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Abstract. Some types of bacteria use rotating helical flagella to swim. The motion of such organisms takes
place in the regime of low Reynolds numbers where viscous effects dominate and where the dynamics is
governed by hydrodynamic interactions. Typically, rotating flagella form bundles, which means that their
rotation is synchronized. The aim of this study is to investigate whether hydrodynamic interactions can
be at the origin of such a bundling and synchronization. We consider two stiff helices that are modelled
by rigidly connected beads, neglecting any elastic deformations. They are driven by constant and equal
torques, and they are fixed in space by anchoring their terminal beads in harmonic traps. We observe that,
for finite trap strength, hydrodynamic interactions do indeed synchronize the helix rotations. The speed
of phase synchronization decreases with increasing trap stiffness. In the limit of infinite trap stiffness, the
speed is zero and the helices do not synchronize.

PACS. 05.45.Xt Synchronization; coupled oscillations — 47.15.Gf Low-Reynolds-number (creeping) flows

— 87.16.Qp Pseudopods, lamellipods, cilia, and flagella — 87.19.5t Movement and locomotion

1 Introduction

Many types of bacteria, such as certain strains of Fs-
cherichia coli or Salmonella typhimurium, swim by rotat-
ing flagellar filaments, which are several micrometers long
and about 20 nm in diameter (the size of the cell body
is about 1 pm) [1-5]. The complete flagellum consists of
three parts: the basal body which is a reversible rotary
motor embedded in the cell wall, the helical filament that
acts as propellor, and in-between a short flexible coupling
called the proximal hook [2-5]. The motor is powered by
protons moving down an electrochemical gradient [2,4,5],
which generates a constant torque independent of the dy-
namic load [4,6]. The rotation rates for the flagella of
freely moving bacteria are of the order of 100 Hz [3-5].
The filaments are polymers with high flexural and tor-
sional stiffness [2,4,5]. However, they are flexible enough
to switch between different helical forms with distinct cur-
vature and twist [3-5].

Typically, the filaments rotate in synchrony, i.e., the
helices are locked in phase so that they can form bundles.
As a result, the cell is propelled at swimming speeds of
about 30 pm/s [1,3,5]. The process of bundling of nearby
rotating “filaments” was studied in detail in macroscopic-
scale experiments [7-9]. The cell tumbles and changes its
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direction of swimming randomly when one or more of the
flagellar motors reverses its direction which forces the flag-
ellar filaments to leave the bundle. In addition, a sequence
of changes in the filament’s handedness and pitch occurs
[3-5,10]. Hence, the overall movement of a bacterium is
the result of altering intervals of tumbling and straight
swimming. Chemotaxis steers the bacterium by just reg-
ulating the tumbling frequency so that the net motion
heads for a more favorable food environment [4,5].

For an object with a characteristic linear dimension
a moving with velocity v through a Newtonian fluid, the
ratio of inertial to viscous forces is given by the Reynolds
number Re = avp/n, where p is the fluid density and 7
the viscosity [11,12]. Therefore, at low Reynolds numbers
(Re < 1), inertia does not play an important role, and the
thrust pushing the object forward results solely from vis-
cous drag. Swimming microorganisms in water are moving
at very low Reynolds numbers [11]. E. coli bacteria, e.g.,
have a cell body of size a ~ 1 um and move with veloci-
ties of the order of v ~ 10 um/s, which yields Re ~ 107°.
Thus, the locomotion of microorganisms is fundamentally
different from propulsion mechanisms in the macroscopic
world (for comparison, a dolphin moves at Re ~ 107).

At low Reynolds numbers, the relative motion of two
objects is governed by long-range hydrodynamic interac-
tions which, to leading order, fall off with their inverse dis-
tance [12]. They are also important in biological systems.
Having in mind the propulsion mechanism of spermatozoa,
Taylor modeled the hydrodynamics of two neighboring
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undulating tails, and found that hydrodynamic interac-
tions synchronize the phases of lateral waves traveling
down the tails [13]. Furthermore, the coordinated motion
or stroke of beating cilia (known as metachronism) is be-
lieved to be mediated by hydrodynamic coupling [14-16].
In both cases, it is observed that the overall friction in the
system is reduced by synchronization [13,16]. In analogy
to these examples, it was suggested that hydrodynamic
interactions may also play an important role in how flag-
ellar filaments synchronize their rotational motion so that
they can form bundles [1].

In a recent paper, Kim and Powers studied hydrody-
namic interactions between two rotating helices within the
framework of slender-body theory [17]. The helices were
considered as rigid and prevented from translation by ex-
ternal forces, so that their axes were always parallel. The
key result of this work was that there is no phase synchro-
nization in this setup, when the two helices are driven with
the same torque.

In this paper, we consider a model which also consists
of two stiff helices, thus neglecting any effects of elas-
tic deformations. The helices are modeled by single beads
that are rigidly connected to each other and are driven by
constant and equal torques. In contrast to reference [17],
we “fix” the helices in space by anchoring their terminal
beads in harmonic traps. This allows for slight shifts and
tilts of the helices and thus implies some kind of flexibil-
ity, which is the major difference to reference [17]. In the
following, we show that the phases of the rotating helices
do indeed synchronize in this setup, and that the state of
zero phase difference possesses lowest friction.

The model is introduced in detail in Section 2. Then,
symmetry properties of the dynamic quantities are derived
in Section 3. The numerical simulations of the helix dy-
namics are presented in detail in Section 4, where we ana-
lyze the data for phase synchronization, in particular with
respect to the anchoring strength of the terminal beads.
Finally, we conclude in Section 5 discussing the role of the
harmonic traps and the flexibility which they create.

2 Model

We consider two identical helices built of equal-sized beads
(Fig. 1(a)) that are connected with each other by (virtual)
rigid bonds. Thus, the helices cannot deform elastically.
The centers of the beads are aligned along the backbone of
the helix, with equal distances between successive beads.

To describe the dynamics of the helices, we introduce
body-fixed coordinate axes, given by the orthonormal vec-
tors oy, B;, and a; x B; (i = 1,2). The axis of a helix is
represented by «;, and the orientation of the perpendic-
ular vector B, shall describe the phase of the helix, i.e.,
the rotation about its own axis (Fig. 1(b)). We define the
phase angles ¢; by the projection of 3, into the zy-plane
(Fig. 2). The angle between «; and the z-axis is the tilt
angle 6;.
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Fig. 1. Visualization of the helix geometry used in the sim-
ulations (here with a phase difference of w/2). (a) All beads
of one helix are connected ridigly with each other. (b) For the
sake of clarity, the beads are “smeared” out along the helix.
The top and bottom beads are anchored in harmonic traps.
The illustrated helices are in their equilibrium positions (i.e.,
in the absence of driving torques).

“Z

Fig. 2. The helix axis a; is
tilted by the angle 0; against
the z-direction. The phase ¢;
measures the angle between
the zy-plane projection of the
phase vector 8, and the z-axis.

The centers of mass of the helices are denoted by x;.
The positions of the individual beads are then given by

XY = x; + o + &5 B, + e x B (1)

with the internal coordinates
h nm — 1
17
= — |V —
& m < 2 ) ’

» 27
& =rcos —v,
m

(2)

» . 2m
& =rsin—v,
m

where 7 is the radius of the helix and h its pitch. The
bead index v runs from 0 to nm — 1 for each helix, with m
being the number of beads per winding and n the number
of windings.
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The helices are driven by constant and equal torques
that are always parallel to the respective helix axis, i.e.,
the torques are given by Da; with a fixed parameter D.
Note that the assumption of a constant torque agrees with
experimental studies of real flagellar motors [4,6], as we
have already mentioned in our introductory remarks. To
“fix” the helices in space, we attach single beads at the
top and bottom end of each helix axis (Fig. 1) and anchor
them in harmonic traps with equal force constants K. In
equilibrium, both helix axes are parallel, and their center-
to-center distance is S. If one of the anchoring beads is
displaced by AX? (where the index o refers to “top” or
“bottom”) relative to the center of the respective har-
monic trap, the restoring single-particle force is

F7 = —KAX? . (3)

Finally, the total center-of-mass forces and torques acting
on the rigid helices are

F;, =Y F¢ (with o = top, bottom),

T, = Da; + Z()_(,lq — Xi) X Fi‘ . (4)
e

In the regime of low Reynolds numbers, the flow of
an incompressible fluid with viscosity 1 obeys the quasi-
static Stokes or creeping flow equations nV?u — Vp = 0
and V- u = 0 [12,18], where u is the flow field and p the
hydrodynamic pressure. We assume the flow to vanish at
infinity and impose stick boundary conditions on the sur-
faces of all particles suspended in the fluid. The resulting
flow field then couples the motion of the particles to each
other. Due to the linearity of the Stokes equations, their
translational and rotational velocities, v; and w;, depend
linearly on all external forces and torques, F; and T; [12,

18]:

Vi =2 B+ Ty
J J

r . (5)
w; = Z)u’z;F] + Z""ijTj .
J J

Each of the mobilities pf%, pif, pi, and pif is a 3 x 3
tensor, which couples the translations (superscript t) and
rotations (superscript r) of particles 7 and j. They depend
on the current spatial configuration of all suspended parti-
cles. Since this dependence is highly nonlinear, they have
to be calculated numerically.

In our simulations, we use the numerical library HY-
DROLIB [19] which yields the full set of mobility tensors
for a given configuration of equal-sized spherical particles
(based on the multipole expansion method). It implicitly
accounts for (virtual) rigid bonds that keep the relative
positions of the single beads in a rigid cluster fixed. Thus,
HYDROLIB calculates an effective mobility matrix for the
coupled center-of-mass translations and rotations, i.e., the
indices ¢ and j in equation (5) now refer to rigid clusters
instead of individual beads (for details, see Ref. [19]).

Therefore, with the forces and torques given in equa-
tion (4), we directly obtain the linear and angular veloci-
ties of the helices. The translational motion of the centers
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of mass is then governed by
Xi = Vi, (6)

where the dot means time derivative. The rotational mo-
tion of the helix axes a; and the phase vectors 3, follows
from

a; = w; X o,

Bi:wix/gi'

We integrate these equations in time by applying a second-
order Runge-Kutta scheme (also known as Heun algo-
rithm) [20]. Note that the mobility matrices have to be
evaluated at each time step since the positions and orien-
tations of the helices change.

While the trap constant K was varied to study the in-
fluence of the anchoring strength on the helix dynamics,
the driving torque D was kept fixed since it merely sets
the time scale (given by the rotational frequency wq of an
isolated helix). The time steps of the numerical integra-
tion where chosen to correspond to roughly 1/360th of a
revolution of a single helix.

The geometry of the two helices is shown in Figure 1.
Their backbones have a radius of » = 2.0a and a pitch
of h = 6.0a, where a is the bead radius. The number of
windings is n = 3, and the number of beads per winding
is m = 5. The distance between the anchoring beads and
the helix is the same as the pitch h. The equilibrium sepa-
ration of the helices, i.e., the distance of the upper/lower
anchoring traps, is S = 7.0a. Note that the calculation of
the mobility matrix is the most time-consuming part in
the simulations. Therefore, we had to restrict the number
of beads in one helix. Furthermore, we will only present re-
sults for the set of parameters just introduced and concen-
trate on the essential variable, namely the trap stiffness K.

(7)

3 Symmetry considerations

Consider for the moment two helices whose axes are com-
pletely fixed in space, i.e., translation and tilt are pre-
vented by appropriate forces and torques. In this case, the
only remaining degrees of freedom are rotations about the
axes of the helices. They are described by the phase angles
¢; and the angular velocities ¢; = w;. We introduce the
phase difference x = ¢ — @1 as the phase of the right helix
relative to the left helix, when viewed as in Figure 3(a,b)
(left part). According to equation (5), the rotational ve-
locities w; are functions of the phase angles ¢; since the
mobility tensors depend on the spatial configuration. As
the helices are driven by the same torques T; = D about
their axes, the synchronization rate is given by

X = wa(91, P2) — wi(@1, d2) = (o1, ¢2)D, (8)

where the effective mobility u is 2m-periodic in ¢;. We
choose this careful definition because we now want to de-
rive symmetry properties of .

We use the fact that the dynamics of the two-helix
system must not change under arbitrary rotations of the
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whole geometry since the surrounding fluid is isotropic.
By applying the two operations illustrated in Figure 3,
we create new configurations with left and right helices
whose known dynamics we use to infer properties of the
mobility .

In the first case, we rotate the two-helix system by
180° about the z-axis, as illustrated in Figure 3(a). The
velocities of the left and right helix are exchanged, i.e.,
w1y > we and thus x — —x. On the other hand, the phase
angles of the new left and right helix are, respectively, ¢o+
7w and ¢1 + 7. Combining both statements, equation (8)

yields
(g2 +m, o1+ ) = —p(d1, d2) - (9)

If the phases of the helices differ by 7 (¢2 = ¢1 + 7), one
therefore obtains p(¢1,¢1 + m) = —pu(¢1,¢1 +7) =0 or

x=0 for y=m, (10)
i.e., the synchronization speed vanishes for any ¢; when-
ever ¢g — ¢ = .

Let us now rotate the two-helix system by 180° about
the z-axis (Fig. 3(b)). Then the velocities of the left and
right helix are exchanged and reversed, i.e., w1 < —wa,
and the synchronization speed x = —wj — (—w2) = wa—wy
stays the same. On the other hand, the angles transform
as ¢1 <> —@9, and the driving torques are reversed, i.e.,
D — —D. Again, combining both statements, equation (8)

vields ji(—a, —61)(~D) = (61, 63)D, and thus
.u“(i(b27 7¢1) = 7:”’(92517 ¢2)

For helices of infinite length, the dynamics can only de-
pend on the phase difference xy and not on the single
phases ¢;. This is obvious since a phase shift of both he-
lices is equivalent to a translation along the helix axes,
which does not change the dynamics. Hence, equation (11)
reads p(x) = —p(x) = 0, i.e., for parallel helices of infi-
nite length, the synchronization rate y = u(x)D vanishes
for any phase difference y, and therefore, they do not syn-
chronize towards x = 0 [21].

(11)

4 Synchronization

We now study the rotational dynamics of two helices
whose terminal beads are anchored in harmonic traps
of finite strength, as introduced in Section 2. Thus, the
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(b) Q2>

Fig. 3. Rotation of the two-helix
system by 180° about the z-axis (a)
and about the z-axis (b). The circu-

loy lar arrows (indexed with ¢ = 1,2) on
top of the helices denote that the re-
spective helix is driven with torque
T; and rotates with velocity w; in
S R the indicated direction. The tubes
0 -0 are drawn as guide to the eye.
1.0
08 | .
= 0.994
= 0.992
g 06} .
=
5
&
S 04t .
(]
3
=
a
02+ .
0.0
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reduced time T

Fig. 4. Synchronization of the helix rotations. The phase dif-
ference of the two helices tends towards zero, starting from x
slightly smaller than 7. The symbols are simulation data at
two different trap strengths (values of K in units of D/a). For
clarity, not every data point is plotted. The solid line shows
the master curve of equation (12). The insets enlarge the small
oscillations at x ~ 0 and 7 (here for the case K = 0.05D/a,
but the amplitudes do not depend strongly on K). Note that
the scaling of the two insets is the same.

helices can be shifted and tilted, and their axes undergo
a precession-like motion while each helix itself is rotating
about its respective axis. The orientations of the helices
in space are described by the vectors «; and 3, (see
Fig. 1(b)) and the corresponding angles 6; and ¢;, as
defined in Figure 2.

Figure 4 shows the phase difference y = ¢ —¢@; for two
trap stiffnesses K as a function of a reduced time 7(K), to
be defined below. Starting with x slightly smaller than 7,
the phase difference decreases continuously (with steepest
slope at x = m/2) and finally approaches zero, i.e., the
two helices do indeed synchronize their phases. The simu-
lations reveal that the dynamics does not depend signifi-
cantly on the phases ¢; themselves, but is predominantly
determined by the phase difference x. Note that this fea-
ture may be expected since the dynamics of parallel he-
lices of infinite length can only depend on y as explained
in Section 3. To be concrete, we observe that the rota-
tional velocities ¢; undergo oscillations of only about 1%
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Fig. 5. Mean rotational velocities, averaged over one revolu-
tion (in units of the rotational frequency wo of an isolated he-
lix). The oscillations about the mean value are of the order of a
few percent, they decrease slightly during the synchronization
process. The example shown is for trap strength K = 0.15 D/a.

around a mean value during one rotational period. Their
amplitude does not depend on the trap stiffness K, i.e.,
the oscillations originate from the slight dependence on
the phases themselves (and not from the precession of the
axes). Therefore, starting with different values for ¢; but
the same value of y yields the same curve (except for dif-
ferences in the small oscillations illustrated in the insets
of Fig. 4).

The mean rotational velocities, averaged over one rota-
tional period, increase during the synchronization process
from about 0.92wg at x = 7 to about 0.95wy at x ~ 0
(Fig. 5). Thus, the hydrodynamic drag acting on the he-
lices is minimized during phase synchronization (see also
Ref. [17]). Since the torques are constant, the dissipation
rate ), T;-w; is maximized. This observations agrees with
the interesting fact that the Stokes equations can be de-
rived from a variational principle where one searches for an
extremum of the dissipated energy [ 0;;A4;;d%r (05 is the
stress tensor and A;; the symmetrized velocity gradient)
under the constraint that the fluid is incompressible [22,
23]. The pressure enters via the Lagrange parameter as-
sociated with the constraint.

In Section 3, we showed for fixed parallel helices, based
on pure symmetry arguments, that their synchronization
rate vanishes for a phase difference of x = 7 (see Eq. (10)).
In that case, the two-helix configuration is symmetric
with respect to a rotation by 180° about the z-axis (see
Fig. 3(a)). Our reasoning of Section 3 can be extended to
the case of non-parallel helix axes, as long as the same
symmetry is preserved. However, x = m does not corre-
spond to a stable state. Starting with x marginally smaller
than 7, the system tends towards phase difference zero.
The simulation with K = 0.05 in Figure 4 was launched,
e.g., at x = 0.9947 with both helices in equilibrium posi-
tion and orientation, as shown in Figure 1.

On the other hand, the synchronized state x = 0 is sta-
ble against small perturbations since configurations with
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x between 0 and —7 synchronize towards zero phase dif-
ference, too. This was checked by simulations, but can also
be derived from equation (9). The corresponding rotation
of Figure 3(a) creates new left and right helices with a
change in sign for x and x relative to the original he-
lices which explains our statement. Furthermore, starting
a simulation with exactly xy = 0, the helices remain syn-
chronized on average (i.e., (x) = 0), but there are still
small oscillations as illustrated in the lower right inset in
Figure 4 for the case where both helices started in equi-
librium position and orientation.

Averaging over small oscillations, we find that the re-
sulting smoothed curves for the phase difference y obey
an empirical law of the form

x(r) = g(1 — tanhT), (12)
where
2 dy
F(K) = 2 (t—t, ) | X (13)
T / det =ty 2

is the reduced time, already mentioned above, and ¢ 5 de-
notes the time where x = 7/2, i.e., the location of the in-
flection point. Its slope [dx/dt|¢=¢, , depends on the trap
stiffness K and so does 7. As Figure 4 strikingly reveals,
this law works very well. By plotting the phase difference
x versus the reduced time 7(K), the curves collapse on the
master curve given by equation (12). Since the dynamics
at low Reynolds numbers is completely overdamped, we
expect this law to follow from a differential equation which
is of first order in time. Taking the first derivative of equa-
tion (12) with respect to 7, we find that x(7) obeys the
nonlinear equation x(7) = (2/7)x(7)[r — x(7)], known as
the Verhulst equation and originally proposed to model
the development of a breeding population [24]. However,
it is not clear how to derive this equation from first prin-
ciples in our case.

An important result is that the speed of the synchro-
nization process decreases with increasing trap stiffness
K. The values plotted in Figure 6 for different K ! are
the slopes |dx/dt[;=:, ,, extracted from simulation data at
the inflection point with a relative phase of x ~ 7/2. The
curve in Figure 6 can be extrapolated by the analytic form
c1 tanh o K—1 (dashed curve), where the fit parameters as-
sume the values ¢; = 3.67 - 103wy and ¢y = 0.0685 D/a.
In the limit of infinite trap strength, i.e., for K~1 — 0,
the synchronization speed clearly tends towards zero, i.e.,
an infinitely strong anchoring of the helix axes does not
allow for phase synchronization.

In Figure 7, we illustrate how the tilt angles 6, (for
their definition, see Fig. 2) vary during the synchroniza-
tion process. The mean tilt angle as well as the amplitude
of its periodic oscillations decrease when the phase dif-
ference approaches zero. Obviously, the dynamics of the
helices depends on the stiffness of the harmonic anchoring
of the top and bottom terminal beads. In a weaker trap,
the tilt of the helix axes out of equilibrium is more pro-
nounced compared to a stronger trap. The insets in Fig-
ure 7 track the precession-like motions of the helix axes.
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Fig. 6. Synchronization speed (taken at a relative phase x ~
/2, as illustrated in the inset) as a function of the inverse trap
strength K ~!. The frequency scale wp for the synchronization
speed is the angular velocity of an isolated helix. The symbols
indicate values extracted from simulations at different K. The

dashed line is an empirical fit (see text).
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Fig. 7. Tilt of the left and right helix axis for K = 0.05 and
0.15 as a function of reduced time 7. The fast periodic oscil-
lations of the tilt angles 0; yield the black bands since they
cannot be resolved on the time scale used here. The insets vi-
sualize the precession of the helix axes by showing the tip of
the vectors a; (at x &~ 7/2). From the outer to the inner “cir-
cular” orbit, the trap stiffness assumes the values K = 0.05,
0.1, 0.15, and 1.0 (in units of D/a).

The stronger the trap, the smaller the radius of the “or-
bit” or the tilt angle. (Since the simulations were started
with both axes aligned along their equilibrium direction,
the trajectories (s, quy) first move radially away from
the origin and then enter the “precession orbit”.)

In real flagellar motors, the torques on the two heli-
cal filaments are not exactly the same. To test whether
the phenomenon of synchronization still occurs, we now
consider slightly different driving torques for the two he-
lices. The first helix is still driven with torque D, while
the second helix is driven with D + AD (AD > 0). We
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Fig. 8. Phase difference xo (plotted as 1 —xoo/%) of the syn-
chronized state as a function of the torque difference AD. The
phase difference increases from xoo = 0 to 7/2 (or 1 — oo/ %
decreases from 1 to 0) with increasing torque difference. For
AD > AD., there is no synchronization.

observe that, for torque differences AD below a critical
value AD., the two helices indeed synchronize towards a
phase difference xo = x(t — o0), which, in general, is
not zero. The results are shown in Figure 8, where we
plot 1 — X /5 as a function of AD/AD.. With increas-
ing AD, the phase lag x increases from zero to 7 /2. For
AD > AD., there is no synchronization, and the phase
difference grows continuously. Note that the reduced crit-
ical torque difference AD./D = 3.22 - 10~ corresponds
to the reduced frequency difference x/wp = (w2 — w1)/wo
observed at x = 7/2 for equal torques (AD = 0). At the
critical torque difference, the helices synchronize towards
a phase lag of x = 7/2. This means that AD, just com-
pensates the difference in the effective mobilities of the
two helices, which is largest for x = 7/2; thus the helices
rotate with the same speed.

At the end, we mention that all results presented here
refer to helices whose rotational direction is given in Fig-
ure 1(b). Reversing the direction of rotation does not
change the dynamics of the two-helix system since this
can also be achieved by the operation shown in Figure 3(b)
that does not change the synchronization speed.

5 Conclusions

We have reported that two rigid helices whose termi-
nal beads are anchored in harmonic traps and which are
driven by equal torques synchronize to zero phase differ-
ence. The effect is robust, i.e., if the torques are unequal,
the helices synchronize to a non-zero phase lag below a
critical torque difference. This agrees with observations in
reference [8] where the helices do not bundle if the motor
speeds are sufficiently different. Increasing the stiffness of
the anchoring traps, decreases the synchronization rate.
We attribute this to the jiggling motion of the two helix
axes which is more and more restrained.
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In the limit of infinite trap strength, our results are
consistent with recent work based on slender-body the-
ory for two rigid helices [17]. If the helices are prevented
from translation and their axes are always kept parallel,
then there is no synchronization possible. Therefore, we
conclude that the additional degree of freedom due to the
finite anchoring of the helix axis, i.e., the jiggling motion,
is essential to enable phase synchronization in our model.

At a first glance, our model might appear too artifi-
cial for describing the hydrodynamic coupling of flagella.
However, our results clearly indicate that some kind of
flexibility is essential to allow for phase synchronization.
In reality, this flexibility might have its origin in elastic
deformations of the rotating flagella. Therefore, the next
step is to make the flexural and torsional stiffness of the
helices in our model finite.

The helix used in our numerical investigation with
radius 7 = 2a and pitch h = 6a is far from the values
of a real bacterial filament with » = 20a and h = 200a
where a is now half the filament diameter. We have tried
different paths in the parameter space (r,h) to connect
both cases, i.e., our “fat” helix and the real slender
helix. We observe that making the helix more slender
decreases the synchronization speed in units of wg. This
makes sense since the induced flow from the rotation
of slender helices is smaller. To reduce computer time,
we extrapolated the synchronization speeds for different
paths in the (r, h)-space towards the real helical flagellum
and found that the speed is reduced by a factor of 60
to 70 compared to the results reported in this article.
At a first glance this seems to be a discouraging result.
However, from preliminary results of helices with finite
bending and torsional flexibility, we know already that
these factors considerably increase the synchronization
speed so that it will be of biological relevance.

Furthermore, we made a comparison of the resistance
matrix of a real flagellum modeled by a sequence of spheres
with resistive force theory as summarized, e.g., in refer-
ence [25]. We found that for motion and rotation along
the helix axis, the single matrix elements differ by less
than a factor of two. This convinces us that modelling a
flagellum with the method presented in this article is ap-
propriate. For our fat helix, however, the deviations are
larger since the filament is relatively thick compared to
the radius and pitch of the helix. So the conditions for the
validity of resistive force theory are not satisfied so well.

We also checked whether it is important if the helices
are forced to stay at their position or if they are allowed
to propel themselves. This was done by letting the
helices move along the z-axis but still keeping them in
harmonic traps along the z- and y-direction. However,
we did not see a significant difference in the dynamics
of the synchronization process compared to the results
presented in this work.

As a final remark, we point out that the following gen-
eral mechanism may exist in systems of low Reynolds num-
bers: Synchronizing the motions of some objects via hy-
drodynamic interactions needs some kind of “flexibility”.
If the motions of the objects are constrained too much,
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synchronization cannot occur. We have observed a simi-
lar behavior for particles circling in a toroidal harmonic
trap and driven by a constant tangential force [26]. After
some transition regime, the particles reach a synchronized
state where they perform a periodic limit cycle. We ob-
serve that for increasing trap stiffness, i.e., for decreasing
oscillations along the radial direction, the time to reach
this limit cycle increases.
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