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Experimental investigations of elastic tail propulsion at low
Reynolds number

Tony S. Yu, Eric Lauga,a� and A. E. Hosoi
Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

�Received 19 June 2006; accepted 7 August 2006; published online 7 September 2006�

A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive
flexible filament. Here we present a macroscopic experimental investigation of such a propulsive
mechanism. A robotic swimmer is constructed and both tail shape and propulsive force are
measured. Filament characteristics and actuation are varied, and the resulting data are quantitatively
compared with existing linear and nonlinear theories. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2349585�
At small scales, the physics of swimming is fundamen-
tally different from that at mesoscopic scales as the domi-
nance of viscous forces over inertial forces leads to equations
of motion that are time-reversible. In his famous lecture,
“Life at low Reynolds numbers,” Purcell1 described three
simple swimming mechanisms that are not time-reversible
and hence lead to a net translation in the absence of inertial
effects: �i� the “corkscrew,”2 in which a rigid helical filament
is rotated in a viscous liquid, analogous to the swimming
mechanism of many bacteria;3,4 �ii� the “three-link swim-
mer,” the simplest rigid-linked mechanism that swims with-
out inertia;5 and �iii� the “flexible oar,”6–8 in which a flexible
tail is oscillated in a viscous fluid, generating traveling
waves along the filament that produce a propulsive force �see
also Refs. 9–11�. The purpose of this Letter is to experimen-
tally investigate the flexible oar design and to compare the
resulting force data with existing theories.

Swimming at microscales has long been the realm of
bacteria and other micro-organisms,4,12 but contemporary ad-
vances have allowed engineers to catch up with nature. Drey-
fus et al. recently created the first man-made micro-
swimmer,13 in which a chain of paramagnetic beads propa-
gates a bending wave along the chain driven by an external
magnetic field. Although construction of this remarkable
swimmer was at least partially motivated by existing flexible
tail theories,6–11 the mechanism is not a truly passive flexible
tail as internal torques are applied along the length of the
filament. A second experiment performed by Wiggins et al.
measured the shape changes of a passive actin filament, os-
cillated at one end via optical tweezers.7 The shapes recorded
in these trials match elastohydrodynamic theory well, how-
ever the resulting propulsive force—a key parameter in de-
signing microscopic swimmers—was not measured. Here we
propose the first experimental determination of this force and
show that the linear theory due to Wiggins and Goldstein6

quantitatively predicts both the shape of the elastic filament
and the resulting propulsive, viscous forces.
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In order to experimentally quantify the propulsive char-
acteristics of the flexible oar design, we built a robotic swim-
mer dubbed “RoboChlam” �after the algae Chlamydomonas�,
as is displayed in Fig. 1�a�. The RoboChlam body was ap-
proximately 8 cm in length and housed a geared dc motor.
The motor’s rotation was converted into an angular oscilla-
tion using a Scotch yoke and a lever �see Fig. 1�b��. Conse-
quently, the tail was angularly actuated: the base of the fila-
ment was fixed at the origin and the base angle was varied
sinusoidally with an amplitude a0 and a frequency �. The
voltage across the motor governed the oscillation frequency
�between 5 and 0.4 rad/s�, and the length of the lever con-
trolled the amplitude of oscillation �0.814 and 0.435 rad�. At
the end of the lever, stainless steel wires of length 18– 30 cm
acted as elastic tails. Two different tail diameters were used
in these experiments: D=0.5 and 0.61 mm, resulting in
bending stiffnesses of 6.1�10−4 and 1.3�10−3 N m2,
respectively.

RoboChlam was immersed in high viscosity �3.18 Pa s�
silicone oil to approach the low Reynolds numbers �10−2–
10−3� achieved by micro-organisms. Tail shapes generated by
RoboChlam were imaged with a video camera at 30 frames
per second and 720�480 pixels per frame. A cantilever
beam anchored the device, and a pair of strain gauges on
opposite sides of the beam measured beam deflection. Strain
gauge readings were converted into force measurements; a
no-load voltage reading was taken at the beginning and end
of each trial to measure the thermal drift in the strain gauges
and the accompanying circuitry. Although force data were
obtained through measured deflections of the cantilever
beam, this deflection was small—less than half a centimeter
at the beam’s tip—thus, RoboChlam’s position was approxi-
mately fixed. Experiments showed that an angular oscillation
starting with the tail at rest reached steady-state motion after
approximately two periods of oscillation; the time scale as-
sociated with this decay of transients corresponds well with
the transient time scales observed in our nonlinear simula-
tions. Finally, videos of the tail shapes were digitized for
comparison to simulations and theoretical predictions. Ex-
perimental data are summarized in Figs. 2, 3, and 5.
To perform a quantitative comparison of experimental
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force and shape data with theoretical predictions, we first
briefly review a few key results of the theory of actuated
elastic filaments in Stokes flow.7 Consider an elastic, cylin-
drical rod whose base is attached to a fixed body �see Fig. 4�.
In a low Reynolds number regime, the inertia of the fluid can

FIG. 1. �Color online� �a� Experimental setup to measure tail shapes and
propulsive forces. �b� Scotch yoke and lever mechanism. The rotor and
follower form the Scotch yoke, which converts the motor’s rotation into a
translational oscillation. This oscillation is then converted to an angular
oscillation by a lever. The angular oscillation is approximately sinusoidal for
a constant motor rotation.

FIG. 2. �Color online� Force measurements for various tail lengths, L. Os-
cillation frequency was varied to span a range of dimensionless lengths, L,
where the dimensionless length and force are defined in Eqs. �7� and �9�,
respectively. The � symbols correspond to D=0.61 mm and a0=0.814 rad.
All other data correspond to D=0.5 mm and a0=0.435 rad. There are no

free parameters in the comparison between experiment and theory.
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be neglected and the fluid dynamics is well-described by
Stokes equations. If the length of the tail, L, is much greater
than its diameter, D, the hydrodynamics can be further sim-
plified by using slender body theory, the lowest order ap-
proximation of which is resistive force theory.12,14,15 Thus,
the drag forces on the tail are linearly related to the velocity
through the transverse and axial drag coefficients, �� and ��,
respectively, and the drag force per unit length of the rod can
be expressed, for planar actuation, as

fd = − ���n̂n̂ + ��t̂t̂� · rt, �1�

where the subscript t denotes a derivative in time, r is the
position vector of a point along the tail, and n̂ and t̂ are the
unit normal and tangent to the filament, respectively.

The elastic forces on the rod are derived from an energy
functional, which includes bending energy and an inextensi-
bility constraint

FIG. 3. �Color online� Comparison between experiment, linear, and nonlin-
ear theories of tail shapes. Snapshots are shown at four points in the cycle
for one tail with L=20 cm, D=0.5 mm, a0=0.435 rad, at three different
oscillation frequencies: �a� �=0.50 rad/s �L=1.73�, �b� �=1.31 rad/s
�L=2.20�, and �c� �=5.24 rad/s �L=3.11�.

FIG. 4. �Color online� Schematic of the elastic tail with the origin defined at

the base of the tail.
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E = �
0

L �A

2
�2 +

�

2
rs

2�ds , �2�

where A is the bending stiffness, � is the local curvature of
the tail, and � is the Lagrange multiplier enforcing inexten-
sibility. Using calculus of variation, we obtain the elastic
force per unit length, f�=−�E /�r, as given by16,17

f� = − �A	sss − 	s
�n̂ + �A	ss	s + 
s�t̂ , �3�

where the subscript s denotes a derivative in the coordinate
along the tail axis, 	 is the local angle �see Fig. 4�, and 
 can
also be interpreted as the local tension in the tail.

Local mechanical equilibrium along the rod and local
inextensibility lead to a pair of coupled, nonlinear partial
differential equations of motion,16

	t = −
1

��

�A	ssss − 
	ss − 
s	s� +
1

��

�A	s
2	ss + 
s	s� , �4�


ss −
��

��


	s
2 = − A

�� + ��

��

	s	sss − A	ss
2 . �5�

Numerical solutions to these equations were found using a
Newton-Raphson iteration and are plotted along with experi-
mental data in Figs. 2 and 3.

For small deflections �i.e., assuming 	�1 such that
		yx�, Wiggins and Goldstein6 have shown that the motion
of the tail can be further simplified and is described by a
linear, “hyperdiffusion” equation,

yt 	 −
A

��

yxxxx, �6�

where subscripts x and t denote derivatives in position and
time, respectively. For the case of harmonic angular actua-
tion, we apply the boundary condition 	=a0 sin��t� at the
base. The nondimensionalization of Eq. �6� is obtained by
substituting x=Lx̃, y=a0Lỹ, and t= t̃ /� into Eq. �6�, leading
to ỹt̃	−��� /L�4ỹx̃x̃x̃x̃, where ��= �A /����1/4 is the character-
istic penetration length of the elastohydrodynamic problem;
solutions to Eq. �6� decay exponentially in space over this
typical length scale. The time evolution of the tail shapes is
then only a function of the angular amplitude, a0, and the
dimensionless length,

L = L/�� = L
���

A
�1/4

. �7�

This dimensionless length is the key parameter in the prob-
lem and represents the “floppiness” of the tail and hence the
overall effectiveness of the swimmer. In particular, theory
predicts an optimal dimensionless tail length as both short,
stiff tails and long, flexible tails produce negligible net
translation8—the first is ineffective owing to “the scallop
theorem”1 and the second owing to the excessive drag on the
long passive filament.

For a tail that is periodically oscillated, Eq. �6� can be
solved analytically.6,7 At the base of the filament, the reaction
forces and torque must balance the drag forces along the tail.
The opposite end of the tail is force- and torque-free such

that 	s=0, 	ss=0, and 
=0 at s=L. For small deflections, the
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x component of local drag force, Eq. �1�, can be integrated
along the length of the tail to yield the propulsive force

�F 	 − A
�� − ��

��
�yxyxxx −

1

2
yxx

2 �
x=0

, �8�

where �¯ denotes averaging over one period of oscillation.
Note that Eq. �8� differs from the one presented in Refs. 6
and 7 by a factor ���−��� /��; this disparity arises from a
proper integration of the drag force on the filament.8

In order to obtain results valid beyond the small-slope
approximation, our numerical solutions to the full nonlinear
system �Eqs. �4� and �5�� were employed and the propulsive
force was found by numerical integration of the local drag
force along the length of the tail. A dimensionless force F
was defined by substituting x=��x̃, y=a0��ỹ, and t=2�t̃ /�
into Eq. �8�, such that

�F = a0
2��

2 ��� − �������F . �9�

Since the distance from the tail to the nearest wall was on the
order of the tail’s length, drag coefficients corrected for wall
effects as in Ref. 18 were used in simulations and for non-
dimensionalizing the force data. These wall corrections have
been shown to match well with experimental results;19 for
simplicity, the effect of only a single sidewall was consid-
ered. These equations produced a drag difference of approxi-
mately ��−�� =3.35 Pa s—about 40% greater than the drag
difference without wall effects.

The results of our investigations are summarized in Figs.
2, 3, and 5. We first display in Fig. 2 the propulsive force
generated for a range of dimensionless tail lengths, L. All
parameters of the experiment were known or measured, and
no fitting of data was necessary. We obtain excellent agree-
ment of the propulsive force with the theoretical �linear
model, Eq. �6�� and numerical �nonlinear model, Eqs. �4� and
�5�� values. The force data from the RoboChlam experiments
show a maximum dimensionless force at L	2.1, in agree-
ment with prediction from the theory. Note that our data
were nondimensionalized with the drag difference, ��−��

�see Eq. �9��, instead of the transverse drag ��, which was

FIG. 5. �Color online� Normalized, time-averaged differences between lin-
ear �L�, nonlinear �N�, and experimental �E� tail shapes. The difference is
calculated as the �2 norm of the vertical-distance vector between two tails
divided by the tail length and the number of points along the tail. Two data
sets are shown: �1� L=20 cm, D=0.5 mm, and a0=0.435 rad; �2�
L=18 cm, D=0.61 mm, and a0=0.814 rad.
used in Refs. 6 and 7. The drag difference originated in Eq.
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�8�, and it represents the correct scaling as a tail with isotro-
pic drag ���=��� should produce zero propulsive force.5,8 We
note also that the maximum value of L that could be tested
was limited by the motor’s rotation rate and the length of tail
that would fit in the experimental apparatus.

In comparing the data to linear elastohydrodynamic
theories, there are three primary sources of error: wall ef-
fects, thermal drift in the experiment, and the neglected non-
linearities in the theory. The error bars in Fig. 2 arise from
uncertainty in the no-load voltage of the strain gauge mea-
surements. At lower oscillation frequencies, the sample time
of the experiment increased, leading to noticeable thermal
drift in strain gauge �force� measurements and thus larger
drift error for the leftmost points of a given dataset. In addi-
tion, the tip of the longest tail �30 cm, �� was only a few
centimeters from the back wall, and thus this wall had a
non-negligible effect on the drag of the longest tail resulting
in an increased thrust, as expected. Recall that our wall-
corrected drag coefficients only account for a single wall—
the side wall rather than the back wall—of the tank, as is
appropriate for all but the longest tails in our experiments. It
is interesting to note that, in these experiments, nonlinear
effects are completely negligible relative to the other two
sources of error even for long tails and large actuation
angles.

In Fig. 3, we plot the tail shapes from experiments along
with simulated shapes from both the linear and nonlinear
theories. The plot shows three tails from a single data set
�constant L, D, and a0, but varying �� with dimensionless
lengths �a� L=1.73, �b� L=2.20, and �c� L=3.11. These di-
mensionless lengths span the region near the maximum di-
mensionless force. The tail shapes from experiment matched
well with those from the linear and nonlinear simulations,
and only slight differences between the three tails were ob-
served. Tails whose dimensionless length was small �Fig.
3�a�� moved stiffly, while those with large dimensionless
lengths �Fig. 3�c�� were flexible, as predicted by theory. The
difference between the different tail shapes �theory, experi-
ments, simulations� is quantified in Fig. 5. The measured
errors are observed to be small. The fact that the data match
the linear simulation better than the nonlinear solution is
fortuitous and reflects in part the fact that resistive force
theory is only an approximation of the equation of
hydrodynamics.12

In summary, we have presented an experimental investi-
gation of Purcell’s flexible oar swimmer. Measurements of
propulsive forces and time-varying shapes are in agreement
with the results of resistive-force theory. Remarkably, the
Downloaded 02 Sep 2012 to 131.111.164.128. Redistribution subject to AIP li
small-slope model of Wiggins and Goldstein6 appears to re-
main quantitatively correct well beyond its regime of strict
validity.

Our future work will investigate the efficiency of this
propulsive mechanism when embedded in a synthetic free
swimmer—that is, an elastic filament attached to a body that
translates and rotates with the forces and torque generated by
the propulsive tail. In this case, we expect swimming veloci-
ties and rotation rates to result in additional drag forces dis-
tributed along the flexible filament, thereby modifying the
shape of the tail and its propulsive characteristics; this is
confirmed by preliminary experiments.

The authors gratefully acknowledge the support of the
National Science Foundation �CTS-0456092� and the Hock
Tan Postdoctoral Fellowship.
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