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Synchronization of actively oscillating organelles such as cilia and flagella facilitates self-propulsion of

cells and pumping fluid in low Reynolds number environments. To understand the key mechanism behind

synchronization induced by hydrodynamic interaction, we study a model of rigid-body rotors making

fixed trajectories of arbitrary shape under driving forces that are arbitrary functions of the phase. For a

wide class of geometries, we obtain the necessary and sufficient conditions for synchronization of a pair of

rotors. We also find a novel synchronized pattern with an oscillating phase shift. Our results shed light on

the role of hydrodynamic interactions in biological systems, and could help in developing efficient mixing

and transport strategies in microfluidic devices.
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Introduction.—The idea that hydrodynamic interactions
at low Reynolds number can induce synchronization be-
tween active components with cyclic motion has been the
subject of extensive studies since the pioneering work
of Taylor [1], and has culminated in a number of direct
experimental demonstrations in recent years [2–4]. For
example, the effective and recovery strokes of beating
cilia [5] are considered to be important for generating their
coordinated motion (metachrony) [6–8]. While resolving
the intricate conformations of the elastic filaments is im-
portant for studying coordination in high density assem-
blies, it can be argued that at sufficiently low densities
hydrodynamic interaction does not alter the beating pattern
of the active filaments, such that they can be feasibly
modeled as simple beads following fixed trajectories
[9,10]. The simplicity of this level of description allows
for complex many-body effects to be probed in large arrays
of such beads with additional active internal mechanisms
[8,11,12].

There have been a number of recent studies on hydro-
dynamic interaction between rotating or orbiting rigid
bodies [9,10,13–15]. An emerging general picture suggests
that rigid bodies do not easily synchronize. Rigid helices
with parallel axes [14] or beads on circular trajectories [10]
with constant driving torque do not synchronize, unless
flexibility is introduced in the orientation of the rotation
axis [15] or in the confinement to the trajectory [13],
respectively. Vilfan and Jülicher [9] studied two beads on
tilted elliptic trajectories near a substrate, with a velocity-
dependent driving force. They found that both the
height dependence of the drag coefficient and the eccen-
tricity of the trajectories are necessary to stabilize the
synchronized state. Ryskin and Lenz [10] considered a
more general model, in which each cilium is represented
by a collection of beads connected to each other. Each bead
makes a fixed trajectory of arbitrary shape under a driving
force that is an arbitrary function of the phase. They

applied the general framework to a variety of beating
patterns that mimic the ciliary strokes, and found them to
be able to stabilize traveling (metachronal) waves but not
synchronized states. These results naturally lead to the
following question: when do objects with fixed trajectories
synchronize via hydrodynamic interaction? Here, we ad-
dress this question by formulating generic and explicit
criteria for hydrodynamic synchronization.
We use a simple version of the Ryskin-Lenz model in

which each active object (rotor) is made of a single bead.
We derive a necessary and sufficient condition for a pair of
rotors to synchronize, in terms of the trajectory shape and
force profile. We apply the obtained criterion to specific
trajectories in a far-field approximation, and identify the
form of the force profiles that cause synchronization. For
circular trajectories, for example, we find the requirement
that the logarithm of the force has a nonvanishing second-
harmonic component of a specific sign, which originates
from the second-rank tensorial nature of hydrodynamic
interaction. We consider trajectories in the bulk and near
a substrate, and those tilted relative to each other. We also
develop an effective potential picture to examine the
global stability of the synchronized states, which reveals
a novel synchronized pattern with a periodically oscillating
phase shift.
Dynamical equations.—We consider a pair of rotors

(indexed by i ¼ 1, 2) and assume that each is a spherical
bead of radius a that follows a fixed periodic trajectory
ri ¼ rið�iÞ, where �i ¼ �iðtÞ is the phase variable with
the period 2� [see Fig. 1(a)]. The bead is driven by an
active force Fi ¼ Fið�iÞ that is tangential to the orbit and
is an arbitrary function of the phase. The hydrodynamic
drag force acting on the bead is given by gi ¼ �½vðriÞ �
_ri�, where � ¼ 6��a is the drag coefficient [16], and vðrÞ
is the velocity field of the surrounding fluid. The tangential
component of the drag force is balanced by the driving
force acting on each rotor, namely, Fi þ ti � gi ¼ 0, where
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ti is the tangential unit vector of the orbit given by ti ¼
r0i=jr0ij with r0i ¼ dri=d�i. Substituting the expression for

the drag force with _ri ¼ r0i _�i into the force balance equa-

tion, we obtain the phase velocity as _�i ¼ !i þ ti �
vðriÞ=jr0ij, where !ið�iÞ ¼ Fið�iÞ=�jr0ij is the intrinsic
phase velocity. The reaction force �gi exerted by the
bead on the fluid generates the flow field

v ðrÞ ¼ �X

j

Gðr; rjÞ � gj ’
X

j

�Gðr; rjÞ � r0j!j; (1)

where Gðr; rjÞ is the Oseen tensor describing the hydro-

dynamic interaction in bulk fluid. On the right-hand side
(rhs) of Eq. (1), we assumed jr� rjj � a and retained the

leading order term with respect to �Gðr; rjÞ ¼ Oða=jr�
rjjÞ. Using this in the above expression for the phase

velocity, we arrive at the coupled phase oscillator equation

_� i ¼ !i þ
X

j�i

�
ti
jr0ij

� �Gij � jr0jjtj
�
!j; (2)

where Gij ¼ Gðri; rjÞ.
We now assume that the two trajectories have the same

shape but are oriented differently relative to the axis that
connects their centers. We can write each trajectory as
rið�Þ ¼ ri0 þQi �Rð�Þ, where ri0 is the position of the
center,Rð�Þ describes the shape of the trajectory, andQi is
a rotation matrix. We also assume that the center positions
are on the x axis and are separated by the distance d ( � a)
from each other, r10 ¼ ð0; 0; 0Þ and r20 ¼ ðd; 0; 0Þ. Using
r0ið�Þ ¼ jR0ð�ÞjQi � tð�Þ with the unit vector tð�Þ ¼
R0ð�Þ=jR0ð�Þj in Eq. (2), we obtain the difference
between the phase velocities as

_�1 � _�2 ¼ !ð�1Þ �!ð�2Þ þ
�
Fð�2Þ
Fð�1Þ!ð�1Þ

� Fð�1Þ
Fð�2Þ!ð�2Þ

�
Hð�1; �2Þ; (3)

where !ð�iÞ ¼ Fð�iÞ=�jR0ð�iÞj is the intrinsic phase
velocity, and we have introduced the coupling function

Hð�1; �2Þ ¼ tð�1Þ �Q1 � �G12 �Q2 � tð�2Þ; (4)

which is a dimensionless quantity of order Oða=dÞ. To
examine the stability of the synchronized state, we set
�1 ¼ �ðtÞ þ �ðtÞ, �2 ¼ �ðtÞ and linearize Eq. (3) with
respect to the phase difference �ðtÞ, which gives the linear
growth rate

_�

�
¼ !0ð�Þ þ

�
!0ð�Þ � 2F0ð�Þ

Fð�Þ !ð�Þ
�
Hð�;�Þ: (5)

Integrating the above result over the period T ¼R
2�
0 d�= _�, we obtain the cycle-averaged growth rate as

� ¼ � 2

T

Z 2�

0
d�½lnFð�Þ�0Hð�;�Þ; (6)

to the lowest order in the hydrodynamic coupling H. A
stable synchronized state exists when �< 0. Equation (6)
thus shows that a necessary condition for synchronization
is that both the force profile Fð�Þ and the hydrodynamic
coupling Hð�;�Þ are not constant. For any given trajec-
tory Rð�Þ that gives a nonconstant function Hð�;�Þ, we
can prescribe a force profile Fð�Þ that satisfies the above

condition. For example, the force profile Fð�Þ ¼ F0f1þR�
0 dc ½Hðc ; c Þ � �H�g, with �H being the cycle average

of Hð�;�Þ, makes � negative definite to the leading order
in the coupling.
In order to calculate Hð�;�Þ, we decompose the Oseen

tensor into isotropic (I) and dyadic (D) parts as

�G12 ¼ GIðr12ÞIþGDðr12Þ r12r12
r212

; (7)

where GIðrÞ ¼ GDðrÞ ¼ 3a=4r and we have used

r12 ¼ r1 � r2

¼ �dex þQ1 �Rð�1Þ �Q2 �Rð�2Þ: (8)

When the characteristic dimension b ¼ maxjRð�Þj of
the trajectory is much smaller than the distance, we can
approximate the hydrodynamic interaction kernel as
�G12 ’ GIðdÞIþGDðdÞexex. Under this approximation,
the coupling function (4) becomes

Hð�;�Þ ¼ GDðdÞ½q1 � tð�Þ�½q2 � tð�Þ� þ const; (9)

where qi ¼ Qi � ex. Note that the diagonal part of the
hydrodynamic kernel gives a constant contribution to
Hð�;�Þ and hence drops off from the integral (6). We
now examine a number of cases in more detail.
Circular trajectories.—As the first example, let us con-

sider the circular trajectory [see Fig. 1(b)]

R ð�Þ ¼ bðcos�; sin�; 0Þ: (10)

For this trajectory, we have jR0ð�Þj ¼ b and tð�Þ ¼
ð� sin�; cos�; 0Þ. First we consider mutually parallel
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FIG. 1 (color online). (a) A generic trajectory with its shape
specified by Rð�Þ. The bead is driven by the tangential force
Fð�Þ. (b) Circular trajectories Q1 �Rð�Þ and Q2 �Rð�Þ with
Rð�Þ ¼ bðcos�; sin�; 0Þ and the rotation matrices Q1, Q2.
Their orientations are specified by the unit vectors qi ¼ Qi �
ex. (c) Linear trajectories with Rð�Þ ¼ Rð�Þex and their ori-
entations specified by qi ¼ Qi � ex.
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trajectories with Q1 ¼ Q2 ¼ I. In this case, we have qi ¼
ex and Hð�;�Þ ¼ GDðdÞsin2� ¼ � 1

2GDðdÞ cosð2�Þþ
const. Note that the factor cos2� represents the second-
rank tensorial nature of the hydrodynamic kernel. To
stabilize the synchronized state, we can use the force
profile Fð�Þ ¼ F0½1� A sinð2�Þ�ðF0 > 0; 0< A< 1Þ,
which gives � ¼ � GDðdÞ

T AþOðA2Þ< 0 [see Fig. 2(a) for

illustration]. We can also use Fð�Þ ¼ F0½1þ B sinð�þ
�
4Þ�ðF0 > 0;�1<B< 1Þ, which gives � ¼ � GDðdÞ

2T B2 þ
OðB4Þ< 0 [see Fig. 2(b)]. In general, the synchronized
state is linearly stable if and only if the Fourier expansion
of lnFð�Þ has a negative coefficient for sin2�. Note that
the condition for synchronization is independent of the
size of the trajectory b at the leading order for circular
trajectories.

Next, we consider rotated circular trajectories. For each
trajectory (i ¼ 1, 2), the rotation operator that acts on (10)
is parametrized by the Euler angles (�i, �i, �i) as Qi ¼
Mzð�iÞMxð�iÞMzð�iÞ, where Mxð	Þ and Mzð	Þ are the
matrices of rotation by angle 	 around the x and z axis,
respectively. It gives qi ¼ ðcos�i cos�i � cos�i cos�i

sin�i; � sin�i cos�i � cos�i cos�i cos�i; sin�i sin�iÞ.
For a rotation in the xy plane (�i ¼ �i ¼ 0), we get
Hð�;�Þ ¼ � 1

2GDðdÞ cosð2�� �1 � �2Þ þ const., and

synchronization is induced by, for example, the force
profile Fð�Þ ¼ F0½1� A sinð2���1 ��2Þ�ð0<A< 1Þ.
Next, a rotation in the yz plane (�i ¼ �i ¼ 0) gives
Hð�; �Þ ¼ � 1

2 GDðdÞ cos�1 cos�2 cosð2�Þ þ const.

Finally, circular trajectories that are vertical to the xy
plane (�i ¼ 0, �i ¼ �

2 ), give Hð�;�Þ ¼ � 1
2GDðdÞ cos�1

cos�2 cosð2�Þ þ const. All of these cases yield similar
conditions for synchronization in terms of the second
Fourier coefficients of lnFð�Þ, as in the case of nonrotated
circular trajectories discussed above.

Linear trajectories.—Next we consider the linear trajec-
tory Rð�Þ ¼ Rð�Þex [see Fig. 1(c)]. It gives tð�Þ ¼
sgn½R0ð�Þ�ex, which amounts to a constant contribution
to the coupling function (9) and hence neither stabilizes
nor destabilizes the synchronized state. However, Oðb=dÞ
corrections to the hydrodynamic kernel give nonconstant
contributions. Substituting Eq. (8) into (4) and (7), and
retaining the first order term with respect to Rð�Þ, we
obtain the coupling function

Hð�;�Þ¼�2Rð�Þ
�
G0

IðdÞðq1 �q2ÞpxþG0
DðdÞq1xq2xpx

þGDðdÞ
d

ðq1xq2 �pþq2xq1 �pÞ
�
þconst; (11)

where p ¼ q1 � q2. Note that the coupling is constant
when q1 ¼ q2, because the distance between the two beads
is constant when the two trajectories are parallel. When
they are not parallel, the phase dependence is proportional
to Rð�Þ. For example, for perpendicular trajectories with
q1 ¼ ex, q2 ¼ ey and the orbital profile Rð�Þ ¼ b cos�,

the synchronized state is stabilized if and only if the
Fourier expansion of lnFð�Þ has a positive coefficient
for sin�.
Nonlinear stability analysis.—We can analyze global

stability of the synchronized state by a nonlinear evolution
equation for the phase difference. To derive it, first we
reparametrize the trajectory by the new phase variable
� ¼ �ð�Þ that makes the intrinsic phase velocity con-
stant: �0ð�Þ � Fð�Þ=�jR0ð�Þj ¼ 2�=T. In this gauge, we
can rewrite Eq. (3) in terms of the phase difference
� ¼ �1 ��2 ¼ �ð�1Þ ��ð�2Þ and the phase sum
� ¼ �1 þ�2 as

_� ¼ 2�

T

� ~Fð���
2 Þ

~Fð�þ�
2 Þ �

~Fð�þ�
2 Þ

~Fð���
2 Þ

�
~H

�
�þ �

2
;
�� �

2

�
; (12)

where ~Fð�Þ ¼ Fð�Þ and ~Hð�1;�2Þ ¼ Hð�1; �2Þ. On the
rhs we have periodic functions of � and �, which are,
respectively, regarded as slow and fast variables when the
interaction is weak. We average Eq. (12) over the period
0< t < T, assuming that � on the rhs is constant over a
cycle, which is justified to the leading order in the coupling
H [17]. We thus obtain the evolution equation in the form

of _� ¼ �V0ð�Þ with an effective potential Vð�Þ. The
potential is calculated and plotted in Fig. 3 for two ex-
amples, which are both nonrotated (Qi ¼ I) and in the
far-field (d � b). For the circular trajectory, the coupling
function H contains only the second harmonic as a

F(φ)

xφ

(a) F(φ)

xφ

(b)

FIG. 2 (color online). Examples of the force profiles that act
to synchronize two beads on circular trajectories aligned on
the x axis. (a) Fð�Þ ¼ F0½1� 1

2 sinð2�Þ�. (b) Fð�Þ ¼ F0½1þ
1
2 sinð�þ �

4Þ�.
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FIG. 3 (color online). Examples of the effective potential
Vð�Þ. (a) For the circular trajectory with Fð�Þ ¼ F0½1� 1

2 �
sinð2�Þ�, the unique stable solution is found at � ¼ 0. (b) For
the elliptic trajectory Rð�Þ ¼ bðcos�; 12 sin�; 0Þ with Fð�Þ ¼
F0½1� 1

10 sinð2�Þ þ 1
2 sinð4�Þ�, we obtain the bistable solutions

� ¼ ��0 with �0 ’ 0:29�, and a metastable solution at
� ¼ �. (c) The stable solution � ¼ �0 in (b) means an oscillat-
ing phase shift � ¼ �ðtÞ in the original gauge.
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function of �, which results in either the in-phase (� ¼ 0)
or antiphase (� ¼ �) synchronization depending on the
force profile, as illustrated in Fig. 3(a). For a more complex
trajectory like the ellipse, more than one stable and/or
metastable solution can be obtained, as shown in
Fig. 3(b). The nonzero values of� generally mean periodic
oscillations of the phase difference �ðtÞ ¼ �1 ��2 in the
original gauge [see Fig. 3(c)].

Synchronization near a substrate.—Finally, let us con-
sider the case where the rotors are suspended at height h
from a flat substrate (located at z ¼ �h). In this case, the
hydrodynamic coupling is expressed by the Blake tensor
[18], which takes into account the no-slip boundary con-
dition on the substrate. For simplicity, we restrict ourselves
to the case where the trajectories are confined in the
xy plane and are separated by a relatively large distance,
namely d � h, b. In this case, we can use Eq. (7) with
GIðrÞ ¼ 0, GDðrÞ ¼ 9ah2=r3. With these redefined func-
tions, all the results discussed above hold true. For circular
trajectories, for example, we have only GD in the leading
order expression for �, and hence the vanishing of GI does
not affect the condition for synchronization.

Discussion.—Our analysis shows that the requirement
for hydrodynamic synchronization is nontrivial but not
difficult to meet, and that a wide variety of beating patterns
do induce synchronization. This is in contrast with the
picture that emerged from the previous studies, which
suggests that flexibility of the beating body [7] or its
trajectory [13,15] is essential to induce synchronization.
If the rotors are far from each other, the flexibility of the
orbit has a negligible effect [10], and the variation of the
internal driving force should become the dominant mecha-
nism for synchronization.

Dependencies on the trajectory shape and geometry can
be summarized by representing the action of a rotor at far
distance by force multipoles at a fixed position. For circular
orbits, � is independent of the size of the trajectory, which
indicates that the dominant interaction comes from force
monopoles when they are in bulk fluid, or dipoles near a
substrate (each made of the force monopole and its mirror
image [18]). Linear oscillators do not couple at the first
order of the force-multipole expansion. Their leading order
coupling comes from the monopole-dipole interaction for
beads that are in bulk, or dipole-quadrupole interaction
near a substrate. Linear oscillators are also special in the
sense that they do not synchronize if they are parallel. This
could be relevant to the synchronization of microswimmers
[19], which can be minimally modeled by a linear configu-
ration of three point forces [20].

We have also derived a fully nonlinear evolution equa-
tion for the phase difference, which enables us to study
the global stability of synchronized states with or without
phase shifts. We note that the presence of stable phase
shifts [3] and antiphase synchronization [21] have been

recently observed in experiments on the beating patterns
of the flagella of C. reinhardtii.
In conclusion, we have derived a generic and explicit

criterion for the trajectory shape and force profile that
stabilize synchronized states. The criterion could be help-
ful in understanding the collective behavior of active
biological organelles, and designing active microfluidic
components that could be tuned in and out of synchronized
states using mechanical signals communicated via hydro-
dynamic interactions.
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