�� /dt, ���t� is the trajectory of a particle
with constant u�, and Vnn̂=�r /�t. Note that �r /�t is
purely normal. Surface-fixed coordinates are conceptu-
ally useful when formulating equations of motion of
moving surfaces. For example, we will see below how
the condition �135� leads to alternate expression of the
continuity equation that commonly appears in the litera-
ture �Aris, 1989; Youhei, 1994; Dörries and Foltin, 1996;
Fujitani, 1997; Buzza, 2002�. But like material coordi-
nates, surface-fixed coordinates also require knowledge
of the shape evolution which is usually unknown until
the complete problem is solved.

Therefore, it is common to use general coordinates
when one is solving for the shape of a membrane as a
function of time. By general coordinates we mean coor-
dinates in the Eulerian point of view �Chaikin and
Lubensky, 1995�, which are not constrained by condi-
tions such as Eq. �135� or the Lagrangian label of con-
vected coordinates. For example, we use cylindrical co-
ordinates r�� ,z , t�=h�z , t�r̂+zẑ in our example of
axisymmetric surfaces. �Here r̂ is a unit vector in the
radial direction in cylindrical coordinates.� The velocity
in general coordinates is

V =�dr
dt
�

uI,uII
=

�r
�u�

du�

dt
+

�r
�t

, �137�

where �r /�t has both normal and tangential components.

2. Strain rate

To formulate the hydrodynamics of fluid membranes,
we need to measure the strain rate, defined as rate that
the distance between two nearby points on the surface
changes with time. If dr is the vector connecting the two
nearby points at a given time, then after a time interval
dt the two points are connected by dr�=dr+ �dV�dt. The
strain rate tensor S�� is then defined by

ds�2 = ds2 + 2dtd��d��S��, �138�

where ds�2=dr� ·dr� and ds2=dr ·dr. Writing ds�2 in
terms of dr and V leads to

S�� = 1
2 ���V · t� + ��V · t�� . �139�

Equation �139� holds for convective, surface-fixed, or
general coordinates. Note that S�� is unchanged by ro-
tation with constant, uniform rate �, V=��r, as re-
quired by the definition of strain �Dörries and Foltin,
1996�. Likewise, the strain is invariant under translations
r�r+a and Galilean boosts V�V+V0, where a and V0
are constant and uniform �Dörries and Foltin, 1996�.
Applying the Gauss-Weingarten equations �91� and �90�
to Eq. �139� yields an alternate form,

S�� = 1
2 ���V� + ��V� − 2K��Vn� . �140�

The first two terms on the right-hand side of Eq. �140�
are the covariant generalization of the strain rate of a
two-dimensional material. The third term represents the
strain that takes place, for example, when a sphere in-
flates uniformly—even though there are no velocity gra-
dients, there is strain whenever there is curvature and a
normal velocity Vn. Note that gradients in Vn do not
lead to strain at first order in dt.

3. Equation of continuity

It is useful to formulate the covariant version of the
conservation of particles, or, more generally, to formu-
late the covariant version of the Reynolds transport
theorem �Aris, 1989�. To this end, consider a patch of
material points S�t� on a fluid membrane, and a scalar
quantity �, which for concreteness can be taken as the
number per unit area. We want to calculate the rate of
change of the total number of particles in the patch S�t�,
assuming that the particles never leave the membrane to
enter the solvent. To eliminate the time dependence of
the patch region, use convected coordinates,

0 =
d

dt
�

S�t�
�dS =

d

dt
�

S0

�„���u�,t�,t…�GduIduII,

�141�

where S0=S�t=0� and G is the determinant of the metric
in the material coordinates �uI ,uII�. The total time de-
rivative of � is given by the chain rule,

d�

dt
= �t� + V���� , �142�

where V� is the tangential component of the velocity
V=V�t�+Vnn̂. To evaluate the time derivative of
�G, note that Eq. �120� implies d�G /dt
=�G�G��dG�� /dt� /2 and dG�� /dt=��V · t�+ t� ·��V.
Reverting to general coordinates, we have

G��dG��

dt
= g�����V · t� + ��V · t�� . �143�

We may now use the Gauss-Weingarten equations �91�
and �90� to deduce

d

dt
�

S�t�
�dS = �

S�t�
�d�

dt
+ ���V

� − 2�HVn�dS �144�

or

d�

dt
+ ���V

� − 2�HVn = 0. �145�

The continuity equation �145� is sometimes expressed in
terms of derivatives of the metric tensor using surface-
fixed coordinates �Aris, 1989; Youhei, 1994; Dörries and
Foltin, 1996; Fujitani, 1997; Buzza, 2002�, in which the
condition �135� can be used to show
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1
�g

�

�t
��g�� + ����V�� = 0. �146�

However, since Eq. �146� only holds for surface-fixed co-
ordinates, and not, for example, in cylindrical coordi-
nates we use to solve our illustrative problem in Sec.
IV.E, we will use Eq. �145� in this review.

For an incompressible membrane, � is constant, and
the continuity equation simplifies to

��V
� = 2HVn. �147�

In terms of the strain rate, incompressibility implies S��
=0.

D. Dynamical equations for an incompressible membrane

There are several complementary approaches to the
dynamics of membranes from the points of view of fluid
mechanics and interfaces �Scriven, 1960; Waxman, 1984;
Kralchevsky et al., 1994; Arroyo and DeSimone, 2009�,
statistical mechanics �Cai and Lubensky, 1994, 1995;
Miao et al., 2002�, and the director approach analogous
to our treatment of rods �Hu et al., 2007�. Instead of
presenting the most general models, we discuss the
simple case of an incompressible fluid membrane. We
disregard the bilayer nature of the membrane and there-
fore do not consider effects such as bilayer friction
�Seifert and Langer, 1993; Yeung and Evans, 1995�.

The form of the two-dimensional viscous stress tensor
is similarly derived as the stress for three-dimensional
fluid mechanics in flat space �Aris, 1989�. Disregarding
the possibility of viscoelastic effects �Rey, 2006�, the
stress must be a symmetric tensor linear in the velocity
gradients,

Tvis
�� = Ag�� + B����S��, �148�

with A linearly proportional to S�� and B independent of
S. Since S��=0 for an incompressible membrane, only
B���� enters Tvis

��. The symmetries of the stress and rate
of strain tensors imply that B���� is symmetric under
exchange of � and �, and also � and �. In principle, we
could build B���� out of combinations of both of the
tensors K�� and g��. However, we work to leading order
in an expansion in curvature, in which case

B���� = ��g��g�� + g��g��� + �g��g��. �149�

The constant � is the dilational viscosity, which does not
enter the stress for an incompressible membrane since
S��=0. Thus, Tvis

��=2�S��, and the total membrane vis-
cous stress is

Fvis
� = ����V� + ��V� − 2K��Vn�t�. �150�

The force per unit area acting on the membrane due to
the internal viscous stress is fvis=��Fvis

� or

fvis = �	�2V� + KV� − 2Vn��H

+ 2�Hg�� − K�����Vn
t�
+ 2�	K���

�V� − Vn�4H2 − 2K�
n̂ , �151�

where the Gauss-Codazzi equations �104� have been
used to simplify the final form. Various limits and forms
of fvis have appeared in the literature �Scriven, 1960;
Waxman, 1984; Aris, 1989; Youhei, 1994; Dörries and
Foltin, 1996; Fujitani, 1997; Arroyo and DeSimone,
2009�. Note that Eq. �151� leads to a qualitative change
in the equations for fluid flow even in the simplest case
of flow on a fixed sphere, for which fvis=���2V�

+KV��t�, where K is a constant �Henle et al., 2008�.
It is natural to ask if there are any other terms of the

same order in gradients of velocity that should be in-
cluded in the surface viscous stress. For example, the
term Fn

�=�2n̂��Vn with “transverse” viscosity �2 has of-
ten been used in the theory of capillary waves on
surfactant-laden interfaces �Goodrich, 1961�. However,
this term has been shown to be unphysical by Buzza
�2002�. Buzza’s argument is that Fn

� does not obey frame
invariance. Frame invariance is a fundamental assump-
tion of continuum mechanics that states that the relation
between stress and strain for a small element of material
cannot depend on the motion of the element �Oldroyd,
1950; Larson, 1988�, since at the scale of the microstruc-
ture inertial effects are small for typical shear rates. In
particular, the relation between stress and strain for a
small element must remain the same if the element is
subject to a time-dependent rotation. Removing the spu-
rious term Fn

� eliminates unphysical results such as nega-
tive measured dilatational viscosities that have plagued
the interpretation of quasielastic light scattering experi-
ments for many years �Buzza, 2002; Cicuta and Hopkin-
son, 2004�.

To see why Fn
� is unphysical, one can show that in a

rotating frame the force per unit volume depends on the
rate of rotation for a rigid-body rotation �Buzza, 2002�.
Perhaps a more direct argument that something is amiss
with Fn

� is that it predicts a positive dissipation rate for
rigid-body rotation of a flat membrane �Buzza, 2002�. If
we include the �1 term, then the dissipation rate

Ẇ =� ��V · Fvis
� dS , �152�

has a term in the integrand proportional to
�2���Vn����Vn�, which is nonzero for a rotation about
an axis lying in the plane of the membrane. Thus we
conclude that �1=0.

The membrane is also subject to tractions from the
viscous solvent. The stress tensor for a viscous fluid is

�ij = − p�ij + ���iuj + �jui� . �153�

For membranes and interfaces, there is no systematic
expansion that leads to simple approximations analo-
gous to slender-body theory, although an approximation
similar to resistive-force theory is sometimes used for
illustrative purposes �Cai and Lubensky, 1995�. Balanc-
ing all the forces on a patch of membranes, we find

n̂i��ij
+ − �ij

−� + ���Ftot
� �j = 0, �154�

where �ij
± is the three-dimensional viscous stress evalu-

ated at the membrane surface with n̂ the outward-
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pointing normal, and Ftot
� is the elastic and viscous

stresses of Eqs. �128�, �132�, and �150�.
We close this section by writing out the equations of

motion for a membrane which is almost flat. We work to
lowest order in deflection, and study the evolution of a
ripple with wavelength 2� /q. The membrane shape is
given by r�x ,y , t�= „x ,y ,z�x ,y , t�…, where z�x ,y , t�
=h�t�exp�iqx�, and complex notation is used since we
work to linear order in h. The large value of the mem-
brane bulk modulus implies that tangential flow in the
membrane is small, which is why there is no motion in
the x-y plane in the expression for r�x ,y , t�. The equa-
tions of motion for the membrane simplify greatly since
the membrane flow vanishes, V=0, and many of the geo-
metrical quantities such as K are second order in h. The
mean curvature is H��2z /2, where to leading order
�2��2 /�x2+�2 /�y2. The normal component of force bal-
ance on the membrane is thus

��zz
+ − �zz

− �z=0 − ��4z = 0. �155�

To find the stresses �z
±, solve the Stokes equations �57�

and �58� subject to the no-slip boundary conditions ux

=0 and uz= ḣ exp�iqx� at z=0,

ux
± = − iqzḣeiqx qz, �156�

uz
± = ḣ�1 ± qz�eiqx qz, �157�

p± = ± 2�qḣeiqx qz. �158�

Thus, 	�zz
+ −�zz

− 
z=0=−4�qḣ exp�iqx�, which together
with Eq. �155� implies

ḣ = −
�q3

4�
h . �159�

The ripple relaxes with the bending relaxation time �18�
�Brochard and Lennon, 1975�. Note that even if q�SD
!1, the membrane viscosity does not enter since there
are no tangential flows due to the high bulk modulus.
However, curvature can lead to tangential flows for in-
compressible membranes, as we show in the next sec-
tion.

E. Illustrative example: Buckling and pearling instabilities of
tubular polymersomes

In this section we discuss two instabilities of a tubular
vesicle: pearling and buckling. Pearling arises when the
membrane is subject to tension, and buckling arises
when the membrane is under compression. Both insta-
bilities consist of a cylinder deforming into a series of
bulges, but the physical mechanisms are different. Pearl-
ing can be induced by applying a laser tweezer to a tu-
bular liposome �Bar-Ziv and Moses, 1994; Bar-Ziv et al.,
1998�. The laser tweezer induces a tension, and if the
tension is sufficiently high, the cylinder can lower its en-
ergy by deforming into series of bulges. This instability
is similar to the Rayleigh-Plateau instability of cylindri-

cal interfaces �Rayleigh, 1892; Tomotika, 1935�, and it
has been extensively studied in liposomes �Granek and
Olami, 1995; Nelson et al., 1995; Goldstein, Nelson, et
al., 1996�. Buckling of a membrane is analogous to the
buckling of a rod under tension �Landau and Lifshitz,
1986�. Buckling of a spherical membrane is well studied
�Deuling and Helfrich, 1976a, 1976b; Jenkins, 1977;
Zhong-can and Helfrich, 1987; Peterson, 1988, 1989�, but
the buckling of a cylindrical membrane has received less
attention.

Consider a cylindrical polymersome of radius a. If a is
of the order of microns, then �SD/a!1, and surface
membrane viscosity cannot be disregarded. We study the
instability of the cylinder as a function of the pressure p
inside the vesicle, with the pressure outside taken to be
zero. Increasing the pressure increases the tension in the
membrane and leads to pearling; decreasing the pres-
sure compresses the membrane and leads to buckling.
Suppose that in the initial state that there are just
enough molecules to enclose a cylindrical volume of ra-
dius a without stretching the membrane. Thus, �=�0,
�=−p2D=0, and there is no stretching stress in the mem-
brane, Fs

�=0 	Eq. �132�
. However, because the mem-
brane is curved, there is a nonzero bending stress Fbend

�

and a corresponding bending force per unit area 	Eq.
�129�
, which must balance the internal pressure: pn̂
+ fbend=0. Since H=−1/ �2a�, normal force balance in the
initial equilibrium state yields p=p0=−� / �2a3�.

Now imagine changing the pressure to a value p�p0.
The cylinder stretches or compresses, depending on
whether p0 or p"0. Since the stretch modulus k is
high, ka2 /�!1, there is little stretch: �1 /�0= ��
−�0� /�0�1. However, the tension � is not small 	cf. dis-
cussion after Eq. �132�
, and

�/a = p + �/�2a3� . �160�

Our task is to determine if sufficiently large �positive or
negative� tension in the membrane destabilizes the cy-
lindrical shape.

To proceed, parametrize the vesicle in cylindrical co-
ordinates, r�� ,z , t�= �̂	a+h�z , t�
+ ẑ	z+w�z , t�
. Note
that the deformed shape is assumed axisymmetric. To
first order in the displacements h and w, the mean cur-
vature is H��−1/a+h /a2+h�� /2, and the Gaussian cur-
vature is K�−h� /a. The evolution of the shape of the
membrane is governed by normal force balance,

n̂ · �fvis + fbend + fs� + ��nn
+ − �nn

− �	=a = 0, �161�

where ��nn
± �	=a= n̂i�ij

±�	=a ,z , t�n̂j is the normal-normal
component of the stress tensor for the solvent outside
�#� and inside �$� the vesicle evaluated at the mem-
brane, to leading order in h.

We suppose the deformation is sinusoidal, h�z , t�
%exp	i�qz�
. Again, since ka2 /�!1, the change in den-
sity is small and we may use the condition of continuity
for an incompressible membrane, Eq. �147�, to relate the
shape to the flow Vz= ẇ in the membrane. To linear or-
der,
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iqVz = − ḣ/a . �162�

The unperturbed solvent pressure and internal forces
per unit area acting on the membrane are thus

p + n̂ · �fvis + fbend + fs� � − 2�ḣ/a2 − E�q�h , �163�

where E�q�=��q4a2+ p̄q2a2+1− p̄� /a4, and we have intro-
duced the dimensionless pressure p̄=pa3 /�.

The solvent forces acting on the membrane due to the
deformation are determined by solving Stokes equations
�57� and �58� for the flow u± inside and outside the tube,
and then calculating the stress �nn

± . Note that the im-
posed pressure p enters the stress tensor through the
dynamic pressure P: �ij

±=−P±�ij+���iuj
±+�jui

±�, where

P−=p when ḣ=0, and P+=0 when ḣ=0. Since the Stokes
equations are linear, the stress at the membrane has the

form ��nn
+ −�nn

− �	=a=−��−1ḣ+p, where the “dynamical
factor” � depends only on the wave number q and ra-
dius a. The Stokes equations in an axisymmetric geom-
etry are readily solved using the stream function �±,
where u±=�� ��±ẑ� �Happel and Brenner, 1965�. Here
we only quote the result and refer the interested reader
to Goldstein, Nelson, et al. �1996� for the details. With
the no-slip boundary conditions at the membrane,

u	
±�a�= ḣ and uz

±�a�=Vz, the dynamical factor is

� = −
a

2

	qa�I0
2 − I1

2� − 2I0I1
	qa�K0
2 − K1

2� + 2K0K1

I1K1 + I0K0 + qa�I1K0 − I0K1�

,

�164�

where In and Kn are modified Bessel functions of order
n evaluated at qa. Note that this expression corrects an
error in Eq. �D.9� of Goldstein, Nelson, et al. �1996�,
which gave a dynamical factor which is too small.

Balancing internal membrane forces and the solvent

force leads to ḣ=�h, where

� = −
�

�a2

q4a4 + p̄q2a2 + 1 − p̄

2 + �a/��a/�SD
. �165�

The sign of � is determined by the sign of E�q�=��q4a4

+ p̄q2a2+1− p̄� /a4. When p� /a3, E can be negative, and
the cylinder is unstable. By Eq. �160�, this pressure cor-
responds to a tension �=3� / �2a2�, the critical tension for
the pearling instability �Goldstein, Nelson, et al., 1996�.
Figure 11 shows the growth rate � for the pearling insta-
bility for various pressures and �SD/a=1000. Also shown
for comparison is the growth rate for p=3� /a3 and
�SD/a=�. Note how �, which arises from the dynamics
of the incompressible solvent, forces the growth rate to
vanish at q=0, even when �SD/a!1.

When p"−2�1+�2�� /a3�−4.828� /a3, the cylinder is
also unstable. Since negative pressure corresponds to
compressive stress, this instability is analogous to the
Euler buckling instability of a rod. Figure 12 shows the
growth rate for the buckling instability. Note the con-
trast with the pearling instability. In the buckling insta-
bility, when the pressure is just sufficient to induce the

instability, only a narrow band of wave number centered
about a nonzero wave number 	�q�a�2= �1+�2�
 has posi-
tive growth rate. In the pearling instability, the band ex-
tends from q=0 to a finite value, and therefore there is
no limit to the wavelength of the unstable modes.

V. OUTLOOK

The aim of this review has been to give a practical
overview of the geometrical tools necessary to formulate
the equations of motion of polymers and membranes.
Equilibrium and dynamic properties of thin filaments
and membranes are best described using geometrical
ideas such as curvature. We have also seen how naturally
these geometric ideas fit with the variational point of
view. In the case of filaments, the variation of the energy
led directly to the constitutive relation between mo-
ments and the rate of rotation of the directors, or strain.
In the case of membranes, variation using auxiliary vari-
ables provided a quick route to the elastic forces per
area, with the added bonus of the explicit form of the
stress tensor of the membrane. Geometric ideas are also
crucial for understanding viscous flow on a deforming
curved surface. This study of polymers and membranes
remains an active area of research, and the purely me-
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FIG. 11. Dimensionless growth rate ��a2 /� vs dimensionless
wave number qa for the pearling instability of a tubular poly-
mersome, in which membrane surface viscosity dominates the
dissipation. The solid lines have �SD/a=1000 and the dashed
line has �SD/a=�.
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chanical problems considered here provide a solid foun-
dation for probing the dynamics of fluctuating polymers
and membranes.
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APPENDIX A: COORDINATE TRANSFORMATIONS

In this appendix we describe how the components of
tensors transform under a change of coordinates. In gen-
eral, a tensor is a quantity that transforms linearly under
a change of coordinates. We begin with the metric tensor
as a concrete example.

Consider two systems of coordinates related by �̄�

= �̄���1 ,�2�. From the chain rule, the metric tensor ḡ�� in
the new coordinate system is related to metric in the old
coordinates by a linear transformation law,

ḡ�� =
�r

��̄�
·

�r

��̄�
=

���

��̄�

���

��̄�
g��. �A1�

The differentials have the opposite transformation law,

d�̄� =
��̄�

���
d��, �A2�

which ensures that

g��d�
�d�� = ḡ��d�̄

�d�̄�. �A3�

Quantities that transform linearly under a change of co-
ordinates are tensors. The tensor transformation law for
g�� reflects the fact that the distance ds2 is a geometric
quantity, independent of the choice we make for coordi-
nates.

It is traditional to use upper or lower indices to indi-
cate what kind of transformation law a tensor has. Thus,
a tensor T�1�2¯

�1�2¯ transforms homogeneously under a
change of coordinates as

T̄�1�2¯
�1�2¯ =

��̄�1

���1

��̄�2

���2
¯

���1

��̄�1

���2

�̄�̄�2
¯ T�1�2¯

�1�2¯. �A4�

Tensors with upper indices are “contravariant,” and ten-
sors with lower indices are “covariant.”

As mentioned in Sec. IV, we use raised indices to de-
note the inverse of the metric tensor

g��g�� = ��
�. �A5�

Viewing Eq. �A1� as a matrix equation and inverting
yields

ḡ�� =
��̄�

���
��̄�

���
g��; �A6�

that is, g�� transforms as a contravariant tensor. Using
the metric tensor, we can create a covariant tensor from
a contravariant one, and vice versa. For example, W�

=g��W
� and W�=g��W�. Geometrically, we can think of

W� as the components of the vector field W=W�t� with
respect to a dual basis t� defined by

t� · t� = ��
�. �A7�

In other words, W=W�t�=W�t�. The dual basis vectors
t� are like reciprocal lattice vectors, and also obey the
rule about raising and lowering indices,

t� = g��t�. �A8�

Recall that the covariant derivative was defined in Sec.
IV to be a geometric object, independent of coordinates
once the direction t� is chosen. The quantity ���V��

= t� ·��V is a tensor since ��V and t̂� are both tensors.
Note, however, that the Christoffel symbol ���

� is not a
tensor.

The importance of these linear transformation laws is
that they allow us to easily construct coordinate-
invariant expressions. A quantity is coordinate invariant
when there is an equal number of upper and lower indi-
ces that are summed over. For example, the mean cur-
vature H=K�

� and the divergence ��V
� are both invari-

ant under coordinate changes. Likewise, the Gaussian
curvature det K�

� is invariant under coordinate changes,
since the upper and lower indices have associated with
them transformation matrices that are inverses. On the
other hand, g=det g�� is not coordinate invariant since it
has two lower indices and no upper indices, and there-
fore gets two factors of the Jacobian matrix

����1 ,�2� /���̄1 , �̄2�� under a coordinate change. These fac-
tors are precisely what is needed to make dS=�gd�1d�2

invariant under coordinate change.

APPENDIX B: GREEN’S THEOREM

Consider Stokes theorem for a tangent vector field
A=A�t� on a region D of a surface,

�
D

n̂ · ��AdS = �
�D

A · ds , �B1�

where ds is the infinitesimal tangent vector along bound-
ary and � denotes the three-dimensional gradient in
Cartesian coordinates. Note that � is the covariant de-
rivative for Euclidean space in standard coordinates.
Recall that the normal component of the curl has deriva-
tives along the tangent direction only,
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n̂ · ��A = �n̂� �� · A = � t1� t2

�g
� �� · A

=
1
�g

	t2�t1 · �� − t1�t2 · ��
 · A�t�

=
1
�g

��1A2 − �2A1� =
1
�g

��1A2 − �2A1� .

�B2�

Since A ·ds=A�d�
�, we have shown that

� �����A�dS =� A�d�
�, �B3�

where we have introduced the two-dimensional antisym-
metric tensor with components �12=−�21=1/�g and �11

=�22=0. Defining ���=g��g���
�� �note that �12=�g� and

A�=���B�, we also have

� ��B
�dS =� ���B�d��. �B4�

A short calculation shows that ���B�d��=B · p̂ds, where
B=B�t�; p̂ is the outward-pointing unit vector normal
to the curve �D defining the region of integration and
lying in the tangent plane, p̂= t�d��� n̂ /�g��d�

�d��

=�r /�s� n̂; and ds=�g��d�
�d�� is measure of arclength

along the curve. Therefore we may write

�
D

��B
�dS = �

�D
B�p�ds , �B5�

where p�ds=���d��.
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