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Propulsion of Microorganisms by Surface Distortions
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Swimming strategies of microorganisms must conform to the principles of self-propulsion at low
Reynolds numbers. Here we relate the translational and rotational speeds to the surface motions of a
swimmer and, for spheres, make evident novel constraints on mechanisms for propulsion. The results
are applied to a cyanobacterium, an organism whose motile mechanism is unknown, by considering
incompressible streaming of the cell surface and oscillatory, tangential surface deformations. Finally,
swimming efficiency using tangential motions is related to the surface velocities and a bound on the
efficiency is obtained. [S0031-9007(96)01605-5]

PACS numbers: 87.45.—k, 47.15.Gf

Swimming microorganisms live in an environment swimming microorganisms. Letu, o) be the velocity
where viscous forces control their movements [1,2].and stress fields that are the solution to (1) such that
Motion is produced by a cyclic distortion of the body there is no net force or torque on the swimming body.
shape [3,4], e.g., by the coordinated use of cilia orAlso, let (i, ) be the solution to (1) for translation of
flagella [5,6]. The swimming speed depends on theghe same shaped object at a velocliys) when acted
details of such motions and is constrained such thasipon by an external forcE(s). The reciprocal theorem
geometrically reversible surface deformations produce nstates that the solutioffu, o) and (i, &) are related
net displacement of the cell body [5,7]. by

One topic of scientific interest is to relate an organ-
ism’s swimming speed to the surface velocity which is [ n-o-uds= [ n-o-ads, (2)
prescribed by a particular cyclic deformation [4,8,9]. Tra- S() S()
ditional approaches to this problem involve obtaining thevhere S(¢) is the instantaneous boundary of the swim-
general solution to the governing differential equations ofhing object,n is the unit outward normal t6, n - o is
low Reynolds number ﬂOWS, imposing the boundary Con_the stress the fluid exerts on the Surface,,\and the veloci-
ditions for the particular surface motion of interest, andtiesu anda decay far froms. Sinced = U on S and
then calculating the swimming speed. In fact, as is showihe swimming object is force-free, the right-hand side of
below, there is a direct relationship between the swim{2) vanishes. The surface velocity for the self-propelled
ming speed and the surface motions, which does not entsivimmer is then decomposed into a translational ve-
developing the detailed flow field. Furthermore, in certainlocity U(z) and a disturbance motion’, which typi-
cases, the swimming speed may be easily calculated frogflly varies over the surface. Equation (2) then simplifies
this relationship. An upper bound on the efficiency of thet0

swimming stroke may also be established. . _ . ;
We begin our analysis with the equations for in- F(@) - U@) = - s T ds. 3)
compressible fluid motion in the low Reynolds number

Equation (3) relates the instantaneous swimming speed to
the instantaneous surface velocity for any shape of self-

~Vp+puVu=0=V-0o and V-u=0, (1) Propelled organism.
In particular, for a sphere of radiug, the surface

limit,

where u and p are the fluid velocity and pressure, stress isn - ¢ = _32_M[j and the Stokes drag force is
respectively, ando is the stress tensor. The lack of j — —67 ual so thaft (3) reduces to

explicit time dependence in the equations requires that

a self-propelled object must execute, in shape space, a u@) = — 5 j u'ds (4)
cyclic deformation which does not retrace its path [4], and 4ma Js

so reciprocal motions are not allowed. For many cyclic deformationsu’ is time dependent.

We next utilize the reciprocal theorem from low The mean translational velocity corresponds to the time
Reynolds number hydrodynamics [10] in order to relateaverage of Eq. (4).
the surface motions to the swimming speed. We are For an arbitrarily shaped, torque-free swimmer that
interested in the solution to Eq. (1) for self-propelledrotates with angular velocitf2(s) (without translation)
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owing to a suitable cyclic deformation of the surface, thetude sinusoidal fashion [9},, = ¢ + ecodn¢d — wi),

analog of (3) is which corresponds to a traveling wave moving from the
A pole at¢p = 0 toward¢p = 7 (e < 1). Substituting this
L -Q= —f n-o-uds, (5) surface motion into (4), performing the surface integral
S(1)

accurate ta(e?), and time averaging gives the result

where L. is the hydrodynamic torque that acts on the
rigid object when it rotates with angular veloci€y. For

. . . ol _ 3 A A _
a ;Egly/\r?lta;r% 3\%};2% E)Ilosv?tﬁa?thaenizghgr_ve- where(-) denote the time average ard is the direction
locity of a spherical swimmer due to surface deformationfrom which ¢ is megsured. Swimming speeds are about
obeys 10a s !, so assuminge = 1/20 and n = 5-10 yields
that the assumed surface motions have frequencies
0(10%>-10%) s™'. This result [Eq. (7)] was also arrived
[ n A u'ds.

(U) = —% e’nwae. @

Q) = - (6) at recently by using a traditional approach [15]. Note

3
8ma3 : :
that the equations for low Reynolds number motions may

We note that both (4) and (6) were arrived at recentlype utilized to analyze periodic surface motions provided
using a perturbation expansion approach to the swimming'a’/7 < 1, which is satisfied forl um radius objects
problem for the special case of small amplitude oscilla-0scillating in water with the frequencies mentioned above.
tions of a spherical object [11,12]. The derivation pre- 10 assess the plausibility of a mechanism for motility,
sented here shows that analogous results, (3) and (5%,iS not enough to know that the mechanism generates
are valid for arbitrarily shaped swimmers. Equations (4)€@sonable swimming speeds; the swimming mechanism
and (6), which apply to spherical swimmers, hold for fi-Should also be energetically efficient. Several authors
nite amplitude surface deformations. Simultaneous trandlave introduced definitions of efficiency for characterizing
lation and rotation are studied simply by adding Egs. (3)3Wimming strokes [3,4,9]. For simplicity we follow
and (5). Lighthill's original definition [3], which is consistent with

Using Eq. (4) particular mechanisms for swimming other definitions in that the same optimum swimming
motility may be explored. Here we discuss swimmingStrokes are predicted (see Shapere and Wilczek [4]).
cyanobacteria [13] with the understanding that ourn particular, we will draw some conclusions about the
results apply equally well to other species. As cyanobacefficiency of tangential swimming motions, again using
teria have no external appendages, the cell bodjtegral |dent|t|¢s to bypags_detalled cqlculatlons.
(approximately a spheroid with aspect ratio about 2) Any expression for efficiency requires the pow@r
must itself generate thrust. Also, no observable shap@xpended in the swimming stroke. The work done by
changes accompany translation. Pitta and Berg [143n arbitrarily shaped swimming organism is dissipated
exclude the possibility of self-electrophoresis and raise/iscously in the fluid and so
the possibility of a bulk streaming of the cell surface.

Here we model the cyanobacterium as a sphere and note? = —f
that an incompressible (i.e., divergence-free) surface S0
velocity field on a sphere can be written as the curl of avhere E is the rate-of-strain tensor an¥l(s) is the
potential function which has but a radial component. Théluid volume surrounding the swimmer. Substituting the
surface integral of such a surface flow is identically zerokinematic identity2E:E = w? + 2(Vu):(Vu) and using

and hence according to (4) the swimming speed is zerdhe divergence theorem, we find

Thus, incompressible, tangential surface deformations

are not propulsive, which rules out simple tangential P = ,uf w’dV — Z,uf n-(u-Vuds. (9)
streaming of the cell surface as a possible swimming v 5@

mechanism. This result has two consequences. First, for two objects

The remaining mechanism for cyanobacteria’s motil-that translate at the same mean speed, more energy is
ity is a cyclic, nonreciprocal, and compressible surfaceiissipated by the object which produces the larger amount
distortion, i.e., a traveling wave. Blake [9] originally of vorticity. Therefore, an axisymmetric object that
considered this type of problem for the case of cili-rotates as its swims is less efficient than the nonrotating
ated microorganisms by supposing that the waving tipswimmer [4]. Second, for organisms that move using
of the cilia serve as an effective compressible surfacepurely tangential surface motioks’), the surface integral
Cyanobacteria [13], though lacking cilia, might be cov-in (9) may be simplified to involve only the surface
ered with a motor protein which is capable of similarvelocity (rather than gradients), which leads to
wavelike motions. For instance, in terms of spherical
surface coordinate&p, #), suppose that a material point P=npu f w?dV + 2u f u?k,dS, (10)
¢.» on the compressible surface moves in a small ampli- |40] (1)

n-o--udS=2,u] E:Edv, (8)
V()
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where k; denotes the curvature of the surface measuredary to calculate the Stokes drag force and torque and the
along the direction of the surface flow [16]. In the particu-surface stresses on the intermediate shapes within a cycle
lar case of spherical shapes translating with axisymmetriand perform the integral prescribed in Egs. (3) and (5).
surface motionsik; = 1/a. Numerical methods may be applied to solve this more
The Lighthill definition [3] of efficiencyn, of swim-  general problem. Finally, for tangential surface distor-
ming spheres i$7ua(U)*/(P). The swimming speed tions, knowledge of the surface velocity field alone sets an
and power are known from above in terms of surface inteupper limit to the swimming efficiency. Numerical meth-
grals of the velocity, and so (4) and (10) lead to the boundds are needed to calculate the power and efficiency of
3 ([, u'ds) more complicated motions. Our results demonstrate that
n =~ [5—2} ) (11) tangential travelling surface waves are a plausible mecha-
4 Lama®([s uds) nism for the swimming of spherical shapes as they predict

- th reasonable translational speeds and efficiencies.
Hence, knowledge of the surface velocities alone ma;?O ;
be used to set an upper bound for the efficiency of a We thank Howard Berg and Richard Montgomery for

tangential swimming motion of a sphere. The term instlmulatlng discussions. ADTS acknowledges support

brackets may be shown (using a version of the triangkgrom a Molecular Blo_physms Training Grant from NIH
inequality) to be bounded from above by unity, andand the Rowland Institute.
so according to the Lighthill definition the swimming
efficiency isn; < 3/4; the Lighthill definition is proved
to satisfy the criterion that the efficiency is less than unity.
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