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Cytoplasmic streaming circulates the contents of large eukaryotic cells, often with complex flow

geometries. A largely unanswered question is the significance of these flows for molecular transport and

mixing. Motivated by ‘‘rotational streaming’’ in Characean algae, we solve the advection-diffusion

dynamics of flow in a cylinder with bidirectional helical forcing at the wall. A circulatory flow transverse

to the cylinder’s long axis, akin to Dean vortices at finite Reynolds numbers, arises from the chiral

geometry. Strongly enhanced lateral transport and longitudinal homogenization occur if the transverse

Péclet number is sufficiently large, with scaling laws arising from boundary layers.
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One of the most striking observations made possible by
the invention and refinement of the microscope was re-
ported in 1774 by the Italian physicist Bonaventura Corti
[1]. Examining cells of the aquatic plants Nitella and
Chara, he found their fluid contents to be in constant
circulation at speeds of fractions of a millimeter per sec-
ond. This motion, now known as cytoplasmic streaming or
cyclosis, was rediscovered by Treviranus [2,3], but not
until the work of Kamiya and Kuroda [4] did its origins
become clear; cyclosis in plants is driven by the motor
protein myosin moving along filamentary actin at the cell
periphery [5], carrying cargo [6] that entrains fluid [7].

In the many organisms exhibiting cyclosis, from fungi to
amoebae, streaming takes on a great variety of forms. In
plants [8,9], there is simple circulation (in the hair cells of
Tradescantia), fountainlike streaming (in pollen tubes of
the lily), and rotational streaming (in Chara and Nitella),
driven by two helical bands of opposite myosin motion.
Chara grows in branches about 1 mm in diameter, seg-
mented into cylindrical internodal cells several centimeters
in size (Fig. 1). One role of streaming may be to facilitate
transport between cells by way of nanoscale tubes (plas-
modesmata) which connect cells [10]. Streaming may also
mix the cellular contents, as would be important for ho-
meostasis [11]. The thin outer layer of cytoplasm in Chara,
containing the actin-myosin system, is separated from the
vacuole by the tonoplast membrane, which regulates the
exchange of metabolites with the vacuole [12]. Shear
generated in the cytoplasm is transmitted through the
tonoplast, yielding flows throughout the vacuole [4,13].

Quite apart from implications of streaming for cellular
metabolism [14], the advection-diffusion problem pre-
sented by Characean algae holds considerable intrinsic
interest as a form of Stokes flow not previously examined.
The speed U of streaming can reach 100 �m=s in a cell of
radius R as large as 0.5 mm, so for even the smallest

molecular species, with diffusion constant D�
10�5 cm2=s, the Péclet number Pe ¼ UR=D can be
102–103. Thus, advection strongly dominates diffusion
even though the Reynolds number Re ¼ UR=� is small.
Here, we show that the combination of helical forcing
[Fig. 1(b)] and high Péclet numbers in what we term
‘‘Nature’s microfluidic transporter,’’ found by evolution
more than 500 million years ago, can lead to intriguing
properties: (i) fast radial mass redistribution, (ii) enhanced
mass flux across the boundary of the cell, and
(iii) homogenization of longitudinal advection. These arise
from the generation of transverse flows [Fig. 1(c)] akin to
Dean vortices in curved pipes [15], which can promote
mixing in various contexts [16]. While Dean vortices ap-
pear at finite Re, the streaming flows are found at Re ¼ 0.
The regime Pe � 1 is associated with boundary layers that

FIG. 1 (color online). The plant Chara corallina. (a) Portion of
a specimen of C. corallina v. australis, courtesy of Botanic
Garden, University of Cambridge. (b) Velocity boundary con-
ditions and indifferent zones IZ�. (c) Velocity fields; colors/
intensities denote component along H-axis and arrows represent
projections of radial velocity in the plane.
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enhance transport, to a degree that depends on specifics of
boundary conditions at surfaces [17–20].

In microfluidic lab-on-a-chip technologies [21], the
achievement of rapid and efficient mixing is a key chal-
lenge. Solutions range from static multilayer lamination
[22,23] and hydrodynamic focusing [24] to mixers that
exploit the chaotic advection paradigm to increase the
interfacial contact area across which diffusion acts
[25,26]. New microfluidic methods exploiting the rota-
tional streaming paradigm may be of significant interest.

Stripping away biological complexities (tonoplast, dis-
tinction between cytoplasm and vacuole [27]), we study
the dimensionless geometry of Fig. 1(b), a cylinder of
radius 1, whose inner surface has ‘‘barber-pole’’ velocity
boundary conditions: piecewise constant (with values �1)
along two helical bands of wavelength �. The two divi-
sions between these bands are known as indifferent zones
(IZ), labeled ‘‘�’’ according to whether the nearby trans-
verse flow is into or out of the cylinder center. Streaming
rates become independent of cell length l for l * 5 [28], so
we let l! 1 and discard possible 3D effects introduced at
the cell ends for simplicity. We seek solutions of the Stokes
equation, �r2u ¼ rp, for an incompressible velocity u of
a Newtonian fluid with pressure p.

For any finite �, the helical symmetry implies invariance
up to a rotation 2�z=�. Natural coordinates are (r, ’),
where ’ ¼ �� �z is the helical angle and � ¼ 2�=� is
the spiral wave number. A unique basis is the radial unit
vector, er, e’ ¼ r’=jr’j, and eH ¼ er � e’, or

e ’ ¼ 1

h
ðe� � �rezÞ; eH ¼ 1

h
ð�re� þ ezÞ; (1)

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2r2

p
. We set the H-dependence in the

metric by the constraint �’�H / r; a surface of constant
r, with area 2�rL, maps to a fixed interval in ’ and H.
Then the line element is

ds2 ¼ dr2 þ r2

h2
d’2 þ h2dH2: (2)

In an infinite cylinder, with the flow invariant along H, the
continuity equation simplifies to r½@rðrurÞ þ h@’u’� ¼ 0.

This is satisfied by introducing a stream function �ðr; ’Þ,
with urðr; ’Þ ¼ �ð1=rÞ@’�, and u’ðr; ’Þ ¼ ð1=hÞ@r�,

so

u ¼ vðr; ’ÞeH � 1

h
r�ðr; ’Þ � eH: (3)

When �! 1, we have eH ! ez and � ! 0, reflecting a
symmetry uðr; �Þ ¼ �uðr;��Þ. The solution is [13]
vðr; �Þ ¼ ð2=�Þ arctan½2r sin�=ð1� r2Þ�. For � finite,
this symmetry is broken by the chirality of the helical
trajectories, for the geometry in Fig. 1(b) is left-handed;
both upward and downward bands perform a counterclock-
wise spiral along the direction of motion. With this reduced
symmetry, � need not vanish, and the periodicity in ’

allows a Fourier expansion,

�ðr; ’Þ ¼ X
n odd

 nðrÞ sinn’: (4)

A solution of the flow field is obtained by expanding the
radial modes of v and � in modified Bessel functions
[14,29], whose properties imply that the stream function
is dominated by the first mode, and thus

ur ’ � 1ðrÞ
r

cos’; u’ ’  
0
1ðrÞ
h

sin’: (5)

Figure 2(a) shows that the form of  1ðrÞ is largely
insensitive to �, apart from a scalar amplitude �ð�Þ. This
mode is a simple symmetry-breaking perturbation of the
downstream flow and is well-represented by [30]

 1ðrÞ ’ �rð1� r2Þ2: (6)

At the wavelength �max ¼ 2:8 that maximizes transverse
flow, the amplitude is � ¼ 0:06 [Fig. 2(a)]. It decreases for
shorter �, where the forcing from narrow helical bands is
inefficient, and also for larger wavelengths, on approach to
the axially symmetric case.
Since advective trajectories follow level lines of the

stream function, the maximum of  1ðrÞ at r ¼ 1=
ffiffiffi
5

p
de-

fines extrema at ’ ¼ ��=2 that are the centers of a double
vortex. In a Poincaré projection [Fig. 2(b)], this periodic
flow is seen to be greatest along the line connecting the IZ,
where the downstream flow vanishes. Although appropri-
ately selected perturbations could, in principle, lead to
chaotic trajectories, those found in vivo (i.e., spatial varia-
tions in helical pitch and end effects) seem not to be
significant enough for that to be the case. However, two
key results emerge solely from these streamline properties:
material is rapidly carried between the IZ, crossing the cell
in 0.5–1 helical periods, and the average downstream dis-
placement is homogenized by exchange of material be-
tween the stagnant central region and the high
(longitudinal) speed regions at the periphery.
Consider next the consequences of this complex flow

field on a molecular solute whose concentration C obeys
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FIG. 2 (color online). Rotational streaming flow. (a) Lowest-
order stream function  1 along transverse slice of cylinder, at
various wavelengths �. Inset shows prefactor � [Eq. (6)].
(b) Poincaré plot at � ¼ 3:0, with colors/intensities indicating
displacement along the z-axis, and markers denote a
z-displacement of �=4.
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the advection-diffusion equation,

Ct þ Peu � rC ¼ r2C; (7)

where the advective term partitions into downstream and
‘‘mixing’’ components, which couple to v and �,

u � rC ¼ v@HC� 1

r
@’�@rCþ 1

h
@r�@’C: (8)

In a problem where the concentration is also invariant
along H, it is then natural to define the transverse Péclet
number Pe� ¼ �Pe. Inspired by the vacuole’s roles as both
storage facility and metabolic buffer for cytoplasmic pro-
cesses, we examine the effect of streaming on the reequili-
bration of a well-mixed system in response to a jump in the
concentration at the boundary.

Figure 3 displays the results of numerical studies (with
methods given elsewhere [14]). For finite �, the broken
symmetry of the flow produces an asymmetric concen-
tration field exhibiting a steep gradient of C at the cyl-
inder wall near IZþ and a tongue with moderate slope
crossing the cylinder from IZ�. The net effect is an en-
hanced total flux and decrease in the time for reequilibra-
tion. In a section of Cðx; tÞ along y ¼ 0 in Fig. 3(a), we
define the normalized concentration profile�ðx; tÞ 	 ðC�
CminÞ=ð1� CminÞ [Fig. 3(b)], where Cmin ¼ Cðxmin; tÞ is
the minimum concentration. The boundary layer thickness
	 may be calculated as 	 ¼ Rxmin�1 �ðx; tÞdx. For large t (but
before the advancing tongue fully crosses the cylinder), 	
converges to a constant that decreases with Pe� [Fig. 3(c)].

The scaling of 	 with Pe follows from a dominant
balance argument in a local Cartesian coordinate system
near the stagnation point IZþ. Let s ¼ 1� r
 1 be the
distance from the wall and 
 ¼ ’� �
 1 the angular
distance from IZþ. For a quasi-steady-state profile C ¼
FðSÞ, where S ¼ s=	, the flow components are us / �1

2s
2

and u
 / s
. The dominant terms in (7) are

0 ’ 1
2Pe

�	S2F0ðSÞ þ 1

	2
F00ðSÞ: (9)

Balancing these terms yields the familiar [17] boundary

layer scale 	 / Pe��1=3, as in Fig. 3(d). The time for
development of the boundary layer is estimated from the
mean concentration �C¼ ð1=�ÞRRD drd’rCðr;’; tÞ, where
the domain D is that of the boundary layer. Assuming a
self-similar form, �CðtÞ � 	Gðt=�Þ, then d �C=dt�
ð	=�ÞG0ðt=�Þ. Mass conservation further relates d �C=dt
and the boundary flux. In dimensionless form,

d

dt
�CðtÞ � � 1

�

Z
d’@rCðr; ’; tÞ � 1

	
; (10)

so 	=�� 1=	 and � / 	2 / Pe��2=3, as in Fig. 3(d).
While enhanced fluxes imply fast radial mass transport,

a different metric is required to determine the role of
vorticity in downstream transport. Axially symmetric
pressure-driven flows may exhibit Taylor diffusion [31];
a parabolically-deforming sheet of solute redistributes ra-
dially by diffusion, producing for t� Pe a self-similar
concentration profile moving at the mean velocity and
spreading longitudinally with an effective diffusivity
�Pe2. This phenomenon persists in the presence of trans-
verse circulation, which results in a lowered effective
diffusivity [32] and shorter time scale for convergence to
the Taylor dispersion limit, as in the case of the staggered
herringbone micromixer [25].
The Taylor diffusion approximation will not necessarily

hold for the comparatively short Characean internodal
cells, whose aspect ratio (�102) implies that the longitudi-
nal advection time L=U is comparable to the radial diffu-
sion time R2=D. Even on such intermediate time scales,
z-displacements are homogenized as fluid parcels are ad-
vected along vortex loops in the r’-plane.
We quantify this homogenization by the time-dependent

variation in z-displacements for a set of points initially in a
sheet at z ¼ 0. Figure 4(a) shows the standard deviation

� ¼ ðz2 � �z2Þ1=2 of z-displacements relative to the mean �z,
which decreases to zero over a time �1=� as
z-displacements are averaged out by the circulation. The
absolute magnitude of � [Fig. 4(a), inset] shows a loga-
rithmic dependence that levels off as the grid resolution of
the trajectories becomes insufficient to continuously rep-
resent the diverging circulation time at the wall. The typi-
cal loop time �loop over which�=�z falls off to half its initial

value defines a typical length  ¼ �loop �uz over which

z-displacements homogenize. The dependence of  on �

FIG. 3 (color online). Advection-diffusion dynamics. (a) Snap-
shot of concentration and flow (arrows). (b) Rescaled concen-
tration along the diameter connecting IZ� in (a), for � ¼ 3:0 and
Pe ¼ 0, 500, 104. (c) Boundary layer scale near IZþ vs time for
Pe ¼ 0, 10, 50, 200, 103, 5� 103, 2� 104. (d) Scaling of
boundary layer gradient 1=	 and tongue propagation rate 1=�
with Pe�. Colors/intensities denote results with � ¼ 3:0, 5.7, 12,
25, 47.
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[Fig. 4(b)] is dominated by a 1=� dependence, leading to a
very strong �3 scaling as the amplitude of the stream
function approaches zero.

To summarize, breaking the symmetry via chiral wall
forcing leads to some remarkable transport properties:
enhanced mass flux across the boundary, fast radial redis-
tribution, and short longitudinal homogenization lengths.
The generation of secondary flows analogous to Dean
vortices at zero Reynolds number (generated by actin-
myosin coupling in Chara), could be implemented by,
for instance, electro-osmotic flows for microfluidic appli-
cations. Techniques for pattering of charged surfaces [33]
and/or the control of the electro-osmotic flow by light [34]
serve as proof-of-principle for the creation of spatially
complex forcing at the microchannel wall. At the consid-
ered length scales, the time for diffusive transport becomes
prohibitively expensive and fast and efficient advection–
mediated homogenization is key. That would seem to be
also the case for the Characean algae. A previously-noted
relationship between the spiral wavelength and cell growth
rate in Nitella [14] may be evidence of this, as is the role of
streaming in tip-growth of fungi. Indeed, the ubiquity of
streaming in its diverse forms emphasizes the relevance of
fluid dynamics for intracellular processes.
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FIG. 4 (color online). Homogenization of downstream trans-
port. (a) Relative standard deviation of z-displacements tends to
zero in a time / 1=� due to logarithmic growth of the absolute
standard deviation (inset). Curves of different colors show a
collapse of datasets with � ¼ 3:0, 5.7, 12, 25, 47. (b) The length
 over which the z-displacements homogenize scales as �uz=�,
showing a �3 dependence as the circulation decreases to zero.
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