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In dilute suspensions of swimming microorganisms the local fluid velocity is a random superposition of

the flow fields set up by the individual organisms, which in turn have multipole contributions decaying as

inverse powers of distance from the organism. Here we show that the conditions under which the central

limit theorem guarantees a Gaussian probability distribution function of velocities are satisfied when the

leading force singularity is a Stokeslet, but are not when it is any higher multipole. These results are

confirmed by numerical studies and by experiments on suspensions of the alga Volvox carteri, which show

that deviations from Gaussianity arise from near-field effects.
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A key feature of the inertialess world inhabited by
microscopic organisms is the very long-range flow fields
they create as they swim. For neutrally-buoyant, self-
propelled organisms the far-field behavior of the velocity
is that of the force dipole (stresslet) created by the opposed
actions of their flagella and cell body on the fluid. Theories
incorporating such fields in the fluid stress tensor [1], and
simulations of suspensions of dipolar organisms [2] have
shown the formation of large coherent structures that are
highly suggestive of those seen in experiments on the
bacterium B. subtilis [3]. The suggestion [3] that hydro-
dynamic interactions underlie these vortices and jets was
made by analogy with the appearance of similar patterns in
suspensions of sedimenting particles [4], although interac-
tions in the latter are due to the force monopole (Stokeslet)
fields arising from the density mismatch between the par-
ticles and fluid. Although Stokeslet and stresslet fields have
different topologies, it is striking that the two systems
display similar coherence.

The relationship between suspensions of microorgan-
isms and of sedimenting particles takes on new signifi-
cance in light of measurements of velocity fields around
freely swimming organisms [5], which emphasized that the
Stokeslet field dominates that of the stresslet beyond a
length �� Td=Fg, where d is the offset between the

flagellar thrust T and the body drag, and Fg is the net

gravitational force per organism. � can be surprisingly
small when compared to the organism radius R: while for
the unicellular alga Chlamydomonas reinhardtii [6] (R�
5 �m) �� 30R, for its multicellular descendant Volvox
carteri [7] (R� 200–400 �m) there is the striking con-
clusion that �� R; the Stokeslet dominates the flow field.
It was therefore suggested [5] that suspensions of Volvox
would be more similar to those of sedimenting particles
than previously thought, the chief difference being the
component of the organism’s motion from active swim-
ming. Hence there is fundamental interest in the question:

What are the statistics of fluid velocity fluctuations in a
suspension of swimming microorganisms?
Herewe present theory, experiments and simulations that

elucidate a number of aspects of this question. We deter-
mine the condition on the leading force singularity of a
swimmer in order that a random superposition of its velocity
field has aGaussian probability distribution function (PDF).
The condition admits the Stokeslet but excludes the stresslet
and highermultipoles, so the presence or absence of density
matching has a qualitative effect on the statistics. The
velocity distribution functions found in experiment and
simulation display clear non-Gaussian tails which we sug-
gest arise from near-field effects [8]. The large size of
Volvox allows study of the scale of fluctuations as a function
of the number of organisms at fixed container size, comple-
mentary to the limiting procedure often adopted in sedi-
mentation [9]. Our results complement recent studies of the
short-time PDFs of tracer particles in suspensions of
Chlamydomonas [10], where non-Gaussianity was found,
and studies of fluctuations in bacterial baths [11,12].
Consider a suspension in a box of linear scale L, with N

swimmers of radius R. If the volume fraction � ¼
4�R3N=3L3 is sufficiently small, the PDF of velocities
reflects the statistics of a random superposition of the flow
fields around each swimmer. For a uniform spatial distri-
bution of swimmers, averaging over their positions is
equivalent to integrating over space with the swimmer at
the origin. If the velocity around a swimmer decays as
jvðrÞj � Að�Þ=rn, with � standing for angular variables,
the probability distribution PðvÞ of velocities is

PðvÞ / L�3
Z L

0

Z
D�

�

�
v� Að�Þ

rn

�
r2drd�; (1)

assuming a spherical container. The tail of the distribution
can be determined from the behavior of P under the
rescaling r ! ar. Since �ðv� A=ðarÞnÞ ¼ an�ðvan �
A=rnÞ, and noting that for large v the argument of the
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� function vanishes at small r, we deduce that the integral
does not depend on the upper limit L=a (which can be
taken to 1), and hence

PðvÞ ¼ a3þnPðvanÞ ! PðvÞ / 1

v1þ3=n
: (2)

The second moment of PðvÞ is finite only if n < 3=2, the
case of a Stokeslet (n ¼ 1). This is the condition for
validity of the central limit theorem; the velocity field
from a large number of independently placed Stokeslets
is Gaussian. It will not be so for any higher integer singu-
larity, such as stresslets (n ¼ 2) or source doublets (here
termed ‘‘sourcelets’’) (n ¼ 3) [13]. If below a certain
radius the decay law deviates from v / r�n, the PDF shape
(2) will break down above the corresponding value of v.
Hence, deviations from Gaussianity provide a direct probe
of the near-field velocity around the swimmers.

The spherical colonial alga Volvox is a remarkably use-
ful system for the study of many aspects of biological fluid
dynamics [14–17] because of its size, high symmetry, ease
of growth, well-characterized biology, and the existence of
a range of mutants. In our experiments, Volvox carteri f.
nagariensis strain EVE were grown axenically in SVM
[18] in a diurnal growth chamber set to a cycle of 16 hours
artificial cool daylight (� 4000 lux) at 28 �C and 8 h in the
dark at 26 �C. We used synchronized colonies from the first
day of the 48 h life cycle to obtain the highest motility. A
concentration c ¼ 10–500 cm�3 (a volume fraction below
� ¼ 0:015) of organisms was prepared in SVM, with
added 2 �m polystyrene seeding particles or 6 �m tracer
particles (Polysciences) at a concentration of �25 ppm,
and placed into a glass container (1� 1� 1 cm). The
container was placed a thermal bath [Fig. 1(a)] to eliminate
convection [19], and was illuminated with a thin laser sheet
( & 300 �m) from a 100 mW, 635 nm laser (BWTEK).
Video was captured at frame rates of 0:4–5 Hz by a CCD

camera (Pike F145B, Allied Vision Technologies) con-
nected to a long-working distance microscope (Infinivar
CFM-2/S, Infinity Photo-Optical). The fluid velocity was
measured by PIV (Dantec Dynamics), typically producing
a 63� 63 rectangular lattice of velocity vectors.
Alternatively, we measured tracer and Volvox trajectories
by custom (Matlab) PTV software.
Our simulations of protist suspensions used a model in

which the velocity field created by a Volvox is the sum of a
downward-pointing Stokeslet and a sourcelet,

v ðrÞ ¼ �3Rvsed

4

��
ẑ

r
þ ðẑ � rÞr

r3

�
þ�R2

�
n

r3
� 3ðn � rÞr

r5

��
;

where n is a unit vector along the colonial axis. The
sourcelet represents the near-field flow found by direct
measurements [5] and in a model with a constant force
density distributed over the colony surface [15], and is
important for the statistics of high fluid velocities. Both
singularities are cut off at the colony radius. The Stokeslet
strength was fixed by an empirical fit to data on the
sedimentation velocity as a function of R [16] [vsed ’
�R, with � ¼ 1 s�1], while the relative sourcelet strength
� was studied in the range 0<�< 10. We consider the
motion of colonies within a noninteracting ‘‘ideal gas’’
model [20] which, despite its simplicity, gives satisfactory
agreement with the experiment; the fluid is unbounded, the
swimmers are confined to a rectangular container (cage)
with reflecting walls, and the position xj of the jth

swimmer and its axis vector nj evolve as

_x j ¼ vpnj þWj; _nj ¼ fWj; (3)

where vp is the propulsion velocity, Wj and fWj are white

noises with diffusion constants D and ~D, in 3D and on a
unit sphere, respectively. They represent the random influ-
ences on the motion of Volvox—irregularities of flagellar

FIG. 1 (color online). Experimental setup and measured velocity fluctuations. (a) Schematic of the imaging and illumination system.
(b) Experimental z component (and x component, inset) of the fluid velocity in a Volvox suspension (c ¼ 300 cm�3) as a function of
time in the central PIV grid domain of the chamber. Red lines indicate velocities in SVM, while blue lines are with approximate density
matching of the external fluid: SVMþ 3%v=v Percoll (Sigma).
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beating and, partially, mutual advection of colonies. The
latter is negligible for the most part, since the typical
velocity of the resulting flow is found to be much smaller
than vp. This is not true, however, when two or more

colonies come close. Although such events are relatively
rare, they are important for uniformizing the spatial distri-
bution of Volvox: without them the bottom-heavy colonies
would gather in the upper part of the container, contrary to
observations. For the same reason, including the bottom-
heaviness and the sedimentation into (3) in the absence of
mutual advection would be inconsistent. The primary (and
minor) consequence of neglecting bottom-heaviness is this
model does not reproduce the angular distribution of the
colonies’ axes. Inclusion of sedimentation makes only
minor changes to the results.

An example of experimental measurements is the time
trace of local fluid velocity in the center of the sample
chamber [Fig. 1(b)]. We see that the observed fluid motion
is created primarily by the Stokeslets of the swimmers, for
when the fluid density was increased to match the density
of Volvox, the typical velocity fluctuations were reduced
drastically. Yet, the peaks due to the near-field source
doublets (from a swimmer passing very close to the ob-
servation point) remained undiminished.

On a more quantitative level, we examined the PDF of
velocity fluctuations (Fig. 2) as a function of the number of
colonies in the container, and at various stages in the life-
cycle, so that the colony size and sedimentation speed vary
over a significant range. Data for the smallest number of
swimmers in the container shows a clear power-law tail
consistent with the form v�4 expected from Eq. (2), and in
agreement with simulations done with pure Stokeslets. As
expected from a gas of Stokeslets, the PDF of the velocity

shows convergence to a Gaussian with the number of
swimmers: for 210 swimmers the Gaussianity persists up
to 2.5 standard deviations [Fig. 2(c)], but with clear tails
(discussed below). Once normalized by the sedimentation
speed, the standard deviation of the velocity collapses,
showing that the fluctuations are proportional to the
Stokeslet strength [Fig. 2(b)]. In an ideal gas of
Stokeslets, the standard deviation of the velocity fluctua-

tions grows as / ffiffiffiffi
N

p
by virtue of the central limit theorem.

In the presence of swimmer correlations it should grow
faster, but no faster than / N. The observed law lies
between these two powers, much closer to the former
[Fig. 2(b)], supporting the ideal gas approximation, and

distinct from the result N1=3 found in sedimentation [4],
where the mutual advection of particles in each other’s
Stokeslet fields is the sole contribution to velocity fluctua-
tions. Fluctuations in Volvox suspensions are stronger for
larger swimmers, due to their larger sedimentation velocity
(stronger Stokeslets), and the ratio R � �ðvzÞ=�ðvxÞ is
close to 2 for all N. This is found in the numerics with
Stokesletsþ sourcelets (whose orientations are uniformly

distributed). Without sourcelets, the numerics yield R�
2:8 � 2

ffiffiffi
2

p
. For a single Stokeslet offset by a sourcelet, the

ratio can be computed analytically, averaging over the
swimmer’s position being replaced by spatial integration,
as in (1); R ranges from 1 (for a randomly directed

sourcelet) to 2
ffiffiffi
2

p
for a pure stokeslet.

Inclusion of a sourcelet in the simulations results in tails
in the PDFs similar to the experimental data (Fig. 2 right).
This allows us to conclude that the observed tails are due to
the near-field component of the swimmers’ flow. The tails
appear to be exponential, but the range of our data is
insufficient to prove this. For example, the tail of the data

FIG. 2 (color online). Statistics of velocity fluctuations. Colored circles are experimental data for a suspension of Volvox with mean
diameter 300 �m. Colored triangles are corresponding numerical simulations excluding sourcelets; solid lines at right are for
simulations including sourcelets (� ¼ 4). Individual colors indicate different numbers of colonies in container: green (11), red (42),
and blue (210). (a) PDF of fluctuations in horizontal velocity vx. (b) Standard deviation of fluid velocity normalized by colony
sedimentation speed vsed [z component (squares), x component (triangles)], for colony mean diameter 460 �m (open symbols), and
220 �m (solid symbols). (c) Central region of PDFs of vx normalized by their standard deviations, for N ¼ 11, 28, 42, 128, and 210.
Dashed black line is a Gaussian fit. Full PDFs of (d) vx and (e) vertical velocity vz.
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for N ¼ 210 is equally well fit by P / ðv3 þ Nv3�Þ�1 with
v� ¼ 25 �m= sec. A similar situation occurs in the PDF of
the vertical velocity, where the core convergence to a
Gaussian is less advanced due to the inherent asymmetry
of the Stokeslet field.

The velocity power spectra show a decay close to f�2

(Fig. 3), suggesting a Lorentzian power spectrum of fluc-
tuations PðfÞ ¼ ðf2 þ ð2��Þ�2Þ�1, i.e., an exponential ve-
locity autocorrelation hvð0ÞvðtÞi / expð�t=�Þ. Supple-
mented by the Gaussian PDF, this equation amounts to
modeling the velocity fluctuations as an Orstein-
Uhlenbeck stochastic process. The motion of Volvox is
primarily deterministic. For a concentration c�100 cm�3

the mean free path can be estimated as ð�R2cÞ�1 � 10 cm,
which is larger than the container size of L ¼ 1 cm. Thus,
the deterministic term in (3) sets a ballistic time �b ¼
L=vp � 30 s which is smaller than the diffusive time scale

�d ¼ L2=D� 100 s or the dephasing time �ph ¼ 1= ~D�
100 s. Hence, it is �b that sets the correlation time in this
ideal gas model. We checked this in the numerics [Fig. 3
(inset)], and indeed the characteristic � in the experimental
data is close to that in the simulations.

In summary, we have introduced a connection between
the statistics of velocity fluctuations in suspensions of
swimming protists and the type of force singularity asso-
ciated with the organism motion. Experiments and numeri-
cal results show clearly the existence of non-Gaussianity in
the velocity PDFs, which is suggested to arise from the
details of fluid flow near the organisms. The greatest

challenge is a theoretical understanding of the form of
the non-Gaussianity, which is known to appear as well in
other contexts, such as inelastic gases [21].
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FIG. 3 (color online). Power spectra of velocities. Solid lines
and dotted lines are experimental spectra of vz and vx, respec-
tively, for suspensions with mean Volvox diameter 290 �m, for
N ¼ 20 (red), 70 (green), 250 (cyan), and 406 (magenta). Solid
and dotted black lines are numerical results for N ¼ 210
(rescaled in y), with � ¼ 4. Inset: collapse of power-spectra in
numerics with varying container sizes (0.5–2 cm) and vp

(150–600 �m=s), with �b from 16.7 to 66.7 s.
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